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ABSTRACT 

In this paper we introduce the concept of cubic set to dual sub algebras and dual ideals in BCK-algebras and investigate some of 

its properties. The relationship between dual sub algebras and cubic dual sub algebras are given. 
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Contribution/ Originality 

The primary contribution of this paper is application of cubic set to dual ideals in BCK-algebras and 

investigates some of its properties. This study originates new definition cubic dual ideal in BCK-algebras. 

  

1. INTRODUCTION 

The concept of fuzzy set was introduced in 1965 by Zadeh [1] and since then, several researchers have 

explored the generalization of the notion of fuzzy sets.  The study of BCK-algebras was initiated by Imai and Iseki 

[2] in 1966 as a generalization of the concept of set-theoretic difference and propositional calculus. The notion of 

interval-valued fuzzy sets was first introduced by Zadeh [1] as an extension of fuzzy sets. Moreover, Jun, et al. [3]  

introduced the notion of cubic sets as a generalization of fuzzy set and interval-valued fuzzy set. In Satyanarayana, 

et al. [4]. Applied the concept of interval-valued intuitionistic fuzzy dual ideals of BF-algebras. In this paper we 

apply the concept of cubic set to dual ideals in BCK-algebras and investigate some of its properties. 

A BCK-algebra is a non-empty set X with a binary operation    and a constant 0 satisfying the following 

axioms: 

  (BCK-1) ((x y) (x z)) (z y)=0     , 

  (BCK-2) (x (x y)) y=0   , 

  (BCK-3) x x =0 , 

  (BCK-4) 0 x=0 , 

  (BCK-5) x y =0 and y x =0  x y     , for all Xzy,x,   

A BCK-algebra can be partially ordered by yx  if and only if 0yx   this ordering is called BCK-ordering. 

The following statements are true in a BCK-algebra: 

(i) x0x  , 
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 (ii) x y x, 
 

(iii) (x y) z (x z) y,    
 

(iv) (x y) z (x z) (y z)      ,  

(v) x y x z y z and z y z x        . 

Definition 1.1 Meng [5] a non-empty subset I of a BCK-algebra X  is called an ideal, if it satisfies: 

1(I ) I0  

2(I ) yx  and IxIy  , for any  Xyx, 
 

If there is an element 1 of X satisfying x 1 , for all x X,  then the element 1 is called unit of X. A BCK-

algebra with unit is called bounded. In a bounded BCK-algebra, we denote 1 x by Nx  for brief. 

Definition 1.2 Meng [5] a non-empty set D in a BCK-algebra X is said to be dual ideal of X if it satisfies: 

(i) 1 D,  

(ii) N(Nx Ny) D   and y D x D    for any x,y X.  

 

Let X be the collection of objects denoted generically by x. Then the fuzzy set A in X is defined as 

AA {(x,μ (x)) : x X}  where Aμ (x)  is called the membership value of x in A and A0 μ (x) 1  . 

Definition 1.3 For fuzzy sets μ  and λ of X and s,t [0,1] . The sets U(μ; t) {x X:μ(x) t}   is called  

upper t-level cut of μ and  

L(λ;s) {x X: λ(x) s}   is called lower s-level cut of λ . 

Definition 1.4 A fuzzy set ] 0,1 [  X:μ   is called fuzzy sub- algebra of X, if  

 μ(y)}μ(x),miny)μ(x  , for all Xyx,  . 

Definition 1.5 Meng and Jun [6] afuzzy subset μ of X is said to be fuzzy dual ideal of X, if  

(i) μ(1) μ(x)  

(ii) μ(x) min{μ(N(Nx Ny)),μ(y)}  for all x,y X.
 

Definition 1.6 Meng and Jun [6] the fuzzy set μ in X is called fuzzy dual sub algebra of X if it satisfies 

μ(N(Nx Ny) min{μ(x),μ(y)}  for all x,y X.  

Now we recall the concept of interval-valued fuzzy sets: 

By the interval number D we mean an interval[a ,a ] 
 where 0 a a 1     

For interval numbers 1 1 1D [a ,b ]  , 2 2 2D [a ,b ]  . 
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We define   

1 2 1 2 1 1 2 2 1 2 1 2Min(D ,D ) D D min([a ,b ],[a ,b ]) min[{a ,a },{b ,b }]            

1 2 1 2 1 1 2 2 1 2 1 2Max(D ,D ) D D max([a ,b ],[a ,b ]) max[{a ,a },{b ,b }]            

1 2 1 2 1 2 1 2 1 2D D [a a a .a ,b b b .b ]              

And put 

1 2 1 2D D a a    and 1 2b b   

1 2 1 2D D a a    and 1 2b =b 
 

1 2 1 2D D D D   and 1 2D D  

1 1 1 1mD m[a ,b ] [ma ,mb ]     , where 0 m 1.   

Let X be a given nonempty set. An interval-valued fuzzy set (briefly, i-v fuzzy set) B  on X is defined by 

  Xx:(x)]μ (x),[μ x,B BB  
,  

Where (x)μB


 and (x)μB


  are fuzzy sets of X  such that (x)μB

  (x)μB


for all x X . Let (x)μ~B  

= (x)]μ (x),[μ BB


, then  Xx:(x))μ~ (x,B B  , Where 1] D[0,X:μ~B  . 

The determination of maximum and minimum between two real numbers is very simple but it is not simple for 

two intervals. Biswas [7] described a method to find max/sup and min/inf between two intervals or set of 

intervals. 

Definition1.7 Biswas [7] consider two set of intervals 1 2D ,D D[0,1] . If 
+

1 1 1D [a ,a ]  then 

1 2 1 2 1 2rmin(D ,D ) = [min(a ,a ), min(a ,a )]   
which is denoted by

r

1 2D D .Thus if i i iD [a ,a ] D[0,1]    

for 1 i n  then we define i i i i i ir sup (D )=[sup (a ),sup (a )] 
that is 

r

i i i i i iD [ a , a ]     . Now we 

call 1 2D D iff 1 2a a  and 1 2a a  . Similarly the relations 1 2D D  and 1 2D D are defined. 

Based on (interval-valued) fuzzy sets, Jun et.al.introduced the notion of (internal, external) cubic sets and 

investigated several  properties. 

Definition 1.8 Jun, et al. [3] let X be a non-empty set. A cubic set A in X is a structure which is briefly denoted 

by  A AA= μ ,λ where 
_ +

A A Aμ = μ ,μ    is an interval-valued fuzzy set in X  and Aλ is fuzzy set in X . 

Definition 1.9 Jun, et al. [8] a cubic set  A AA= X,μ ,λ  in X is a cubic fuzzy ideal (C F-ideal) of X, if it satisfies: 

  (C F1) (x)μ~(0)μ~ AA   and A Aλ (0) λ (x)  
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  (C F2) A A Aμ (x) rmin{μ (x y),μ (y)}   

  (C F3) A A Aλ (x) max{λ (x y),λ (y)}  , for all x,y X . 

 

2. CUBIC DUAL-IDEALS OF BCK-ALGEBRAS 

Let X denotes a BCK-algebra unless otherwise specified. Combined the definitions of fuzzy dual-ideal over a 

crisp set and the idea of cubic set we define cubic dual-ideal. After that, we give some important consequences of 

cubic dual sub algebras and cubic dual ideals in BCK-algebras. 

Definition 2.1 A cubic fuzzy set  A AA= X,μ ,λ is called cubic fuzzy dual sub algebra of X if:  

(i) A A Aμ (N(Nx Ny)) rmin{μ (x),μ (y)}   

(ii) A A Aλ (N(Nx Ny)) max{λ (x),λ (y)}  for all x,y X.
 

Proposition 2.2 Every cubic fuzzy dual sub algebra  A AA= X,μ ,λ of X satisfies the inequalities 

A Aμ (1) μ (x) and A Aλ (1) λ (x)  , for all x,y X.
 

Theorem 2.3  If  A AA= X,μ ,λ is cubic fuzzy dual sub algebra of X then the sets 

Aμ A AX {x X/μ (x) μ (1)}   and 
Aλ A AX {x X / λ (x) λ (1)}   are dual sub algebras of X.  

Proof: Let 
Aμx,y X . Then A A Aμ (x)=μ (1) μ (y) and so  

A A A A A Aμ (N(Nx Ny)) rmin{μ (x),μ (y)}=rmin{μ (1),μ (1)} μ (1)    

A Aμ (N(Nx Ny)) μ (1)   but A Aμ (N(Nx Ny)) μ (1)   

AA A μμ (N(Nx Ny)) = μ (1) N(Nx Ny) X .      

Therefore for all 
Aμx,y X

AμN(Nx Ny) X .    

Let 
Aλx,y X .  then A A Aλ (x)=λ (1) λ (y) and so 

A A A A A Aλ (N(Nx Ny)) max{λ (x),λ (y)}=max{λ (1),λ (1)} λ (1)    

A Aλ (N(Nx Ny)) λ (1)   but A Aλ (N(Nx Ny)) λ (1)  A Aλ (N(Nx Ny))=λ (1)   

AλN(Nx Ny) X .    

Therefore, 
AμX and 

AλX are dual subalgebras of X. 
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Theorem 2.4 Let  A AA= X,μ ,λ is cubic fuzzy dual subalgebra of X. 

(i) If there exists n{x } in X such that 
A n

n
limμ (x ) [1,1]


 then Aμ (1) [1,1] . 

(ii) If there exists n{x } in X such that 
A n

n
lim λ (x ) 0


  then Aλ (1) 0.  

Theorem 2.5 Let 1A  and 2A  be cubic fuzzy dual BCK-sub algebras of X. Then 1 2A A is cubic fuzzy dual BCK-

sub algebra of X. 

Proof: Let 1 2x,y A A   then 1 2x,y A and x,y A .  Since 1A  and 2A are cubic fuzzy dual BCK-sub algebras 

of X, we have  

1 2A Aμ (N(Nx Ny))    

1 2 1 2A A A A= [μ (N(Nx Ny)),μ (N(Nx Ny))] 

    

 
1 2 1 2A A A A[min{μ (N(Nx Ny)),μ (N(Nx Ny))},min{μ (N(Nx Ny)),μ (N(Nx Ny))}]         

1 1 2 2 1 1 2 2A A A A A A A A[min{min{μ (x),μ (y)},min{μ (x),μ (y)}},min{min{μ (x),μ (y)},min{μ (x),μ (y)}}]       

1 1 2 2 1 1 2 2A A A A A A A A[min{min{μ (x),μ (y)},min{μ (x),μ (y)}},min{min{μ (x),μ (y)},min{μ (x),μ (y)}}]         

1 2 1 2 1 2 1 2A A A A A A A A[min{min{μ (x),μ (x)},min{μ (y),μ (y)}},min{min{μ (x),μ (x)},min{μ (y),μ (y)}}]       

 

1 2 1 2 1 2 1 2A A A A A A A A[min{min{μ (x),μ (x)},min{μ (y),μ (y)}},min{min{μ (x),μ (x)},min{μ (y),μ (y)}}]       

 

1 2 1 2 1 2 1 2A A A A A A A A[min{μ (x),μ (y)},min{μ (x),μ (y)}]   

   
 

1 2 1 2A A A Ar min{μ (x),μ (y)}   

Therefore, 
1 2 1 2 1 2A A A A A Aμ (N(Nx Ny)) rmin{μ (x),μ (y)}    , for all x,y X.  

1 2 1 2A A A Aλ (N(Nx Ny)) = max{λ (N(Nx Ny)),λ (N(Nx Ny))}     

  
1 1 2 2A A A Amax{max{λ (x),λ (y)},max{λ (x),λ (y)}}  

  
1 2 1 2A A A Amax{max{λ (x),λ (x)},max{λ (y),λ (y)}}  

  
1 2 1 2A A A Amax{λ (x),λ (y)}   
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Therefore, 
1 2 1 2 1 2A A A A A Aλ (N(Nx Ny)) max{λ (x),λ (y)}    , for all x,y X.  

Hence 1 2A A is cubic fuzzy dual BCK-sub algebra of X. 

Corollary 2.6 Let i{A / i N} be a family of cubic fuzzy dual BCK-subalgebra of X. Then i

i N

A


is also a cubic 

fuzzy dual BCK-sub algebra of X. 

Definition 2.7 A cubic fuzzy set  A AA= X,μ ,λ is called cubic dual ideal of BCK-algebra X if it satisfies the 

following inequalities:  

(C FD1) A Aμ (1) μ (x) and A Aλ (1) λ (x)  

(C FD2) A A Aμ (x) rmin{μ (N(Nx Ny)),μ (y)}   

(C FD3) A A Aλ (x) max{λ (N(Nx Ny)),λ (y)}  , for all x,y X . 

 

Example 2.8 Let X {0,x,y,z}  be a BCK-algebra with the following Cayley table  

* 0 x y z 
0 0 0 0 0 
x x 0 0 0 
y y x 0 0 
z z y x 0 

We define a cubic set  A AA= X,μ ,λ by A Aμ (0) μ (x) [0.6,0.7]  , A Aμ (y) μ (z) [0.2,0.3]  , 

Aλ (0) 0.1, Aλ (x) 0.3, and A Aλ (y) λ (z) 0.4.   

By routine calculations we know that  A AA= X,μ ,λ is a cubic dual -ideal of X. 

Theorem 2.9: If a cubic set in X is cubic dual sub algebra, then A Aμ (N(N0 Nx)) μ (x)   and 

A Aλ (N(N0 Nx)) λ (x)  for all x X.  

Proof: For all x X, we have  

(i) A A Aμ (N(Nx Ny)) rmin{μ (x),μ (y)}   

(ii) A A Aλ (N(Nx Ny)) max{λ (x),λ (y)}   

Put x 0, y x  in (i) we get  

A A Aμ (N(N0 Nx)) rmin{μ (0),μ (x)}   
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A Ar min{μ (x x),μ (x)}   

A A Ar min{rmin{μ (x),μ (x)},μ (x)}  

A Armin{μ (x),μ (x)}  

A=μ (x)  

Similarly, put x 0, y x  in (ii) we get  

A A Aλ (N(N0 Nx)) max{λ (0),λ (x)}   

A Amax{λ (x x),λ (x)}   

A A Amax{max{λ (x),λ (x)},λ (x)}  

A Amax{λ (x),λ (x)}  

Aλ (x)  

Theorem 2.10 A cubic set A AA=(μ ,λ ) in X is a cubic dual–ideal of X if and only if A A Aμ ,μ  and λ 
 are fuzzy 

dual ideals of X. 

Proof: Let A A Aμ ,μ  and λ 
 are fuzzy dual ideals of X and x,y X . Then by definition  

A Aμ (1) μ (x)  , A Aμ (1) μ (x)  , 

A A Aμ (x) min{μ (N(Nx Ny)),μ (y)}    , 

A A Aμ (x) min{μ (N(Nx Ny)),μ (y)}    , 

A A Aλ (x) max{λ (N(Nx Ny)),λ (y)}   

Now A A Aμ (x) = [μ (x),μ (x)] 
 

A A A A[min{μ (N(Nx Ny)),μ (y)},min{μ (N(Nx Ny)),μ (y)}]        

A A A Armin{[μ (N(Nx Ny)),μ (N(Nx Ny))],[μ (y),μ (y)]}       

A Armin{μ (N(Nx Ny)),μ (y)}   

Therefore A is cubic dual-ideal of X. 

Conversely assume that A is cubic dual-ideal of X.  

For any x,y X
 

A A A [μ (x),μ (x)] μ (x)  
A Armin{μ (N(Nx Ny)),μ (y)}   
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A A A Armin{[μ (N(Nx Ny)),μ (N(Nx Ny))],[μ (y),μ (y)]}     
 

A A A A[min{μ (N(Nx Ny)),μ (y)},min{μ (N(Nx Ny)),μ (y)}]     
 

Thus 

A A Aμ (x) min{μ (N(Nx Ny)),μ (y)}     

A A Aμ (x) min{μ (N(Nx Ny)),μ (y)}   
 

A A Aλ (x) max{λ (N(Nx Ny)),λ (y)}   

Hence A A Aμ ,μ  and λ 
 are fuzzy dual-ideals of X. 

Theorem 2.11 If A AA=(μ ,λ ) is a cubic dual-ideal of X, then non-empty upper s -level cut AU(μ ,s) and the non-empty 

lower t-level cut AL(λ ,t) are dual closed ideals of X for every s D[0,1] and t [0,1] .  
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