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ABSTRACT 
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1. INTRODUCTION 

An algebraic structure (R,+,.) is said to be a semiring if (R,+) and (R,.) are semigroups 

satisfying a.(b+c) = a.b + a.c and (a+b).c = a.c + b.c for all a, b, c ϵ R. A semiring (R,+,.) is said to 

be additively commutative, if a+b = b+a for all a,b ϵ R. A semiring has an identity 1, defined by 

a.1 = a = 1.a and zero 0 defined by a+0 = a = 0+a and 0.a = 0 = a.0 for all a ϵ R. After the 

introduction of fuzzy sets by Zadeh [1], several researchers explored on the generalization of the 

concept of fuzzy sets. The concept of intuitionistic fuzzy subset was introduced by K.T.Atanassov 

[2, 3], as a generalization of the notion of fuzzy set. A study on anti Q-fuzzy subsemiring of a 

semiring has been introduced by Vanathi, et al. [4]. In this paper, we introduce some theorems in 

Q-intuitionistic fuzzy subsemiring of a semiring.  
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2. PRELIMINARIES 

2.1 Definition 

Let X be a non empty set and Q be a non empty set. A Q-fuzzy subset A of X is a function              

A : X×Q → [0, 1].  

 

2.2 Definition 

Let (R,+,.) be a semiring. A Q-fuzzy subset A of R is said to be a Q-fuzzy subsemiring of R if 

it satisfies the following conditions: 

(i) A(x+y, q)  min{A(x, q), A(y, q)}, 

(ii) A(xy, q)  min{ A(x, q), A(y, q) }, for all x and y in R and q in Q. 

 

2.3 Definition 

Let (R,+,.) be a semiring. A Q-fuzzy subset A of R is said to be an anti Q-fuzzy subsemiring 

of R if it satisfies the following conditions: 

(i) A(x+y, q) ≤ max{ A(x, q), A(y, q) }, 

(ii) A(xy, q) ≤ max{ A(x, q), A(y, q) }, for all x and y in R and q in Q. 

 

2.4 Definition 

A Q-intuitionistic fuzzy subset A in X is defined as an object of the form A = { (x, q),                 

A(x, q), A(x, q)  / xX and q in Q}, where A : X×Q  [0,1] and A : X×Q  [0,1] define the 

degree of membership and the degree of non-membership of the element x in X and q in Q 

respectively and for every x in X and q in Q satisfying 0  A(x, q) + A(x, q)  1. 

 

2.5 Definition 

If A is a Q-intuitionistic fuzzy subset of X, then the complement of A, denoted Ac is the                     

Q-intuitionistic fuzzy set of X, given by Ac(x, q) = {< (x, q), A(x, q), A(x, q) > / xX and qQ 

}. 

 

2.6 Definition 

Let (R,+,.) be a semiring. A Q-intuitionistic fuzzy subset A of R is said to be a Q-intuitionistic 

fuzzy subsemiring of R if it satisfies the following conditions: 

(i)     A(x+y, q)  min{A(x, q), A(y, q)}, 

(ii)    A(xy, q)  min{ A(x, q), A(y, q) },  

(iii)   A(x+y, q) ≤ max{A(x, q), A(y, q) }, 

(iv)   A(xy, q) ≤ max{ A(x, q), A(y, q) }, for all x and y in R and q in Q. 

 

2.7 Definition 
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Let A and B be Q-intuitionistic fuzzy subsets of sets G and H respectively. The product of A 

and B, denoted by A×B, is defined as A×B = { ( (x, y), q), A×B( (x, y), q), A×B( (x, y), q)  /  x in 

G and y in H and q in Q }, where A×B( (x, y), q ) = min{ A(x, q), B(y, q)} and                            

A×B( (x, y), q) = max{ A(x, q), B(y, q) }. 

 

2.8 Definition 

Let A be a Q-intuitionistic fuzzy subset in a set S, the strongest Q-intuitionistic fuzzy relation 

on S, that is a Q-intuitionistic fuzzy relation on A is V given by V( (x, y), q) = min{ A(x, q),                

A(y, q) } and V( (x, y), q) = max{ A(x, q), A(y, q) }, for all x and y in S and q in Q. 

 

2.9 Definition 

Let ( R, +, ∙ ) and ( R׀, +, ∙ )  be any two semirings. Let f : R → R׀  be any function and A be a 

Q-intuitionistic fuzzy subsemiring in R, V be a Q-intuitionistic fuzzy subsemiring in f(R) = R׀, 

defined by V(y, q) = sup
)(1 yfx 

A(x, q) and V(y, q) = 
inf

)(1 yfx 

A(x, q), for all x in R and y in R׀. Then 

A is said to be the preimage of V under f and is denoted by f-1(V). 

 

2.10 Definition 

Let A be a Q-intuitionistic fuzzy subsemiring of a semiring( R,  +, ∙ ) and a in R. Then the 

pseudo Q-intuitionistic fuzzy coset (aA)p is defined by ( (aA)p )( x, q) = p(a)A( x, q) and                    

( (aA)p )(x, q) = p(a)A(x, q), for every x in R and for some p in P and q in Q. 

 

3. SOME THEOREMS OF Q-INTUITIONISTIC FUZZY SUBSEMIRING: 

3.1 Theorem 

Intersection of any two Q-intuitionistic fuzzy subsemiring of a semiring R is a Q-

intuitionistic fuzzy subsemiring of R. 

Proof: Let A and B be any two Q-intuitionistic fuzzy subsemirings of a semiring R and x and 

y in R and q in Q. Let A = { ( (x, q), A(x, q), A(x, q) ) / xR and q in Q} and B = {( (x, q),               

B(x, q), B(x, q) ) / xR and q in Q } and also let C = AB = { ( (x, q), C(x, q), C(x, q) ) / xR 

and q in Q}, where min { A(x, q), B(x, q)} = C(x, q) and max { A(x, q), B(x, q) } = C(x, q). 

Now, C( x+y, q) = min { A(x+y, q), B(x+y, q)} ≥ min{ min {A(x, q), A(y, q)}, min {B(x, q), 

B(y, q)}}= min{ min{ A(x, q), B(x, q)}, min{A(y, q), B(y, q)}}= min{C(x, q), C(y, q)}. 

Therefore, C(x+y, q)≥ min {C(x, q), C(y, q)}, forall x and y in R and q in Q. And, C(xy, q) = 

min { A(xy, q), B(xy, q) }≥ min { min{A(x, q), A(y, q)}, min {B(x, q), B(y, q)}}= min{ min 

{A(x, q), B(x, q)}, min {A(y, q), B(y, q)}}= min{C(x, q), C(y, q)}. Therefore, C(xy, q) ≥ 

min{ C(x, q), C(y, q)}, forall x and y in R and q in Q. Now, C(x+y, q)= max {A(x+y, q), 

B(x+y, q)} ≤ max{max {A(x, q), A(y, q)}, max{B(x, q), B(y, q)}}= max{max{A(x, q),               
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B(x, q)}, max{A(y, q), B(y, q)}}= max{C(x, q), C(y, q)}. Therefore, C(x+y, q) ≤ max                

{ C(x, q), C(y, q) }, forall x and y in R and q in Q. And C(xy, q) = max {A(xy, q), B(xy, q)}≤ 

max{max{A(x, q), A(y, q)}, max{B(x, q), B(y, q)}}= max{max {A(x, q), B(x, q) }, max {A(y, 

q), B(y, q)}} = max{C(x, q), C(y, q)}. Therefore, C(xy, q) ≤ max{C(x, q), C(y, q)}, forall x and 

y in R and q in Q. Therefore C is a Q-intuitionistic fuzzy subsemiring of R. Hence the intersection 

of any two Q-intuitionistic fuzzy subsemirings of a semiring R is a Q-intuitionistic fuzzy 

subsemiring of R. 

 

3.2 Theorem 

The intersection of a family of Q-intuitionistic fuzzy subsemirings of a semiring R is a                      

Q-intuitionistic fuzzy subsemiring of R. 

Proof: Let {Vi : iI} be a family of Q-intuitionistic fuzzy subsemirings of a semiring R and 

let A = i
Ii
V


 . Let x, y ϵ R and q ϵ Q. Then A(x+y, q) = 

Ii
inf Vi(x+y, q) ≥ 

Ii
inf min {Vi(x, q), 

Vi(y, q) } = min { 
Ii

inf Vi(x, q), 
Ii

inf Vi(y, q) } = min {A(x, q), A(y, q) }. Therefore, A(x+y, q) 

≥ min {A(x, q), A(y, q)}, for all x,y ϵ R and q ϵ Q. And, A(xy, q) = 
Ii

inf Vi(xy, q) ≥ 
Ii

inf

min{Vi(x, q), Vi(y, q)} = min{ 
Ii

inf Vi(x, q), 
Ii

inf Vi(y, q)}= min{ A(x, q), A(y, q)}. Therefore, 

A(xy, q) ≥ min{ A(x, q), A(y, q)}, forall x and y in R and q in Q. Now, A(x+y, q) = 
Ii

sup

Vi(x+y, q) ≤
Ii

sup max { Vi(x, q), Vi(y, q)} = max {
Ii

sup Vi(x, q), 
Ii

sup Vi(y, q) } = max{ A(x, q), 

A(y, q) }. Therefore,  A(x+y, q) ≤ max{A(x, q), A(y, q)}, forall x and y in R and q in Q. And, 

A(xy, q) = 
Ii

sup Vi(xy, q) ≤
Ii

sup max{Vi(x, q), Vi(y, q)}= max{
Ii

sup Vi(x, q), 
Ii

sup Vi(y, q)}= 

max {A(x, q), A(y, q)}. Therefore, A(xy, q) ≤ max{A(x, q), A(y, q)}, forall x and y in R and q 

in Q. That is, A is a Q-intuitionistic fuzzy subsemiring of a semiring R. Hence, the intersection of 

a family of Q-intuitionistic fuzzy subsemirings of R is a Q-intuitionistic fuzzy subsemiring of R. 

 

3.3 Theorem 

If A and B are any two Q-intuitionistic fuzzy subsemirings of the semirings R1 and R2 

respectively, then A×B is a Q-intuitionistic fuzzy subsemiring of R1×R2.  

Proof: Let A and B be two Q-intuitionistic fuzzy subsemirings of the semirings R1 and R2 

respectively. Let x1, x2 ϵ R1, y1, y2 ϵ R2. Then ( x1, y1 ) and ( x2, y2 ) ϵ R1×R2. Now, A×B[(x1, 

y1)+(x2, y2), q] = A×B( (x1+x2, y1+y2), q) = min {A(x1+x2, q), B(y1+y2, q) } min{min{A(x1, q), 

A(x2, q)}, min{B(y1, q), B(y2, q)} }= min{ min {A(x1, q), B(y1, q)}, min{A(x2, q), B(y2, q)}}= 
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min{A×B((x1, y1), q), A×B((x2, y2), q)}. Therefore, A×B[(x1, y1) (x2, y2), q]  min{A×B((x1, y1), q), 

A×B((x2, y2), q) }. Also, A×B[(x1, y1)(x2, y2), q] =  A×B((x1x2, y1y2), q) = min{A(x1x2, q), B(y1y2, 

q)} min{min{A(x1, q), A(x2, q)}, min{B(y1, q), B(y2, q)}} = min{ min {A(x1, q), B(y1, q)}, 

min{A(x2, q), B(y2, q)}}= min{A×B((x1, y1), q), A×B((x2, y2), q) }. Therefore,   A×B[(x1, y1)(x2, 

y2), q] min{A×B((x1, y1), q), A×B((x2, y2), q)}. Now, A×B[(x1, y1) + (x2, y2), q] = A×B((x1+x2, 

y1+y2), q) = max{A(x1+x2, q), B(y1+y2, q) } ≤ max{ max {A(x1, q), A(x2, q) }, max{B(y1, q), 

B(y2, q) }}= max{ max{A(x1, q), B(y1, q) }, max {A(x2, q), B(y2, q)}}= max{ A×B( (x1, y1), q), 

A×B( (x2, y2), q) }. Therefore, A×B [(x1, y1) + (x2, y2), q] ≤ max{AxB((x1, y1), q), AxB((x2, y2), q)}. 

Also, A×B[(x1, y1) (x2, y2), q] = A×B((x1x2, y1y2), q)= max{A(x1x2, q), B(y1y2, 

q)}≤max{max{A(x1, q), A(x2, q)}, max{B(y1, q), B(y2, q)}} = max{ max {A(x1, q), B(y1, q)}, 

max {A(x2, q), B(y2, q)} = max{A×B( (x1, y1), q), A×B( (x2, y2), q) }. Therefore, A×B[(x1, y1)(x2, 

y2), q] ≤ max{ A×B( (x1, y1), q), A×B( (x2, y2), q) }. Hence A×B is a Q-intuitionistic fuzzy 

subsemiring of semiring of R1×R2. 

 

3.4 Theorem 

Let A be a Q-intuitionistic fuzzy subset of a semiring R and V be the strongest Q-

intuitionistic fuzzy relation of R. Then A is a Q-intuitionistic fuzzy subsemiring of R if and only if 

V is a                  Q-intuitionistic fuzzy subsemiring of R×R. 

Proof: Suppose that A is a Q-intuitionistic fuzzy subsemiring of a semiring R. Then for any                   

x = (x1, x2) and y = (y1, y2) in R×R. We have  V( x+y, q) = V[ (x1, x2)+(y1, y2), q] =                   

V( (x1+y1, x2+y2), q) = min{ A(x1+y1, q), A( x2+y2, q) }  min { min { A(x1, q), A(y1, q) },   

min { A(x2, q), A(y2, q) } } = min { min { A(x1, q), A(x2, q) }, min { A(y1, q), A(y2, q) } } =  

min { V( (x1, x2), q), V((y1, y2), q) }= min{ V(x, q), V(y, q) }. Therefore, V (x+y, q)  min             

{ V (x, q), V (y, q) }, for all x and y in R×R and q in Q. And, V(xy, q) = V[ (x1, x2) (y1, y2), q ] 

= V( (x1y1, x2y2), q) = min { A(x1y1, q), A(x2y2, q) }  min { min { A(x1, q), A(y1, q) }, min 

{A(x2, q), A(y2, q) }}= min{ min{ A(x1, q), A(x2, q)}, min{ A(y1, q), A(y2, q)}} = min                

{V( (x1, x2), q), V( (y1, y2), q) } = min {V(x, q), V(y, q) }. Therefore, V(xy, q)  min{ V(x, q), 

V(y, q)}, for all x and y in R×R and q in Q. Wehave, V(x+y, q) = V[(x1, x2)+(y1, y2), q] =                  

V( (x1+y1, x2+y2), q) = max { A(x1+y1, q),A(x2+y2, q) } ≤ max { max { A(x1, q), A(y1, q) }, 

max {A(x2, q), A(y2, q) }} = max { max { A(x1, q), A(x2, q) }, max {A(y1, q), A(y2, q) } } = 

max {V( (x1, x2), q), V ( (y1, y2), q)} = max {V (x, q), V (y, q) }. Therefore, V(x+y, q) ≤ max                      

{V (x, q), V(y, q)}, for all x and y in R×R and q in Q. And, V (xy, q) = V [(x1, x2)(y1, y2), q] = 

V( (x1y1, x2y2), q)= max{A(x1y1, q), A(x2y2, q)}≤ max{ max{A(x1, q), A(y1, q)}, max{A(x2, q), 

A(y2, q) }} = max{ max{A(x1, q), A(x2, q) }, max{A(y1, q), A(y2, q) }} = max{V( (x1, x2), q),  

V( (y1, y2), q) } = max{ V (x, q), V (y, q) }. Therefore, V (xy, q) ≤ max{V (x, q), V(y, q) }, for 

all x and y in R×R and q in Q. This proves that V is a Q-intuitionistic fuzzy subsemiring of R×R. 

Conversely assume that V is a Q-intuitionistic fuzzy subsemiring of R×R, then for any x = (x1, x2) 

and y = (y1, y2) are in R×R, we have min{A(x1+y1, q), A(x2+y2, q)}= V((x1+y1, x2+y2), q)= 
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V[(x1, x2)+(y1, y2), q]= V (x+y, q) min{V(x, q), V(y, q)}= min{V((x1, x2), q), V((y1, y2), q)}= 

min{min{A(x1, q), A(x2, q)}, min {A(y1, q), A(y2, q)}}. If A(x1+y1, q) ≤ A(x2+y2, q), A(x1, q) 

≤ A(x2, q), A(y1, q) ≤ A(y2, q), we get, A(x1+y1, q)  min{A(x1, q), A(y1, q)}, for all x1 and y1 

in R and q in Q. And, min {A(x1y1, q), A(x2y2, q)}= V( (x1y1, x2y2), q) = V[(x1, x2)(y1, y2), q] = 

V(xy, q)  min{V(x, q), V(y, q)}= min{V((x1, x2), q), V((y1, y2), q)} = min{min {A(x1, q), 

A(x2, q)}, min{A(y1, q), A(y2, q)}}. If A(x1y1, q) ≤ A(x2y2, q), A(x1, q) ≤ A(x2, q), A(y1, q) ≤ 

A(y2, q), we get A(x1y1, q)  min{A(x1, q), A(y1, q) }, for all x1 and y1 in R and q in Q. We have 

max{A(x1+ y1, q), A(x2+ y2, q)}= V((x1+y1, x2+y2), q) = V[(x1, x2)+(y1, y2), q] = V(x+y, q) 

≤max{V (x, q), V(y, q) }= max{V ( (x1, x2), q), V( (y1, y2), q)}= max{ max{A(x1, q), A(x2, q)}, 

max{A(y1, q), A(y2, q)}}. If A(x1+y1, q) ≥ A(x2+y2, q), A(x1, q) ≥A(x2, q), A(y1, q) ≥ A(y2, q), 

we get, A(x1+y1, q) ≤ max{A(x1, q), A(y1, q)}, for all x1 and y1 in R and q in Q. And, 

max{A(x1y1, q), A(x2y2, q) } = V( (x1y1, x2y2), q) = V[(x1, x2)(y1, y2), q] = V (xy, q) ≤ 

max{V(x, q), V (y, q)}= max{V ((x1, x2), q), V ((y1, y2), q)} = max{max{A(x1, q), A(x2, q) }, 

max{A(y1, q), A(y2, q)}}. If A(x1y1, q) ≥ A(x2y2, q), A(x1, q) ≥ A(x2, q), A(y1, q) ≥ A(y2, q), we 

get A(x1y1, q) ≤ max{A(x1, q), A(y1, q)}, for all x1 and y1 in R and q in Q. Therefore A is a   Q-

intuitionistic fuzzy subsemiring of R. 

 

3.5 Theorem 

If A is a Q-intuitionistic fuzzy subsemiring of a semiring (R, +, ∙ ), then H = {x / xR:                         

A(x, q) = 1, A(x, q) = 0} is either empty or is a subsemiring of R. 

Proof: If the condition is not satisfied by any element, then H is empty. If x and y in H and q 

in Q, then A(x+y, q) min{A(x, q), A(y, q)} = min{1, 1} = 1. Therefore, A(x+y, q) = 1. And 

A(xy, q)  min{A(x, q), A(y, q)} = min{1, 1}= 1. Therefore, A(xy, q) = 1. Now, A(x+y, q) ≤ 

max{A(x, q), A(y, q)} = max {0, 0}= 0. Therefore, A(x+y, q) = 0. And A(xy, q) ≤ max {A(x, 

q), A(y, q)}= max{0, 0}= 0. Therefore, A(xy, q) = 0. We get  x+y, xy in H. This implies that H 

is a subsemiring of R. Hence, H is either empty or is a subsemiring of R. 

 

3.6 Theorem 

Let A be a Q-intuitionistic fuzzy subsemiring of a semiring (R, +, ∙ ).  

(i) If A(x+y, q) = 0, then either A(x, q) = 0 or A(y, q) = 0, for all x and y in R and q in Q. 

(ii) If A(xy, q) = 0, then either A(x, q) = 0 or A(y, q) = 0, for all x and y in R and q in Q. 

(iii) If A(x+y, q) = 1, then either A(x, q) = 1 or A(y, q) = 1, for all x and y in R and q in Q. 

(iv) If A(xy, q) = 1, then either A(x, q) = 1 or A(y, q) = 1, for all x and y in R and q in Q. 

Proof: Let x and y be arbitrary elements in R and q in Q. (i) By the definition A(x+y, q)  

min {A(x, q),  A(y, q)}, we have that 0  min {A(x, q),  A(y, q) }. This implies that either A(x, 

q) = 0 or A(y, q) = 0. (ii) By the definition A(xy, q)  min {A(x, q),  A(y, q)}, we have that 0  

min {A(x, q),  A(y, q) }. Therefore, either A(x, q) = 0 or A(y, q) = 0. (iii) By the definition 

A(x+y, q) ≤ max { A(x, q), A(y, q)}, which  implies that 1 ≤ max {A(x, q), A(y, q)}. Therefore, 
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either A(x, q) = 1 or A(y, q) = 1. (iv) By the definition A(xy, q) ≤ max { A(x, q), A(y, q)}, 

which  implies that 1 ≤ max {A(x, q), A(y, q)}. Therefore, either A(x, q) = 1 or A(y, q) = 1. 

 

3.7 Theorem 

If A is a Q-intuitionistic fuzzy subsemiring of a semiring ( R, +, ∙ ), then H={ (x, q), A(x, q) 

, for all x in R and q in Q } is either empty or a Q-fuzzy subsemiring of R. 

Proof: It is trivial. 

 

3.8 Theorem 

If A is a Q-intuitionistic fuzzy subsemiring of a semiring( R, +, ∙ ), then  H ={(x, q), A(x, 

q)} is either empty or an anti Q-fuzzy subsemiring of R. 

Proof: It is trivially true. 

 

3.9 Theorem 

If A is a Q-intuitionistic fuzzy subsemiring of a semiring( R, +, ∙ ), then A is a Q-

intuitionistic fuzzy subsemiring of R. 

Proof: Let A be a Q-intuitionistic fuzzy subsemiring of a semiring R. Now take A = {  (x, q), 

A(x, q), A(x, q)  }, for all x ϵ R and q ϵ Q, we take A = B ={  (x, q),  B(x, q), B(x, q)  }, 

where B(x, q) = A(x, q), B(x, q) =1A(x, q). Clearly, B(x+y, q) ≥ min{B(x, q), B(y, q)}, for 

all x and y in R and q in Q and B(xy, q) ≥ min {B(x, q), B(y, q) }, for all x and y in R and q in 

Q. Since A is a Q-intuitionistic fuzzy subsemiring of R, we have A(x+y, q) ≥ min {A(x, q), A(y, 

q) }, for all x and y in R and q in Q, we have that 1– B(x+y, q) ≥ min { ( 1– B(x, q) ), ( 1– B(y, q) 

) }, which implies that B(x+y, q) ≤ 1– min { (1– B(x, q) ), (1– B(y, q) )} = max {B(x, q), B(y, 

q)}. Therefore, B(x+y, q) ≤ max {B(x, q), B(y, q) }, for all x and y in R and q in Q. And  A(xy, 

q) ≥ min {A(x, q), A(y, q) }, for all x and y in R and q in Q, which implies that 1– B(xy, q) ≥ 

min { ( 1– B(x, q) ), ( 1– B(y, q) ) }, which implies that B(xy, q) ≤ 1– min {(1–B(x, q) ), (1–B(y, 

q))} = max {B(x, q), B(y, q) }. Therefore, B(xy, q) ≤ max { B(x, q), B(y, q) }, for all x and y in 

R and q in Q. Hence B = A is a Q-intuitionistic fuzzy subsemiring of a semiring R. 

 

3.10 Remark: The converse of the above theorem is not true.  

It is shown by the following example: Consider the semiring Z5 = {0, 1, 2, 3, 4} with 

addition modulo 5 and multiplication modulo 5 operations and Q = {q}. Then A ={(0, q), 0.7, 

0.2,  (1, q), 0.5, 0.1 ,  (2, q), 0.5, 0.4 ,  (3, q), 0.5, 0.1 ,  ( 4, q ), 0.5, 0.4  } is not a Q-

intuitionistic fuzzy subsemiring of Z5, but A ={ (0, q), 0.7, 0.3 ,  (1, q), 0.5, 0.5 ,  (2, q), 0.5, 

0.5 ,  (3, q), 0.5, 0.5 ,  (4, q), 0.5, 0.5  } is a Q-intuitionistic fuzzy subsemiring of Z5. 
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3.11 Theorem 

If A is a Q-intuitionistic fuzzy subsemiring of a semiring( R, +, ∙ ), then A is a Q-

intuitionistic fuzzy subsemiring of R. 

Proof: Let A be a Q-intuitionistic fuzzy subsemiring of a semiring R. Take A = {  ( x, q ), 

A(x, q), A(x, q)  }, for all x ϵ R and q ϵ Q. Let A = B = {  ( x, q), B( x, q ), B( x, q )  }, where 

B( x, q ) = 1A( x, q), B(x, q) = A(x, q). Clearly, B(x+y, q) ≤ max{B(x, q), B(y, q) }, for all x 

and y in R and q in Q and B(xy, q) ≤ max{ B(x, q), B(y, q) }, for all x and y in R and q in Q. 

Since A is a Q-intuitionistic fuzzy subsemiring of R, we have A(x+y, q) ≤ max {A(x, q), A(y, q) 

}, for all x and y in R and q in Q, which implies that 1–B(x+y, q) ≤ max {(1– B(x, q) ), (1– B(y, 

q) )}, which implies that B(x+y, q) ≥ 1– max { ( 1– B(x, q) ), (1– B(y, q) )} = min { B(x, q), 

B(y, q) }. Therefore, B(x+y, q) ≥ min{B(x, q), B(y, q) }, for all x and y in R and q in Q. And 

A(xy, q) ≤ max { A(x, q), A(y, q) }, for all x and y in R and q in Q, which implies that 1–B(xy, 

q) ≤ max { (1–B(x, q) ), (1–B(y, q) )} which implies thatB(xy, q) ≥ 1– max {(1–B(x, q) ), (1–

B(y, q) ) }= min { B(x, q), B(y, q) }. Therefore, B(xy, q) ≥ min               {B(x, q), B(y, q) }, for 

all x and y in R and q in Q. Hence B = A is a Q-intuitionistic fuzzy subsemiring of a semiring R. 

 

3.12 Remark: The converse of the above theorem is not true.  

It is shown by the following example: Consider the semiring Z5 = { 0, 1, 2, 3, 4 } with 

addition modulo 5 and multiplication modulo 5 operations and Q = {q}. Here                                               

A = { (0, q), 0.5, 0.1,  (1, q), 0.6, 0.4 ,  (2, q), 0.5, 0.4 ,  (3, q), 0.6, 0.4 ,  (4, q), 0.5, 0.4  } is 

not a Q-intuitionistic fuzzy subsemiring of Z5, but A = { (0, q), 0.9, 0.1 ,  (1, q), 0.6, 0.4,                           

(2, q), 0.6, 0.4,  (3, q), 0.6, 0.4 ,  (4, q), 0.6, 0.4  } is a Q-intuitionistic fuzzy subsemiring of Z5. 

In the following Theorem ◦ is the composition operation of  functions: 

 

3.13 Theorem 

Let A be a Q-intuitionistic fuzzy subsemiring of a semiring H and f is an isomorphism from a 

semiring R onto H. Then A◦f is a Q-intuitionistic fuzzy subsemiring of R. 

Proof: Let x and y be arbitrary elements in R and q in Q and A be a Q-intuitionistic fuzzy 

subsemiring of a semiring H. Then we have, (A◦f)( x+y, q ) = A( f( x + y ), q ) = A(f(x)+ f(y), q ) 

≥ min {A(f(x), q), A(f(y), q) } ≥ min {(A◦f)(x, q), (A◦f)(y, q)}, which implies that (A◦f)(x+y, q) 

≥ min { (A◦f )(x, q), (A◦f )(y, q) }. And (A◦f)(xy, q) = A( f(xy), q ) = A( f(x)f(y), q ) ≥ min 

{A(f(x), q), A(f(y), q) } ≥ min{ (A◦f)(x, q), (A◦f)(y, q) }, which implies that (A◦f)(xy, q) ≥ min 

{(A◦f)(x, q), (A◦f )(y, q) }. Then we have, (A◦f)(x+y, q) = A( f(x+y), q) = A( f(x)+f(y), q ) ≤ 

max {A( f(x), q), A(f(y), q) }≤ max { (A◦f)(x, q), (A◦f )(y, q) }, which implies that (A◦f)(x+y, q) 

≤ max {(A◦f )(x, q), (A◦f )(y, q) }. And (A◦f)(xy, q) = A( f(xy), q) = A( f(x)f(y), q) ≤ max                  

{A( f(x), q), A( f(y), q) }≤ max{ (A◦f )(x, q), (A◦f )(y, q) }, which implies that (A◦f)(xy, q) ≤ max 

{(A◦f )(x, q), (A◦f)(y, q) }. Therefore (A◦f) is a Q-intuitionistic fuzzy subsemiring of a semiring R. 
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3.14 Theorem 

Let A be a Q-intuitionistic fuzzy subsemiring of a semiring H and f is an anti-isomorphism 

from a semiring R onto H. Then A◦f is a Q-intuitionistic fuzzy subsemiring of R. 

Proof: Let x and y be arbitrary elements in R and q in Q and A be a Q-intuitionistic fuzzy 

subsemiring of a semiring H. Then we have, (A◦f)(x+y, q) = A(f(x+y), q) = A(f(y)+f(x), q) ≥ 

min {A( f(x), q), A( f(y), q) }≥ min {(A◦f)(x, q), (A◦f)(y, q) }, which implies that (A◦f)(x+y, q) ≥ 

min {(A◦f)(x, q), (A◦f)(y, q)}. And (A◦f)(xy, q)= A(f(xy), q) = A(f(y)f(x), q) ≥ min{A(f(x), q), 

A(f(y), q)} ≥ min { (A◦f)(x, q), (A◦f)(y, q)}, which implies that (A◦f)(xy, q) ≥ min {(A◦f)(x, q), 

(A◦f)(y, q) }. Then we have, (A◦f)(x+y, q) = A( f(x+y), q) = A( f(y)+f(x), q) ≤ max {A( f(x), q), 

A( f(y), q) } ≤ max { (A◦f )(x, q), (A◦f )(y, q) }, which implies that (A◦f)(x+y, q) ≤ max {(A◦f)(x, 

q), (A◦f )(y, q) }. And (A◦f)(xy, q) = A( f(xy), q) = A( f(y)f(x), q) ≤ max {A( f(x), q ), A( f(y), q) 

} ≤ max{(A◦f)(x, q), (A◦f)(y, q)}, which implies that (A◦f)(xy, q) ≤ max {(A◦f)(x, q), (A◦f)(y, q) 

}. Therefore A◦f is a Q-intuitionistic fuzzy subsemiring of a semiring R. 

 

3.13 Theorem 

Let A be a Q-intuitionistic fuzzy subsemiring of a semiring ( R, +, . ), then the pseudo                    

Q-intuitionistic fuzzy coset (aA)p is a Q-intuitionistic fuzzy subsemiring of a semiring R, for every 

a in R. 

Proof: Let A be a Q-intuitionistic fuzzy subsemiring of a semiring R. For every x and y in R 

and q in Q, we have, ((aA)p )(x+y, q) = p(a)A(x+y, q) ≥ p(a) min {( A(x, q),A(y, q) } = min 

{p(a)A(x, q), p(a)A(y, q) }= min { ( (aA)p )(x, q), ( (aA)p )(y, q) }. Therefore, ( (aA)p )(x+y, q) ≥ 

min {((aA)p )(x, q), ((aA)p)(y, q)}. Now, ((aA)p)(xy, q) = p(a)A(xy, q) ≥ p(a)min {A(x, q), A(y, 

q) }= min { p(a)A(x, q), p(a)A(y, q) }= min { ( (aA)p )(x, q), ( (aA)p )(y, q) }. Therefore, ((aA)p 

)(xy, q) ≥ min { ((aA)p )(x, q), ( (aA)p )(y, q) }. For every x and y in R and q in Q, we have, ((aA)p 

)(x+y, q) = p(a) A(x+y, q) ≤ p(a) max {(A(x, q),A(y, q) } = max { p(a)A(x, q), p(a)A(y, q) }= 

max {((aA)p )(x, q), ( (aA)p )(y, q) }. Therefore, ((aA)p )(x+y, q) ≤ max                                 

{((aA)p )(x, q), ((aA)p )(y, q)}. Now, ( (aA)p )(xy, q) = p(a)A(xy, q) ≤ p(a)max {A(x, q),A(y, q)} = 

max { p(a)A(x, q), p(a)A(y, q) } = max {( (aA)p )(x, q), ( (aA)p)(y, q) }. Therefore,                         

((aA)p )(xy, q) ≤ max {( (aA)p )(x, q), ( (aA)p )(y, q) }. Hence (aA)p is a Q-intuitionistic fuzzy 

subsemiring of a semiring R. 
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