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High performance TiO2 photoanodes undoped and doped with silver nanoparticels of 
size about 15 nm were fabricated. Employing these electrodes dye-sensitized solar cells 
(DSSCs) were fabricated using N719 dye as sensitizer and iodide-triodide as redox 
couple. Current-voltage measurements were performed under the illumination of 100 
mW cm-2 (AM 1.5). The electrical parameters of the fabricated cells were extracted 
from the current-voltage data that include open-circuit voltage, short-circuit current, 
shunt resistance, series resistance, fill-factor, ideality factor and solar energy-to-
electricity conversion efficiency. The comparison of parameters revealed improvement 
in both the photovoltaic and electrical parameters of the plasmonic cell. The conversion 
efficiency measured for the reference cell without Ag NPs in TiO2 was 7.43 %, whereas 
the efficiency of plasmonic device with TiO2:Ag NPs was 9.26 %, resulting an overall 
efficiency improvement of  23% with Ag NPs. The increased performance of the 
plasmonic DSSC can be assigned to the improvement of its photovoltaic and electrical 
parameters. The improved short-circuit photocurrent density appears to be boosted due 
the enhanced light harvesting capability of the photoanode caused by the localized 
surface plasmon resonance effect induced in Ag nanoparticles. While, the rise in Voc 
can be credited to the upward shift of Fermi level of TiO2 due to the dopping of Ag 
nanoparticles in TiO2 network.  
 

Contribution/Originality: This study is based on one of the few attempts on photoanode engineering 

employing plasmonic effect for developing higher efficiency DSSCs. The comparison with the existing data has 

revealed significant improvement in the photovoltaic and electrical properties of the plasmonic device. This study 

has reported that Ag nanoparticles hold a unique plasmonic effect employing which performance parameters of the 

DSSC are improved much greater as compared to other metallic nanoparticles. 

 

1. INTRODUCTION 

The dye-sensitized solar cells (DSSCs), initially reported by O’regan and Grfitzeli (1991) have attracted much 

interest of the scientists and researchers as next-generation alternative potential photovoltaic technology to the 

traditional silicon-based owing to their manufacturing ease, low price, reasonable  efficiency, unique applications, 

design flexibility and clean source of renewable energy (Elbohy et al., 2015; Toor et al., 2016; Shah et al., 2017; Shah 

et al., 2018; Toor et al., 2018; Wei et al., 2018). 
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A DSSC comprises of a photoanode typically a mesoporous wide band semiconducotor film deposited on a 

fluorine-doped tin oxide (FTO) glass which is sensitized with a dye, an electrolyte consisting of redox coupled 

solution and a counter electrode commonly consisting of a platinum coated conductive glass substrate (Nazeeruddin 

et al., 2011). To make a device, the two electrodes are joined together and electrolyte is injected in between. Great 

efforts have been put until now for the manufacturing and optimization of various components of DSSC and have 

been the subject of a number of review articles (Gong et al., 2012; Saranya et al., 2015; Su’ait et al., 2015; Wali et al., 

2015; Ye et al., 2015; Fan et al., 2017; Gong et al., 2017; Yeoh and Chan, 2017; Yun et al., 2018).   

Since its birth, efficiency of DSSC has reached 14.5% under standard conditions (Lee et al., 2017). Although, this 

has doubled since its birth, however, the theoretical limit for the efficiency of DSSC is 26.8% which is yet to be  

achieved (Tripathi et al., 2015). The photoanode is an important component of the DSSC. This provides support for 

the adsorption of sensitizer and helps in the transportation of the photo-excited electrons from the sensitizer to the 

external circuit (Ye et al., 2015). Light absorption by sensitizer and the capability of the photoanode material to 

collect and transfer the charges efficiently with in the diffusion length is decisive for the high conversion efficiency 

of DSSC. Power conversion efficiency could be increased by manipulating the photoanode structure in different 

ways like increasing the surface area of the photoanode material, designing new dyes, inserting different 

nanostructured material like noble metals, etc (Nbelayim et al., 2017). 

A way to widen the surface area of photoanode material and to decrease the recombination of charges is to treat 

the TiO2 films by TiCl4 solution. By depositing a thin compact layer of TiO2 particles prior to mesoporous TiO2 

film will reduce the recombination of charges at FTO/TiO2 and FTO/electrolyte interfaces, while post treatment 

of photoanode with TiCl4 increase the surface area of photoanode and the quantity of dye adsorption. Both of these 

result in the increment of incident light absorption and ultimately enhanced photocurrent (Lee et al., 2012). The 

concept of insertion or doping of noble metals in photoanode has shown tremendous effect on the power conversion 

efficiency by boosting the photo-absorption cross-section of the dye (Saravanan et al., 2017). In noble metals like 

silver, gold, etc, the localized surface plasmon resonance (LSPR) phenomenon is induced by the collective oscillation 

of electrons in the nanostructure which is further stimulated by the incident light, hence, the absorption of light and 

scattering effect is increased that rises the current generation of the cell and ultimately improves the efficiency of 

DSSC (Jun et al., 2016; Villanueva-Cab et al., 2016).   

In spite of the accomplishment of record efficiency in DSSCs, scaling up of the technology new techniques and 

approaches are required with guaranteed price improvement and steadiness in efficiency (Sarker et al., 2015). 

Knowledge of the substantial parameters affecting photovoltaic response of the solar cells are required for the 

designing, replication and their improvement (Ishibashi et al., 2008; Kyaw et al., 2012; Elbohy et al., 2015). In this 

work, photovoltaic performance of the plasmonic DSSC employing high performance TiO2 photoanode doped with 

silver nanoparticles is carried out. Current density – voltage (J–V) curve of the device is compared under light with 

the reference cell. The electrical parameters of the fabricated cells were extracted from the current-voltage data, 

that include open-circuit voltage, short-circuit current, shunt resistance, series resistance, fill factor, ideality factor 

and solar energy-to-electricity conversion efficiency. The comparison of these parameters of both types of devices 

are also made.  

 

2. EXPERIMENTAL DETAILS 

2.1. Preparation of Silver Nanoparticles Suspension 

Ag NPs of approximately 15 nm diameter were prepared by simple chemical reduction route. Silver nitrate 

AgNO3 of analytical grade purity was used as starting materials without further purification. 1M AgNO3 was added 

in 20 ml DI water. This solution was heated till boiling with slowly stirring. 1% sodium boroxide with 0.2% PVP in 

5 ml DI water was separately prepared and was added to the heated solution of AgNO3 drop wise until a bright 

yellow color was achieved.  
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2.2. Optical Absorption Measurements of Silver Nanoparticle Colloidal Solution 

UV-Vis-NIR absorption spectra of Ag Nanoparticles solution was taken by a Varian Cary 5000 spectrometer. 

Transmission electron microscopy (TEM) images of NPs were acquired by a JEOL 2100F microscope. 

 

2.3. Preparation of High Performance TiO2 and TiO2: Ag NPs Photoanodes  

The high performance TiO2 photoanodes were prepared and sensitized in N719 dye using a previously reported 

method (Elbohy et al., 2016). For plasmonic cell, the photoanode was soaked in Ag nanoparticles suspension. The 

color of the photoanode changed from transparent to transparent yellowish after Ag nanoparticles were attached to 

TiO2. The cells were assembled using method described in our previous work (Shah et al., 2017). The current-

voltage measurements of fabricated DSSCs were performed under solar simulator illumination light intensity of 100 

mW.cm-2 using the facility described in a previous work (Elbohy et al., 2016). 

 

3. RESULTS AND DISCUSSION 

3.1. Absorbance Spectra of Colloidal Ag NPs   

The silver nanoparticles were successfully synthesized by chemical reduction method. The creation of Ag NPs 

was detected with the appearance of yellowish stain solution (Mahmudin et al., 2015). For the confirmation of 

formation and structural characteristics the UV-Vis spectroscopy of Ag NPs in colloidal solution was performed. 

The absorption spectra of the colloid shown in Fig. 1 makes it obvious that the absorbance peak is around 400 nm, 

that corresponds to surface plasmon resonance (SPR) of Ag NPs.  The presence of this single peak signifies  the 

presence of spherical or roughly spherical silver nanoparticles (Guzmán et al., 2009) and is also confirmed by the 

TEM image (Figure 2). 

 

 
Fig-1. Absorbance spectra of colloidal Ag NPs. 

 

3.2. Surface morphology of Colloidal Ag NPs 

The TEM image of colloidal Ag naparticles is shown in Fig. 2. It is evident from the figure that the 

morphology of nanoparticles is almost spherical and average size is about 15 nm. The morphology is in agreement 

with the shape of the SPR band in the UV–Vis spectra.  
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Fig-2. TEM images of Ag NPs. 

 

3.3. Photovoltaic Performance 

The short-circuit current density (Jsc), open-circuit voltage (Voc), fill factor (FF), ideality factor (n), series 

resistance (Rs), shunt resistance (Rsh) and photoelectric conversion efficiency (η) were determined to compare the 

performance of the DSSCs made employing undoped and silver nanoparticles doped photoanodes. These parameters 

can be expressed as follows:  

The fill factor corresponds to the largest rectangular area that can fit in the J-V curve and can be calculated 

using the following relation:  

FF =  
(1) 

Where Vmax and Imax represent the voltage and current at the point of maximum power output of the cell, respectively. 

The value of the ideality factor (n) under illumination was determined via the following relation (Würfel et al., 

2015): 

 

(2) 

Where oJ is the saturation current, q is the electron charge, V is the applied voltage, and kB is the Boltzmann 

constant. 

The current–voltage  characteristics  largely  dependent  on  the series (Rs)  and  shunt  (Rsh)  resistance (Mali et 

al., 2012; Shah et al., 2017).  The values of these resistances can be determined from the I-V curve using the 

relations (3) and (4) (Jiang et al., 2008). 

0


IdI

dV
Rs  

(3) 

0


VdI

dV
Rsh  

(4) 

The efficiency () of a solar cell is defined as the ratio of output power to total power incident on the cell and 

can be calculated by the following relation: 

 =  =  × 100 
(5) 

Where Jsh is the short circuit current density, Voc is the open circuit voltage, Pin is the intensity of incident light. 

The current density versus voltage (J-V) characteristics of the plasmonic and reference DSSC fabricated using N719 

dye as sensitizer measured under 1 Sun illumination are compared in figure 3.  
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Fig-3. J-V curves recorded under AM 1.5G illumination on TiO2 and TiO2:Ag NPs photoanodes based DSSCs. 

     

The various parameters of the TiO2 and TiO2:Ag NPs photoanodes based DSSCs are determined and shown in 

table 1. As can be observed from figure 3 and table 1, the plasmonic DSSC has exhibited better performance and 

provided  a  solar energy-to-electricity conversion efficiency () of   9.26 %  with higher  short-circuit  photocurrent  

density (Jsc) of 15.82 mA/cm2, higher  open-circuit  photovoltage of (Voc)  770  mV and higher FF of 76.0. The 

overall power conversion efficiency, short circuit current density, open circuit voltage and fill factor of the 

plasmonic device were observed higher than the reference cell by 25%, 12.4 %, 5.5 % and 5.6 %, respectively.  

 
Table-1. Comparison of the parameters of TiO2 and TiO2: Ag NPs photoanodes based DSSCs. 

Photoanode Jsc (mA.cm-2) Voc (mV) FF (%)  (%) n Rsh () Rs ()  

TiO2 14.08 730 72.2 7.43 2.8 12.1 k 52 
TiO2:Ag NPs 15.82 770 76.0 9.26 1.6 7.1 k 40 

 

 

A relatively  higher  Rs is obtained owing  to  the  potential  blockade  at  the  TiO2/dye interface, Mali et al. 

(2012).  In the  case of  plasmonic DSSC  the comparatively higher performance can be attributed to the  lower  

value  of  Rs. The greater value of Rsh for the plasmonic DSSC specifies less leakage current through the cell.  The 

enhanced performance of the plasmonic cell may be attributed to the decrease in the ideality factor of the cell. 

The increament in the Jsc value for the Ag NPs doped photoanode based device can be attributed to plasmon 

induced charge transfer from Ag nanoparticles to TiO2 (Ahmad et al., 2017). The VOC of a DSSC is equal to the 

difference between the quasi-Fermi level in the TiO2 layer and Fermi level of the redox couple, therefore, the 

improvement in Voc can be assigned to upward shift of Fermi level of TiO2 with the dopping of Ag NPs (Ahmad et 

al., 2017; Shah et al., 2017). 

 

4. CONCLUSIONS  

In this study, Ag nanoparticles doped high performance TiO2 photoanode has been investigated for enhancing 

the performance of DSSCs. Photovoltaic study showed improvement in the device parameters and performance.  

The enhanced performance of the plasmonic cell is attributed to the lower value  of  Rs, larger value of Rsh, less 

shorts or leaks, lower value of ideality factor, enhanced light harvesting caused by the localized surface plasmon 

resonance effect, the plasmon induced charge transfer from Ag nanoparticles and upward shift of Fermi level of 

TiO2 with the addition of Ag nanoparticles. 
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