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ABSTRACT 

This paper newly designs the RLS (recursive least-squares) fixed-lag smoother and filter, based on the 

innovation theory, in linear continuous-time stochastic systems. It is assumed that the signal is observed with 

additive white noise and the signal is uncorrelated with the observation noise. It is a characteristic that the 

estimators use the covariance information of the signal, in the form of the semi-degenerate kernel, and the 

observation noise. With respect to the RLS fixed-lag smoother, the algorithm for the estimation error 

variance function is developed to guarantee the stability of the fixed-lag smoother. The proposed estimators 

have the recursive property in calculating the fixed-lag smoothing and filtering estimates. Also, this paper 

proposes the Chandrasekhar-type RLS Wiener filter in linear wide-sense stationary stochastic system. 

Unlike the usual filter including the Riccati-type equations, the Chandrasekhar-type filter does not contain 

the Riccati-type differential equations and has an advantage of eliminating the possibility of the covariance 

matrix becoming nonnegative. 

Keywords: Linear continuous systems, Fixed-lag smoother, RLS estimation problem, Covariance information, 

Wiener-Hopf integral equation, Stochastic signal. 

 

1. INTRODUCTION 

There are three types of smoothers, which are the fixed-interval smoother, fixed-point 

smoother and the fixed-lag smoother. It is well-known that the Kalman estimators use the state-

space model of the signal to be estimated. Alternatively, instead of the state-space model for the 

signal, there are estimators, which use the covariance information of the signal and the 

observation noise. Of the three types of smoothers, this paper focuses on the fixed-lag smoother. 

Hitherto, the fixed-lag smoothing algorithms have been studied mainly in linear discrete-time 

stochastic systems, e.g. the RLS (recursive-least squares) fixed-lag smoother using the covariance 

information [1] the fixed-lag smoother [2] based on the innovation theory, using the covariance 

information, and the RLS Wiener fixed-lag smoother [3]. Also, in linear continuous-time 
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systems, the recursive fixed-lag smoother, using the covariance information, is designed assuming 

that the smoothing estimate is given as a linear integral transformation of the observation process 

[4]; [5].  

In linear estimation theory, we often encounter the approach based on the innovation theory. 

From the viewpoint of the innovation approach, this paper, as a new attempt,  examines to design 

the RLS fixed-lag smoother and the filter using the covariance information. The fixed-lag 

smoother and the filter calculate the estimates recursively. In this paper, it is assumed that the 

signal is observed with additive white noise and the processes of the signal and the observation 

noise are mutually independent. The estimation problem for the signal process correlated with 

the colored observation noise can be dealt with as an extension of the independent case between 

the processes of the signal and the white observation noise. 

This paper, based on the RLS filter presented in this paper, further develops the 

Chandrasekhar-type filter from the RLS Wiener filter. The RLS Wiener filter [6] is derived from 

the RLS filter using the covariance information. The derivation of the Chandrasekhar-type filter 

is similar to the technique in Kailath [7] for the Chandrasekhar-type filter from the Kalman filter 

with the state-space model. It is known that the Chandrasekhar-type filter is advantageous to the 

RLS Wiener filter from the aspect of not including the Riccati-type differential equations. The 

Riccati-type differential equations generate the round-off errors, which sometimes result in the 

instability of the filtering estimate particularly for the small value of the observation noise 

variance. 

Two numerical simulation examples are demonstrated to show the estimation property of the 

proposed RLS fixed-lag smoother using the covariance information. 

 

2. FIXED-LAG SMOOTHING PROBLEM  

Let an observation equation be given by  

  ( )   ( )   ( ) (1) 

in linear continuous-time stochastic systems, where  ( ) is an     signal vector and  ( ) is 

white observation noise. It is assumed that the signal and the observation noise are mutually 

independent stochastic processes with zero means. Let the auto-covariance function of  ( ) be 

given by  

    ( )  ( )    (   )       (2) 

Here,  ( ) denotes the Dirac   function.  

Let  (   ) represent the auto-covariance function of the signal and let  (   ) be expressed in the 

semi-degenerate kernel [4] form of  

  (   )  {
 ( )  ( )       

 ( )  ( )       
 (3) 

Here,  ( ) and  ( ) are bounded     matrices.  

Let a fixed-lag smoothing estimate  ̂(     ) of  ( ) be given by  
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  ̂(     )  ∫  

   

 

(   ) ( )   (4) 

as a linear integral transformation of the innovation process  ( )   ( )   ̂(   )       

 , where  (   ),   and  ̂(   ) are referred to be an impulse response function, the fixed lag and 

the filtering estimate of  ( ).  

The impulse response function, which minimizes the mean-square value of the fixed-lag 

smoothing error  ( )   ̂(     ),  

     ‖ ( )   ̂(     )‖    (5) 

satisfies  

 
   ( )  ( )  ∫  

   

 

(   )   ( )  ( )    

                       (   )  

(6) 

by an orthogonal projection lemma [1]; [2]:  

  ( )   ̂(     )   ( )         (7) 

Here, “ ” denotes the notation of the orthogonality. From (1), (2) and (6), the linear least-squares 

impulse response function satisfies  

 

 (   )     ( )( ( )   ̂(   ))  

  (   )  ∫    ( )  ( ) 
 

 

  (   )  

  (   )  ∫  (   ) 
 

 

  (   )    

(8) 

 

3. FIXED-LAG SMOOTHING AND FILTERING ALGORITHMS  

The expression for the fixed-lag smoothing estimate in (4) might be written as  

  ̂(     )  ∫ 

 

 

(   ) ( )   ∫  

   

 

(   ) ( )    (9) 

The first term on the right hand side represents the filtering estimate  ̂(   ) of  ( ) and the 

second term represents the correction term of the fixed-lag smoothing estimate to the filtering 

estimate.  For      , from (3), the impulse response function  (   ) satisfies 

  (   )   ( )  ( )  ∫ 

 

 

(   ) ( )  (   )    (10) 

Introducing an auxiliary function  ( ), which satisfies 

  ( )    ( )  ∫  

 

 

( ) ( )  (   )    (11) 

we obtain 

  (   )   ( ) ( )  (12) 

Substituting (12) into (11) and introducing a function 

  ( )  ∫  ( ) 
 

 

  ( )    (13) 
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we have 

 
 ( )    ( )  ∫  

 

 

( ) ( )  ( )  ( )  

   ( )   ( )  ( )  

(14) 

Differentiating (13) with respect to  , we obtain 

 
  ( )

  
  ( )   ( )  ( )     (15) 

Let us introduce a function 

  ( )  ∫  ( ) ( )   
 

 

 (16) 

From (9) and (12), the filtering estimate  ̂(   ) is given by 

 

 ̂(   )  ∫  (   ) ( )  
 

 

 ∫  ( ) ( )
 

 

 ( )  

  ( ) ( )  

(17) 

Differentiating (16) with respect to    we have  

 
  ( )

  
  ( ) ( )   ( )( ( )   ̂(   ))  ( )     (18) 

 For        , from (3), (8) is written as 

  (   ) ( )   ( )  ( )  ∫  (   ) 
 

 

  (   )    (19) 

Introducing an auxiliary function  ̃( ), which satisfies 

  ̃( )    ( )  ∫  ̃( ) 
 

 

  (   )    (20) 

we obtain 

  (   )   ( ) ̃( )         (21) 

Introducing a function 

  ̃( )  ∫  ̃( )   ( )   
 

 

 (22) 

from (12) and (20),  ̃( ) is expressed by 

 

 ̃( )    ( )  ∫  ̃( ) ( )
 

 

  (   )  

   ( )  ∫  ̃( ) ( )  ( )  ( )  
 

 

   ( )   ̃( )  ( )  

(23) 

Differentiating (22) with respect to  , we have 

 
  ̃( )

  
  ̃( )   ( )  ̃( )     (24) 

Let us introduce a function 

  ̃(     )  ∫  ̃( ) ( )   
   

 

 (25) 

From (9), the fixed-lag smoothing estimate  ̂(     ) of  ( ) is expressed as 
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 ̂(     )   ̂(   )  ∫  ( ) ̃( )

   

 

 ( )  

  ̂(   )   ( ) ̃(     )  

(26) 

Differentiating (25) with respect to  , we have 

 
  ̃(     )

  
  ̃(   )( (   )   ̂(       ))   ̃( )( ( )  

 ̂(   )). 
(27) 

The initial condition on the differential equation (27) for  ̃(     ) at     is  ̃(   ), which is 

specified by 

  ̃(   )  ∫  ̃( ) ( )  
 

 
. (28) 

Differentiating (28) with respect to  , we obtain 

 
  ̃(   )

  
  ̃( )( ( )   ̂(   ))     ̃(   )     (29) 

Now, let us summarize the fixed-lag smoothing algorithm in Theorem 1.  

Theorem 1 Let the observation equation be given by (1). Let the auto-covariance function of 

the signal  ( ) be given by (3) in the semi-degenerate kernel form in linear continuous-time 

stochastic systems. Then the fixed-lag smoothing estimate  ̂(     )  of  ( )  is calculated 

recursively by (30)-(37). Fixed-lag smoothing estimate  ̂(     ) of  ( ): 

  ̂(     )   ̂(   )   ( ) ̃(     ) (30) 

 

 
  ̃(     )

  
  ̃(   )( (   )   ̂(       ))   ̃( )( ( )

  ̂(   )) 
(31) 

 

  ̃( )  (  ( )   ̃( )  ( ))    (32) 

 

 
  ̃( )

  
  ̃( )   ( )  ̃( )    (33) 

Filtering estimate  ̂(   ) of  ( ): 

  ̂(   )   ( ) ( ) (34) 

 

 
  ( )

  
  ( )( ( )   ̂(   ))  ( )    (35) 

 

 
  ( )

  
  ( )   ( )  ( )    (36) 

 

  ( )  (  ( )   ( )  ( ))    (37) 

Initial condition on the differential equation (31) for  ̃(     ) at     is  ̃(   ), which satisfies 

the differential equation 

 
  ̃(   )

  
  ̃( )( ( )   ̂(   ))     ̃(   )     (38) 
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4.  CHANDRASEKHAR-TYPE RLS WIENER FILTER 

It is known that the Chandrasekhar-type filter is advantageous to the Kalman filter from the 

numerical aspect [7]. Since the Chandrasekhar-type filter does not include the Riccati-type 

differential equations, the round-off errors are avoided in the computation of the Riccati-type 

differential equations.  

This section, in the first place, derives the RLS Wiener filter from the RLS filter using the 

covariance information. In the second place, the Chandrasekhar-type RLS Wiener filter is 

obtained from the RLS Wiener filter. 

Concerning (1), we introduce the observation matrix   as  ( )    ( ). Here,  ( ) denotes 

the     state vector. By introducing the system matrix   for  ( ), from (34) and using (35), it is 

clear that the filtering estimate  ̂(   ) of the state  ( ) is calculated by 

 
  ̂(   )

  
   ̂(   )      ( )( ( )   ̂(   ))  (39) 

Let   (   ) denote the variance of the state  ( ) and  ( )   ( ) ( )      ( ) denote the filter 

gain. By introducing the function  ( )      ( )(   ) , the filter gain  ( ) is expressed as 

  ( )  (  (   ) 
   ( )  )   . (40) 

Differentiating  ( ) with respect to  , from (36), we have 

 

  ( )

  
 
  ( )

  
 ( )  ( )   ( ) ( )

   ( )

  
  ( ) ( )   ( )  ( ) 

   ( )   ( )    ( )   ( ), S(0)=0. 

(41) 

Differentiating (41) with respect to  , we have 

 
   ( )

  
  

  ( )

  
 
  ( )

  
   

  ( )

  
   ( )   ( ) 

   ( )

  
  (42) 

By the way, Differentiating (40) with respect to  , we have 

 
  ( )

  
  

  ( )

  
       (43) 

Here, 
   (   )

  
   is clear from the property   (   )    (   )    ( ) for the autovariance 

function of the state  ( ) in linear wide-sense stationary stochastic systems. Substituting (43) into 

(42), we obtain 

 
   ( )

  
 (   ( ) )

  ( )

  
 
  ( )

  
(   ( ) )   (44) 

Let  (   ) be the state-transition matrix for  ( ). It is found that 
  ( )

  
 is given by 

 

  ( )

  
  (   )

  ( )

  
     

 (   )   

  (   )

  
 (   ( ) ) (   )  (   )     

(45) 

From (41), 
  ( )

  
     is given by 

  ( )

  
      ( )   ( ). Hence, from (45), it is clear that 
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  ( )

  
  (   ) ( )   ( )  (   )

  (   ) ( ) 
 

  
 

   ( )  (   )

  ( )  ( )  ( )   (   ) ( ) 
 

   

(46) 

The differential equation for  ( ) is given by 

 
  ( )

  
 (   ( ) ) ( )  ( )   ( ) 

 

   (47) 

From (40), the initial condition on the differential equation (43) at     is specified by 

  ( )    ( ) 
    . (48) 

Substituting 
  ( )

  
  ( )  ( ) into (43), we obtain 

 
  ( )

  
   ( )  ( )       (49) 

 As a result, the Chandrasekhar-type RLS Wiener filtering algorithm for the filtering 

estimate  ̂(   ) of the signal  ( ) is summarized in Theorem 2. Theorem 2 Let the observation 

equation be given by (1). Let the signal  ( ) is related with the state as  ( )    ( ). Then the 

RLS Wiener filtering algorithm consists of (50)-(53) in linear continuous-time stochastic systems. 

Filtering estimate  ̂(   ) of the signal  ( ):  ̂(   )    ̂(   ) 

  ̂(   )    ̂(   ) (50) 

Filtering estimate  ̂(   ) of the state  ( ): 

 
  ̂(   )

  
   ̂(   )   ( )( ( )    ̂(   )),  ̂(   )    (51) 

Filter gain:  ( ) 

  ( )  (  (   ) 
   ( )  )   . (52) 

Riccati-type differential equation for the variance  ( ) of the filtering estimate  ̂(   )  

 
  ( )

  
   ( )   ( )    ( )   ( )  ( )    (53) 

Also, the Chandrasekhar-type RLS Wiener filtering algorithm for the filtering estimate 

 ̂(   ) of the signal  ( ) consists of (50), (51), (54) and (55) in linear continuous-time wide-sense 

stationary stochastic systems. 

Filter gain:  ( ) 

 
  ( )

  
   ( )  ( )       ( )    ( ) 

     (54) 

Differential equation for  ( )  

 
  ( )

  
 (   ( ) ) ( )  ( )    ( ) 

   
 

  (55) 

It is a characteristic that (54) calculates the filter gain of the Chandrasekhar-type RLS 

Wiener filter. Whereas (52) calculates the filter gain of the RLS Wiener filter by use of  ( ), 

which is computed by the Riccati-type differential equations of (53). Since  ( ) and   ( ) are 

    matrices, the number of the differential equations to get the filter gain  ( ) by (54) and 

(55) is     in the Chandrasekhar-type RLS Wiener filter. The number of the Riccati-type 

differential equations is  (   )   in the RLS Wiener filter. Compared with the RLS Wiener 

filter, in addition to the less number of differential equations, under the inequality condition 
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(   )

 
, the Chandrasekhar-type RLS Wiener filter has an advantage of eliminating the 

possibility of the covariance matrix becoming nonnegative due to round-off errors in the 

calculation of the filtering estimate. 

Based on the state-space model in linear continuous-time varying stochastic systems, the 

Chandrasekhar-type filter is described in Baras and Lainiotis [8]. It should be noted that the 

Chandrasekhar-type filter in Theorem 2 is different from those in Kailath [7]; Baras and Lainiotis 

[8] (see page 165) from the viewpoint that the current Chandrasekhar-type filter is derived from 

the RLS Wiener filter using the system matrix  , the variance   ( )  of the state  ( ) , the 

observation matrix   and the variance   of the observation noise. 

 

5. FIXED-LAG SMOOTHING ERROR VARIANCE FUNCTION  

Let   ̃(     ) denote the fixed-lag smoothing error variance function as  

 
  ̃(     )    ( ( )   ̂(     ))( ( )   ̂(     ))  
  (   )     ̂(     ) ̂ (     )   

(56) 

From (30) and (34), we have  

 
   ̂(     ) ̂ (     ) 

   ( ( ) ( )   ( ) ̃(     ))( ( ) ( )
  ( ) ̃(     ))    

(57) 

By introducing the following functions  

 
  ( )     ( )  ( )    

  (     )     ̃(     )( ) ̃ (     )   
(58) 

(56) is written as  

   ̃(     )   (   )   ( )  ( ) 
 ( )   ( )  (     )  ( ). (59) 

From (13) and (16),   ( ) is equivalent to  ( ) as shown by 

 

  ( )    ∫  ( ) ( )  (∫  ( ) ( )) 
 

 

 
 

 

 ∫  ( )   ( )  
 

 

  ( )  

(60) 

Also, from (58) with (25),   ( ) is expressed by 

 

  (     )    ∫  ̃( ) ( )  (∫  ̃( ) ( )  
   

 

)  
   

 

 ∫  ̃( )
   

 

  ̃ ( )    

(61) 

Differentiating (61) with respect to  , we obtain 

  
   (     )

  
  ̃(   )  ̃ (   )   ̃( )  ̃ ( )  (62) 

The initial condition on the differential equation (62) for   (     ) at     is   (   ) . 

From (61),   (   ) satisfies the differential equation. 

 
   (   )

  
  ̃( )  ̃ ( )   (   )      (63) 
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Hence, the fixed-lag smoothing error variance function   ̃(     )  is calculated by (59) 

together with (32), (33), (36), (37), (60), (62) and (63) recursively. 

From (9), (56) and (58), it is seen that the fixed-lag smoothing error variance is lower 

bounded by the zero matrix and upper bonded by the filtering error variance function as 

      ̃(     )    (   )   ( )  ( ) 
 ( )  (64) 

(64) indicates that the estimation accuracy of the proposed RLS fixed-lag smoother is equal to or 

better than that of the RLS Wiener filter in Theorem 1. 

The numerical aspects of the proposed fixed-lag smoother and filter are examined in section 6. 

 

6. NUMERICAL SIMULATION EXAMPLES  

6.1. Example 1 

Let a scalar observation equation be given by  

  ( )   ( )   ( )  (65) 

Let the observation noise  ( )  be a zero-mean white Gaussian process with the variance  , 

 (   ). Let the auto-covariance function of the signal  ( ) be given by  

  (   )  
 

  
        

 

  
          (66) 

From (66), the functions  ( ) and  ( ) in (3) are expressed as follows:  

  ( )   
 

  
   

 

  
        ( )           (67) 

If we substitute (67) into the fixed-lag smoothing algorithm of Theorem 1, we can calculate 

the fixed-lag smoothing estimate recursively. Fig.1 illustrates the signal  ( ) and the fixed-lag 

smoothing estimate  ̂(          ) for the white Gaussian observation noise  (      ) by the 

RLS fixed-lag smoother in Theorem1. It is shown that the fixed-lag smoothing estimate  ̂(    

      ) approaches the signal  ( ) gradually as time increases. From almost time       on, the 

fixed-lag smoothing estimate converges almost to the signal with a few estimation errors. Fig.2 

illustrates the MSVs (mean-square values) of the fixed-lag smoothing and filtering errors by the 

proposed RLS estimators in Theorem 1 for the observation noises  (      )  (      ) and 

 (      ) vs. the fixed lag  ,        . For    , the MSV of the filtering error is shown. 

From Fig.2, we note that the estimation accuracies of the fixed-lag smoother and filter in 

Theorem 1 are almost equal. Also, the smaller the observation noise variance becomes, the better 

the estimation accuracies of the fixed-lag smoother and the filter become.  

Here, the MSVs of the fixed-lag smoothing and filtering errors are evaluated by 

∑ (    
    (  )   (       ))       and ∑ (    

    (  )   (     ))      ,        . Also, as 

the numerical integration of the differential equations, the fourth-order Runge-Kutta method is 

used. For references, the state-space model, which generates the signal process, is specified by  

 ( )    ( )  

 
   ( )

  
   ( )   ( )  

   ( )

  
     ( )     ( )    ( )   

   ( ) ( )   (   )   
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Fig-1. Signal  ( )  and the fixed-lag smoothing estimate  ̂(        )  for the white Gaussian observation noise 

 (      ) by the RLS fixed-lag smoother in Theorem1. 
 

 

 
Fig-2. Mean-square values of the fixed-lag smoothing and filtering errors by the proposed RLS estimators in Theorem 1 

for the observation noises  (      ),   (      ) and  (      ) vs. the fixed lag  ,                . 

 

6.2. Example 2 

Under the same assumptions on the observation equation (64) and the observation noise as 

section 6.1, section 6.1 provides the second simulation example. 

Let the auto-covariance function of the signal  ( ) be given by  

  (   )  
 

 
        

 

 
          (68) 

From (68), the functions  ( ) and  ( ) in (3) are expressed as follows:  

  ( )   
 

 
    

 

 
        ( )           (69) 

If we substitute (69) into the fixed-lag smoothing algorithm of Theorem 1, we can calculate 

the fixed-lag smoothing estimate recursively. Fig.3 illustrates the signal  ( ) and the fixed-lag 

smoothing estimate  ̂(        )  for the white Gaussian observation noise  (      )  by the 

RLS fixed-lag smoother in Theorem1. As in section 6.1, the fixed-lag smoothing estimate 
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converges to the signal as time advances almost after      . Fig.4 illustrates the MSVs of the 

fixed-lag smoothing and filtering errors by the proposed RLS estimators in Theorem 1 for the 

observation noises  (      )  (      ) and  (      ) vs. the fixed lag  ,        . Fig.4 

indicates that the estimation accuracies of the fixed-lag smoother and filter are almost equivalent. 

Also, the smaller the observation noise variance becomes, the better the estimation accuracies of 

the smoother and the filter become. Table 1 shows the square values of the filtering error 

 ( )   ̂(   ) and of the fixed-lag smoothing errors  ( )   ̂(         ) and  ( )   ̂(    

    ) for the white Gaussian observation noises  (      ),  (      ) and  (      ). The mean 

value of the fixed-lag smoothing error  ( )   ̂(         )  is less than the filtering error 

 ( )   ̂(   ) respectively for the white Gaussian observation noises  (      ),  (      ) and 

 (      ). This indicates that the, compared with the filtering estimate, the fixed-lag smoothing 

estimate approaches the signal z(1)=1.155824166469756 by using the observed values  (  

       ),        

The MSVs of the fixed-lag smoothing and filtering errors are evaluated same as in section 

6.1.  

For references, the state-space model, which generates the signal process, is specified by  

 ( )    ( )  

 
   ( )

  
   ( )  

   ( )

  
     ( )     ( )   ( )   

   ( ) ( )    (   )   

 

 
Fig-3. Signal  ( )  and the fixed-lag smoothing estimate  ̂(        )  for the white Gaussian observation noise 

 (      ) by the RLS fixed-lag smoother in Theorem1.  
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Fig-4. Mean-square values of the fixed-lag smoothing and filtering errors by the proposed RLS estimators in Theorem 1 

for the observation noises  (      ),   (      ) and  (      ) vs. the fixed lag  ,                . 

 

Table-1. Square values of the filtering error  ( )   ̂(   ) and of the fixed-lag smoothing errors 

 ( )   ̂(         )  and  ( )   ̂(        )  for the white Gaussian observation noises 

 (      ),  (      ) and  (      ).  

 ( ( )   ̂(   ))  ( ( )   ̂(   
      ))  

( ( )   ̂(   
     ))  

 (      ) 1.143359201822944e-04 1.081306627506604e-04 3.277422949476264e-04 
 

 (      ) 0.001117192449080 8.353781244847178e-04 8.218746244468232e-04 
 

 (      ) 0.034248303862559 0.033543051422689 0.034752454154317 

 

7. CONCLUSIONS  

In this paper, based on the innovation approach, the RLS fixed-lag smoother and filter using 

the covariance information of the signal, in the form of the semi-degenerate kernel, is newly 

devised. Furthermore, on the basis of the RLS filter proposed in this paper, the Chandrasekhar-

type RLS Wiener filter, with the numerical merits, is proposed. In the RLS Wiener filter, the 

number of the Riccati-type differential equations is  (   )  . Compared with the RLS Wiener 

filter, in addition to the less number of differential equations, under the inequality condition 

  
(   )

 
, the Chandrasekhar-type RLS Wiener filter has an advantage of eliminating the 

possibility of the covariance matrix becoming nonnegative due to round-off errors in the 

calculation of the filtering estimate. 

The numerical simulation examples indicate that the estimation accuracy of the RLS fixed-

lag smoother, using the covariance information, is almost equal to that of the RLS Wiener filter. 

Also, it has been shown that the RLS Wiener fixed-lag smoother, based on the innovation 

approach, has stable estimation property. 
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 In the current estimators, it is assumed that the signal process and the observation noise 

process are uncorrelated mutually. However, there is a case where the signal process is observed 

with additive colored noise, where the processes of the signal and the observation noise are 

correlated [9]. The estimation problem for the signal correlated with the observation noise is left 

as a future task. 
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