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ABSTRACT 

In recent years hoisting ropes have been increasingly used for construction of complex structures: tall 

buildings, bridges and far-reaching platform for oil drilling, nuclear plants, etc. These structures have 

complex geometry and subjected to environmental loads, and operation which can cause to material many 

conditions beyond its elastic limit, and created a need to better understand of metal-based cables behavior. 

For these situations, conventional methods of calculation or those given the current regulations are not 

sufficient to give a reliable representation of load-displacement relationship, state of deterioration, resistance 

and failure mode of structures. The quantification of these phenomena aims to design and build those 

equipments in safe, economic, sustainable methods and must be made by means of numerical methods, 

including the finite element one. Although it is possible to establish a model without considering the effects 

which can allow a microscopic level, however, they are many determinants of mechanical response of cable 

factors. That is why their knowledge will be of great interest for modeling the behavior of materials. We 

therefore mention mechanical behavior of cables with the fundamental relation of damage which will be 

used for modeling the stress-strain relationship. The present work falls within this context, our goal is to 

develop a behavior model for the lifting cables, designed for the calculation of structures by numerical 

methods in trying to incorporate most of the factors with their non- response linear behavior. 

Keywords: Hoisting ropes, Metal based, Elastic limit, Load-displacement, Failure mode, Finite 

element, Non-response linear.  

 

1. INTRODUCTION 

Wire ropes combine two very useful properties: high axial strength and flexibility in bending. 

These properties convert wire ropes into indispensable load transmission elements for many 

industrial applications. For instance, wire ropes are widely used in cranes, mine hoisting, and lifts. 

These mechanical properties of the ropes are dependent on their construction and the properties 

of cables itself, because the wires are wound into strands, which are then wound around a central 
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core to form the wire rope, as shown in Figure 1. The properties of the rope depend on the 

number, size and arrangement of wires in the strands. 

 

Figure-1. Component parts of a metallic wire rope 

 

 

The breaking cables by artificial damage are the process of cumulative damage caused by 

loads of varying and repeated intensity. The fatigue damage occurs only in regions of the cable 

which deform plastically under a load of varying intensity. After a number of fluctuations, causing 

cumulative damage initiation and propagation of cracks in plastically damaged regions. 

The main cause of failure is associated to the wire of interfiled friction between strands along 

the cables, due to continued aggression of environment (effects of rain, wind) and changes in 

random loads. When these movements are caused by stress variables, it concerns interfiled 

friction or friction induced by small displacements. This is exacerbated in areas of stress 

concentration by phenomena of wear, fatigue or corrosion, which are direct consequences of the 

modifications strong geometrical and mechanical characteristics of components. 

Indeed, the detection of damage in broken internal or external wires, is of extreme 

importance. However the situation may be complicated by multiple cuts that occur along the wire, 

especially in the presence of interfiled friction. 

 

2. NUMERICAL MODELING OF WIRE ROPES 

Helical structures are widely used in mechanical and civil engineering applications. These 

structures are usually subjected to large loads which can lead to material degradations and cracks, 

associated with corrosion and mechanical fatigue. In this framework, non-destructive testing is a 

crucial tool for detection, localization and measurement of material discontinuities. The choice of 

appropriate technique depends on dimensions and accessibility of the structure.  

Numerous works have been devoted to the modeling of static behavior of helical structures as 

springs and multi-wire cables under axial loads. For helical springs, an analytical model was 

proposed among others in (Ancker and Goodier, 1958) and (Wahl, 1963) considering the spring 
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as an Euler–Bernoulli beam with pitch and curvature corrections. Numerical approaches 

describing the static behavior of helical springs have been also developed. 

Among these works, a finite element model of half of a spring slice has been proposed in 

(Jiang and Henshall, 2000). The static behavior of seven-wire strands has been widely studied in 

literature. Various analytical models based on different assumptions have been proposed, such as 

the model of (Costello, 1977) which is one of the most popular. These models are reviewed 

compared in (Jolicoeur and Cardou, 1991) and (Ghoreishi et al., 2007). Besides, numerical models 

relying on the finite element method were developed. 

Some of them are based on beam elements (Durville, 1998), (Nawrocki and Labrosse, 2000), 

(Páczelt and Beleznai, 2011), also (Nemov et al., 2010) and (Bajas et al., 2010) in which 

superconducting cables composed of a large number of strands are studied. 

But most of the time, 3D models are used, works of (Boso et al., 2006), (Ghoreishi et al., 2007), 

(Imrak and Erdönmez, 2010), (Nemov et al., 2010), (Stanova et al., 2011a; 2011b) and (Erdönmez 

and Imrak, 2011). In order to obtain a good representation of the geometry as well as the 

displacement solution, which may involve bending phenomena, quadratic elements are employed. 

This leads to models which can be computationally expensive, when the model axial length is 

about the pitch length. Therefore, as soon as the loading fulfills helical symmetry, one can take 

benefit of this property to reduce the model size. This has been achieved in (Jiang et al., 1999) and 

(Jiang et al., 2008) in which the computational domain is restricted to a basic sector of a helical 

slice. Helical symmetry may also be accounted for within the framework of homogenization 

theory. This has been proposed first in (Cartraud and Messager, 2006) using axial periodicity, and 

then improved in (Messager and Cartraud, 2008), in which helical symmetry enables to consider 

one slice of a strand. The derivation of the slice model is different in (Jiang et al., 1999), (Jiang et 

al., 2008) and (Messager and Cartraud, 2008). However, in both cases, helical symmetry yields 

displacement constraints between the two faces of the slice, with a loading under the form of an 

axial strain and a twist rate. 

This work further advances (Cartraud and Messager, 2006) and (Messager and Cartraud, 

2008), taking advantage of the translational invariance. Helical symmetry can be actually 

considered more efficiently. Thus the model can be reduced to a 2D one, i.e. a cross-section model. 

This requires formulating the homogenization theory in a twisted coordinate system. This 

technique then allows the computation of the static prestressed state of helical structures (single 

wire and multi-wire) from the solution of a 2D problem. Let us mention that an advanced 

analytical 2D model has been proposed in (Argatov, 2011). This model takes into account 

Poisson’s effect, contact deformation and allows obtaining the overall strand stiffness as well as 

local contact stresses. In this reference, plane strain was assumed to formulate the 2D problem 

while in the present work helical symmetry is used. 

 

 

 

3. GEOMETRIC PROBLEMS RELATED TO CABLES 
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The geometry of some cables is so complex that the definition of areas interfilaire contact, or 

bends and twists in the wires before loading, require lengthy mathematical developments. Several 

authors have tried to solve this purely geometrical problem. Thus, in their study, (Karamchett 

and Yuen, 1979) were interested in research of interfilaire contact points in a multi-strands cable. 

They presented many results of numerical applications of their model, which they varied the 

arrangement of wires in cable section. They also noted that loading of the cable changes the 

number and distribution of contact areas. 

Lee et al. (1987) are attached to express geometric curvature and torsion, before loading in 

any constituent cables of an optionally complex cable section, when wound around a drum or 

pulley. The objective is to calculate stresses in the wires. 

(Out and Vonmorgen, 1997) treated sliding wound on a cylinder in bending wire. The subject 

of their model is considered as flexible tube consisting of several layers which have a helical 

obvious analogy with cables, although the winding angle is much larger than wires in a cable. 

The approach chosen by authors is essentially geometric. When the tube is bent, they define the 

maximum shift between two successive layers as the difference between the initial distorted helix 

and the geodesic line on the cylinder down (geodesic is the shortest line between two points 

remaining on a surface curve). Their theory is designed to calculate the landslide responsible for 

fatigue phenomena in this category of cables. 

 

4. NUMERICAL ANALYSIS MODELS 

4.1. Models of Curved Beams 

In these styles of cables, wires constituent are considered as helical beams and their bending 

stiffness are in torsion behavior. Many studies have been conducted using this approach. Thus 

(Costello, 1997) presented his synthesis of several previous studies under his direction that the 

basic idea is to work with the equilibrium equations of curved beams in case of a single-strand 

cable; the only contacts are treated radial contact between outer wire and soul. 

(Vélinsky and Teissier, 1998) developed a model for complex cable section and took into 

account the change in diameter due to Poisson effect. Equations are linearized, which can greatly 

simplify the theory and apply results to other types of sections. However, for a cable or textile 

plastic soul, an exact solution is difficult to obtain. It becomes necessary to study radial behavior 

of such a cable. To simplify this problem, (Kollros, 1973) introduced a very simple equation with 

two constants that depend only on geometric structure of cable and which can be determined by 

experimental tests. 

 

4.2. Semi –Continuous Modèles 

Semi -continuous patterns are based on a technique similar to that used for the example 

composite materials homogenization. When a system is composed of a large number of identical 

elements, they may in fact replace the system by a discrete continuous material whose 

characteristics are determined properly. 
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This approach was proposed by Hobbs and Raoof (1994) who modeled a layer wire in a cable 

as an elastic orthotropic cylindrical sheet. The entire cable is then analyzed as the sum of different 

concentric elastic layers. Results given by this method are of course even better as the number of 

wires in each layer is important. Therefore, the model is particularly intended for multilayered 

wiring. Within same layer, linear contact with slippage and friction between two adjacent wires is 

studied using the results given by the contact mechanics for two straight and parallel cylinders. 

This particular model allows calculating the stiffness in tension and torsion of a multilayer cable. 

 

4.3. Finite Elements Models 

The first finite element model cables were built from existing elements in the NASTRAN 

code (code calculation of NASA). The description of the geometry and efforts was very rude. For 

example, (Cardou and Jolicoeur, 1997) modeled the wire cable form bars. For (Cutchins et al., 

1987), wires of cable are modeled by eight-node elements heptaedriques but connections between 

wires are treated as springs. 

(Chiang, 1996) used ANSYS code (trademark of Swanson Analysis Systems, Houston, USA) 

and hexahedral elements to eight nodes to discretized a small length of a strand (1 +6) in axial 

loading. 

The study conducted is only statistical in nature and determine the influence of six 

parameters on axial stiffness and stress distribution between the outer and wire purpose. These 

parameters are the winding angle wire, the boundary conditions in rotation, length of strand, 

conditions interfilaire contact, core radius and external radius wires. 

In a different context, (Durville, 1997) developed a beam FE model which allows it to take 

into account the large disturbances, interfilaires friction and warping sections wires. 

(Nawrocki, 1997) has developed a FE model helical wire, adapted to the study of a strand 

where each wire is discretized by a beam element. Wire sections remain plane during 

deformation. The Poisson effect is neglected, as well as local deformations due to interfilaire 

contacts, but force in the section wire is taken into account. Internal frictions are neglected, but 

all possible interfilaire movements (sliding, rolling and rotation) are modeled. Contact conditions 

are introduced through Lagrange multipliers for their consideration at the exact nodes. 

Furthermore, the possible local separation of wires is treated with a suitable algorithm. Finite 

element is created elements based on a Cartesian isoperimetric approach. They have four nodes 

and six degrees of freedom per node. These nodes have three translations and three possible 

rotations of a node, expressed in the global coordinate system. 

 

5. DESCRIPTION AND CHARACTERIZATION OF WIRES GEOMETRIES  

It is well known that solution by mechanical problems finite element interactional contact, 

which generally uses implicit integration schemes, is often affected by numerical problems due to 

poor convergence. 

The deformation of cables is an example of problems with multiple contacts interaction wires, 

especially if the number of strands in cable is high enough. In this context, several finite element 
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codes were used to solve this problem the majority incorporates temporal integration schemes. 

However, (MSC Marc, 2006) used an efficient code to solve problems of cables by a general 

purpose with implicit solver. One way to overcome several difficulties is to use a dynamic 

language that guarantees absence of convergence problems. 

Code with explicit finite element solvers has been applied to problems of cables as ABAQUS 

/ Explicit. One of difficulties in applying the Finite element codes is to find optimal loading speed 

is slow enough to take into account dynamic effects. 

Our numerical simulation is performed using computer code Abaqus. This program aims to 

provide a computational tool easy to handle for recessed cables for analysis, taking into account 

the lagged effects of applied force and displacement. 

 

5.1. Geometry-Setting 

In the first stage of our study, this analysis will focus on a triplet consisting of three cable 

strands (6 mm diameter) (Figure 2). 

 

Figure-2. Representation triplet cable (6 mm diameter) 

 

The geometrical and mechanical characteristics considered for triplet are summarized in table 1. 

 

Table-1. Geometrical and mechanical characteristics of triplet 

Diameter of cable 6 mm 
Height of torsion  45 mm 
Young’s modulus 117 GPa 
Poisson’s ratio 0,3 
Wire diameter of strand 1,6 mm 
Mass per unit length 0,143 kg/m 

 

5.2. Maillage and Boundary Conditions  

In order to obtain equations governing motion of triplet, we have developed a numerical 

approach, using Abaqus software. 

 If we consider the triplet as a single spiral beam, its mechanical behavior is governed by the 

system of equations. 

Finite element method, adopted in this study, is calibrated by a suitable calculation of 

mechanical response applied to cables. Mesh elements are finely refined elements including special 

wires.  

For all models, symmetry properties are used when it’s available. Thus, for 3D geometries, we 

have two planes of symmetry: the plane containing elements of beam and the perpendicular plane 

passing through axis of revolution.  
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The strands are discretized with 3D linear triangular elements. The model has 7450 nodes 

distributed in prismatic elements. 

All models developed reflect large deformations, large displacements and contact interaction 

between strands. Both models of elastic and elastic-plastic materials were considered.  

 

5.3. Charge-Displacement  

The simulated load is a tensile along longitudinal axis of the wires. To avoid bending or 

twisting of parasite we ensure an aligned tensile stress. 

 

Figure-3. Comparison of displacement results as a function of applied force 

 

Figure 3 explicit the comparison of displacement results in response to tensile force applied 

in uniaxial continuous pattern of curved beams elemnts.  

       Simulation results prove that continuous pattern elements of curved beams are very close to 

each other, particularly in the elastic portion of the curve (up to 20 kN). 

From the value 20 kN force the two curves confirms the stagnation of displacement (Uz) to 

the breaking force which corresponds to 35 kN.  
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5.4. Moment Angle of Rotation  

The comparison between the values of angle rotation variation according to the triplet of 

time shows good agreement between the two models (Figure 4). 

 

Figure-4. Comparison of angle of rotation results depending on the time between the model of 

curved beams and the model of continuous elements 

 

Analysis of the two curves (Figure 4) shows that the rotation angle increases to 0.3 rad in the 

angle of rotation value of the model curves beams, which are slightly above the continuous model. 

 

6. CONCLUSION  

In order to predict the lifetime of metal wires, it is necessary to select the appropriate 

numerical model to describe samples lifetimes cables.  

Two models are typically used for description of service life of cables which are curved beam 

distribution pattern and continuous elements. The intended effect of these models is to predict 

median life span by using existing experimental data or laboratory results. We used these models 

in comparison with others to represent the stiffness and strength of cables.  

Wire rope hoist must be maintained regularly and the type of maintenance depends on the 

class of the lifting device used, and the type of cable. 
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 It should be noted that regular maintenance greatly increases the lifespan of a wire rope 

hoist. 
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