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ABSTRACT 

Modeling of transportation networks with the purpose of optimization is a vital problem. The difficulties of 

numerical solution of optimization problems for networks mainly depend on the analytical definition of the 

function of traffic costs. We provide a developed mathematical model of transportation network based on the 

generalized Erlang time distribution. We also propose a classification of nodes. For the case of the node 

with unregulated intersection of multichannel lines as a system of mass service, we obtain an analytical 

realization of the function of traffic costs. We describe a method of determining the parameters of the 

generalized Erlang law from experimental data. 

Keywords: Mathematical model, Network, node, Unregulated intersection, Generalized erlang 

law, Function of traffic costs. 
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1. INTRODUCTION 

A transportation network is one of the vivid examples of network operation. Mathematical 

models applied for analysis of transportation networks vary according to the problems solved, 

mathematical apparatus, data used, and specification of traffic description [1-5]. The first 

macroscopic model was suggested by M. Lighthill and G. Whitham in the middle of the last 

century [6]. At that time there also appeared the first microscopic models (‘follow-the-leader’ 

theory) which explicitly derived an equation of motion for each individual vehicle (А. Reshel, L. 

Pipes, D. Gazis and others) [7, 8]. 

Frank A. Haigt was the first to establish the mathematical investigation of traffic flow as a 

separate section of applied mathematics [9]. At present there is voluminous literature on the 

subject. The problem of efficient management of transportation networks is, however, still topical. 
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At present the problems of rational operation of existing transportation networks in the centers 

of population as well as those of planning new ones in housing developments are undisputedly 

very essential. There are a lot of macro-models and micro-models of network flows distribution. 

The problems of macro-modeling are aimed at searching the equilibrium distribution of flows 

while micro-modeling solves the problems of traffic capacity of local sections of networks. 

Hypotheses underlying macro-models are of different character from those of micro-models, and 

the problem of information exchange between the models have been not solved theoretically, 

neither in the form of software.  Modeling and research of traffic flows often employ the theory of 

competitive noncooperative equilibrium which describes quite an adequate mechanism of 

operation of urban transportation networks [8]. Such models allow us to obtain forecasts of 

congestion of transportation network components. They are one of the tools of determining the 

efficiency of projects of the transportation network reorganizing. 

The problem of flow equilibrium resolves itself into routing the traffic in the network in an 

optimal manner minimizing the traffic costs. The difficulty of numerical solution of such problems 

substantially depends on the analytical definition of the function of traffic costs. 

Development of a model of network operation that will make it possible to adequately 

forecast the efficiency of network flow distribution from minimal initial data seems to be topical. 

 

2. GRAPH REPRESENTATION OF THE NETWORK 

Let us define the basic notions we use in this article.  

We will refer to the network flows as ‘non-conflict’ if they are not crossed in the given sector of 

the network, and as ‘conflict’ otherwise. We will consider the node-points – the points of sources or 

consumption of information and those of conflict flows crossing – to be the vertices of a graph. The 

node-points are formed at the intersections of multichannel lines.  

In our previous works we gave the following classification of node-points (NP). 

A number of flows (the main ones) are freely passing the NP. The customers of the rest of flows 

(the secondary ones) are waiting for sufficient time intervals between arrivals of main flows for their 

turn to cross the NP. We will call such a node-point a ‘type 1 node’ or ‘unregulated intersection of 

flows’. 

Now let us consider a node-point (NP) at which traffic is alternately blocked for one of the non 

conflict flow groups for a fixed time to enable the crossing of the NP. We call such a node-point a ‘type 

2 node’ or ‘regulated intersection of flows’ [10, 11]. 

We will consider a network in a traditional form of oriented graph [12]. A network is a graph 

each arc of which is assigned to a certain number. A flow in the graph is a group of homogeneous 

objects (requests) sent from one node to another. Therefore, a flow is a certain function prescribed for 

the graph arcs. In the developed model we show a flow in the graph as a function of density of arrival 

distribution (arrival times of successive service requests). Earlier we considered a model of network 

operation based on the Erlang time distribution for each flow. In this paper we extend the application 
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of the model to the case when time intervals are distributed according to the generalized Erlang law. 

A proper selection of parameters by the generalized Erlang law will help approximate almost any 

distribution of a random variable. 

 

3. METHOD OF DETERMINING THE FUNCTION OF TRAFFIC COSTS IN 

THE NETWORK FOR THE NODE WITH UNREGULATED FLOWS OF 

REQUESTS 

3.1. Generalized Erlang Distribution of a Random Variable  

For the generalized Erlang distribution the time interval between two requests in succession 

has k  stages 110 ,...,, kTTT ,  the duration of which has exponential distribution with 

parameters 110 ,...,, k  correspondently [13]. The Laplace transform of the function of 

density distribution )(tfk  holds: 
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If all parameters i  are different, the function of distribution of the generalized Erlang law 
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The mathematical expectation for the generalized Erlang law can be obtained subject to the 

definition of Erlang flow: 
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The variance for generalized Erlang can be obtain with the definition of Erlang flow: 
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3.2. Calculation of the Mean Service Time Value in the Type 1 Node for the True 

Generalized Erlang Distribution Hypothesis 

Let a secondary flow customer has to cross L main  flows in the type 1 node. Assume that 

time intervals are distributed by generalized Erlang of Lkkk ,...,, 21  orders with parameters 

}...,,,{ 1,11101 1k ; }...,,,{ 1,11202 2k ;…; }...,,,{ 1,110 LkLL   correspondently. Take 

into account that the customer arrives at the node at a random moment irrespectively of other 

flows requests. Let 0T  denote the minimal necessary time interval between the requests in 

succession in a conflict flow to continue motion. 

Let t denote the random time and let Т* denote the interval between two random consecutive 

events which includes the random point t. Т*= Q + R, where R = time left before the next event, 

and Q = time passed after the arrival of the previous request. 

Then, in accordance with the theory of random processes  [11], time Q passed after the 

arrival of the previous request and time R remaining before the next arrival are both less than the 

certain preset value  Т0, the probability of which can be expressed as follows: 
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Consequently, the probability that no requests will arrive at the queue within time Т0 , i.е. 

)( 0TRP  : 
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The numerical characteristics of random values Q  and R : 

the mathematical expectation:     
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Theorem 1. Let a secondary flow customer want to cross L flows of the main direction at 

the type 1 node; let  jkjj k
j

,...,,, 110   denote the generalized Erlang parameters for the j -

th crossed flow and  Lj ,...,2,1 ; 0T  denote the minimal time interval between the requests in 

succession in a conflict flow to continue motion. Then for the first customer in the secondary flow 

the service time equals: 
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Proof 
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, where 11 RT   which is the time remaining till the 

arrival of the next request-in-queue in the first crossed  flow of the main direction (Flow (1)); 

,...4,3,2, iTi  is the interval between arrivals of the  (i – 1) -th and i-th requests in Flow (1); 

X  is the integral random value which is equal  to the number of requests to be serviced before 

the motion can be continued (it is evident that mX  , when first m intervals are less than the 
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coincide and  take the form: 
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where 111101 ,...,,,
1

kk  = parameters of the generalized Erlang law for the first crossed 

flow;  
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,...,,, 110    = parameters of the generalized Erlang law for the j -th crossed flow. 
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Proceed with calculations: 



International Journal of Mathematical Research, 2013, 2(6): 45-57 

 

 
52 

© 2013 Conscientia Beam. All Rights Reserved. 

,))(1())(()()1(
1

1

))(1())(()(
1

2

2

)1(
1

1

1
2

2

1

1
)1(

1
2

2

)/()(

2
0

1
0001

0 0

1
0

1
0001

0 0

3

1
1

0 0

1
1

0 0

3

1
1

0 0

1

0 0

3

1























































































































































































m

m

k

i

m

m

k

i

i i

ii

m
mk

i

m
mk

i

i i

ii

m
mk

i

k

i

i i

ii

m
mz

TTTYРm

TTTYР

a

PmP

a

Pm

a

PmXZMZMm


















 2

0

00001

0 0

00
1

0 0

3

/

2

1
000001

0 0

00
1

0 0

3

2

1
00001

0 0

0

000
1

0 0

3

)(1

1
)())(1()(

1

1
)(

1
2

2

))(()())(1()(
1

1
)(

1
2

2

))(()1())(1()(
1

1

)(1

1
))(1()(

1
2

2

T
TTTYРTYР

a

TTTTYРTYР

a

TmTTYР

T
TTYР

a

m

k

i

k

i

i i

ii

m

m

k

i

k

i

i i

ii

m

m

k

i

k

i

i i

ii

z











































































































































































 

 )(1

1
)()(

1

1
)(

1
2

2

0

0001

0 0

001

0 0

3

T
TTT

a

m
k

i

k

i

i i

ii

z











































. 



International Journal of Mathematical Research, 2013, 2(6): 45-57 

 

 
53 

© 2013 Conscientia Beam. All Rights Reserved. 

The theorem is proven. 

A type 1 node can be represented as a system of mass service with an unlimited queue. The 

flow of requests is a flow of requests of a secondary flow arriving at the node; service time is the 

portion of time that a request will spend in the queue waiting for the opportunity to continue 

motion. In our previous works [14-16] we proved the following theorem with the help of method 

of pseudostates.  

Theorem 2. Let the service time is distributed by exponential law with parameter  ; the 

flow of requests is distributed by generalized Erlang with parameters kk ,...,,, 110  ; no 

more than n requests can be serviced at any one time. Then, for a stationary process  probabilities 

of states of the mass service system with an unlimited queue length are expressed by the 

formulas: 
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Subject to Theorem 2 we obtained the mean number of requests queued or being serviced: 
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Then an average delay of the secondary flow requests at the type 1 node is: 
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where   
 zmk

1,0 


 



 . 

 

3.3. Function of Traffic Costs for a Type 1 Node 

According to the theory of flow equilibrium [8], in order to obtain the numerical values of 

equilibrium distribution it is necessary first to solve the problem of construction of the function of 

traffic costs. The prevalent assumption on the properties of the function of traffic costs is a logical 

assumption on its additive dependence upon the traffic costs of passing particular arcs and 

vertices.  

 According to the purpose of optimization a function of traffic costs for the node can be 

chosen: 

1) )( nz


 - the weight of vertex nz  (a node-point) for a flow of the given direction; 

2) )( nz  - the integrated weight of vertex nz  (a node-point); 

3) )( nM z - the mean delay of requests of the chosen directions. 

 For a type 1 node: 
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3) 

 



















































Mi

k

j ji

Мi
k

j ji

Hi

nМ
i

i

W

z
1

0

1

0

1

1

)(






, where М  is the set of the chosen directions. 

We developed Delpi-based computer programs, defining the form of the function of traffic 

costs in the node depending on the parameters of the generalized Erlang law. 

 Let   be the set of modes of flow distribution for the given node of the graph.  The 

optimal flow distribution at the node is the solution of the problem (according to the aim): 

1)  )(min_)( nn zoptz 
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 ; 

2)  )(min_)( nn zoptz 
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 ; 

3)  )(min_)( nMnM zoptz 


 . 
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4.  DEFINITION OF PARAMETERS OF THE GENERALIZED ERLANG 

LAW FROM EXPERIMENTAL DATA 

The above model applied, the parameters of the generalized Erlang law  can be defined with 

the method of moments, i. e. by equating theoretical and empirical values of the mathematical 

expectation and variance. 
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Note that if 
2

2
*

ŝ

x
k B  is a whole number, then for all  4,3,2k  the value 1x , and, 

therefore,  all i  coincide. Thus, we have a special Erlang distribution which was described in 

detail in in our other works [17, 18]. 

 

5. CONCLUSIONS 

The above results is our generalized research on optimization of traffic flow distribution in 

the network [14-16]. The hypothesis on Erlang distribution of time intervals between the 

requests allowed us to develop the mathematical model providing satisfactory accuracy of 

estimation of the results of the network efficiency. Besides, the minimal number of initial 

parameters made less expensive the development of the database for evaluation of quality of 

reorganization within the network. The generalized Erlang law will allow for A proper selection 

of parameters by the generalized Erlang law will allow one to approximate almost any distribution 

with the sufficient accuracy, and, therefore, will enable to extend the application of the model to 

the flows of higher density passing through a number of nodes. In its turn, this will allow for a 

greater accuracy when solving optimization problems in the theory of traffic flow. 
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