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ABSTRACT 

The steady magnetohydrodynamic (MHD) flow of a nanofluid at the forward stagnation point of an infinite permeable wall is 

investigated in this study. A mathematical model has been constructed and the governing partial differential equations are 

converted into ordinary differential equations by similarity transformation. The similarity equations are solved numerically by 

a shooting technique. Results for the surface shear stresses, surface heat transfer, and velocity, nanoparticle fraction and 

temperature profiles are presented in tables and in some graphs. Effects of the magnetic parameter  , constant mass flux   Biot 

number  , Brownion  motion parameter  thermophoresis parameter   and Lewis number   are examined. The present results are 

compared with previously available numerical results obtained using other methods of solution, and they are found to be in good 

agreement. 
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Contribution/ Originality 

This study documents important features of MHD stagnation point flow with the effect of convective boundary 

condition also suction and injection. The paper's contribution is finding that the development of skin friction, heat 

flux and mass flux, with the velocity, temperature and nanoparticle fraction profiles, in tables and graphs. 

 

Nomenclature 

 

a  constant 

0B  magnetic field normal to the wall 

Bi  Biot number 

C  constant nanoparticle fraction 

fC  skin friction coefficient 
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pC  specific heat at constant pressure 

wC  constant wall nanoparticle fraction 

C  constant nanoparticle fraction (inviscid flow) 

BD  Brownian diffusion coefficient 

TD  thermophoresis diffusion coefficient 

fh  convective heat transfer coefficient 

k  thermal conductivity 

Le  Lewis number 

M  magnetic parameter 

Nb  Brownion motion parameter  

Nt  thermophoresis parameter 

xNu  localNusselt number 

Pr  Prandtl number 

mq  mass flux 

wq  heat flux 

Rex  local Reynolds number 

s  constant mass flux 

xSh  local Sherwood number 

T  constant temperature 

fT  convective fluid temperature below the surface of the wall 

wT  temperature of the surface of the wall 

T  constant temperature (inviscid flow) 

,u v  velocity component in the x  and y  direction, respectively 

eu  external stream (inviscid flow) 

wv  mass flux velocity 

,x y  Cartesian coordinates along the surface and normal to it, respectively 
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  thermal diffusivity 

  pseudo-similarity variable 

  solid volume fraction of the nanofluid 

  density 

  electric conductivity 

  dimensionless temperature 

  ratio between the effective heat capacity of nanoparticle and heat capacity of the fluid 

w  skin friction or shear stress 

  kinematic viscosity 

  stream function 

fpC )(  heat capacity of the fluid 

ppC )(  heat capacity of the nanoparticle material 

 

Superscript 

 

'   differentiation with respect to   

 

Subscript 

 

w   condition at the wall 

   condition at infinity 

 

1. INTRODUCTION 

The flow near the stagnation point has attracted the attention of many investigators for many years because of 

its wide applications both in industrial and scientific applications. Some of the applications are cooling of electronic 

devices by fans, solar central receivers exposed to wind currents, and many hydrodynamic processes in engineering 

applications. The study of two dimensional stagnation point flows towards a solid surface in moving fluid was first 

studied by Hiemenz [1] in 1911 and follows by Homann [2] for the axissymmetric stagnation point flow. Many 

researchers have been working still on the stagnation point flows in various way. Mahapatra and Gupta [3] 

extended the stagnation point study by considering a stretching surface. Moreover, the stagnation point flow of a 

micropolar fluid towards stretching sheet was studied by Nazar [4] etc. 

 The problem of MHD flow at the stagnation point is a thoroughly researched problem in fluid mechanics. The 

steady MHD mixed convection flow near the stagnation point on a vertical permeable surface has been examined by 

Ishak [5] and they found that dual solutions are exist for both assisting and opposing cases. Mahapatra, et al. [6]; 

Ray Mahapatra, et al. [7] investigated two dimensional MHD stagnation point flow of a power law fluid towards a 

stretching surface numerically and analytically. 

In recent years, some interest has been given to the study of convective transport of nanofluids. The theory of 

nanofluid first introduced by Choi and Eastman [8] and has been a field of very active research area. Kuznetsov and 

Nield [9] examined the influence of nanoparticles on natural convection flow past a vertical flat plate, using a 

model in which Brownion motion and thermophoresis are accounted for. They found that the reduced Nusselt 
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number is a decreasing function of Brownion motion and thermophoresis parameter. Then, Khan and Pop [10] 

formulated the problem of laminar boundary layer flow of a nanofluid past a stretching sheet and Mustafa [11] 

considering the flow at the stagnation point for nanofluid towards a stretching sheet. The problem of boundary 

layer flow of a nanofluid past a stretching sheet has been investigated analytically by using the Homotopy Analysis 

Method by Hassani [12]. This work was extended by Bachok, et al. [13] by taking an account of shrinking case 

and discover a non-unique solution. Further, they continue the research by considering an unsteady flow and 

permeable sheet (see Bachok, et al. [14]). Ibrahim, et al. [15] analyzed the effect of magnetic field on stagnation 

point flow and heat transfer due to nanofluid towards a stretching sheet. There are many other studies have been 

conducted which relates to nanofluids such as Khan and Aziz [16]; Alsaedi, et al. [17]; Aziz and Khan [18]; 

Hamad and Ferdows [19] and Rana and Bhargava [20]. 

There has been considerable interest also in flows past permeable walls with suction and injection. The process 

of suction and injection has its importance in many engineering applications such as in the design of thrust bearing 

and radial diffusers, and thermal oil recovery. Suction is applied to chemical processes to remove reactants while 

injection is used to add reactants, cool the surfaces, prevent corrosion or scaling and reduce the drag (see 

Labropulu, et al. [21]). Katagiri [22] investigated the behavior of magnetohydrodynamic flow with suction or 

injection at the forward stagnation point and solved numerically. Kandasamy, et al. [23] explored the problem of 

MHD boundary layer flow of a nanofluid past a vertical stretching surface in the presence of suction and injection. 

Then, Ibrahim and Shankar [24] extended the study by took into account the slip boundary condition past a 

permeable stretching sheet. The same boundary layer flow of nanofluid also been investigated for semi infinite flat 

plate by Hamad, et al. [25]. Recently, the influenced of nanoparticles on mixed convection boundary layer flow 

along an inclined surface in a porous medium with Brownion motion and thermophoresis effect were examined by 

Rana, et al. [26]. The similarity solutions to the convective heat transfer problems have been studied by Aziz [27] 

and Magyari [28] for an impermeable plate, and by Ishak [29] for a permeable plate.  

Recently, there are studies of heat transfer problem for boundary layer flow that put convective boundary 

condition into account. Aziz [27] discussed on the similarity solution of thermal boundary layer over a flat plate 

and then Ishak [29] extends it by considering the effect of suction and injection. The effect of convective boundary 

condition in nanofluid also have been investigated by Makinde, et al. [30] with internal heat generation/absorption 

and followed by Alsaedi, et al. [17] with analysis of stagnation point flow. An effect of stretching and shrinking 

with convective boundary condition was analyzed by Bachok, et al. [31] and Nandy and Mahapatra [32]. Recently, 

Akbar [33] and Hamad, et al. [34] conducted a study of MHD stagnation point flow undet convective boundary 

condition with radiation effects. It is worth mentioning that many other boundary layer problems with convective 

boundary condition were investigated by Merkin and Pop [35]; Rashad, et al. [36]; Makinde and Aziz [37]; 

Makinde and Aziz [38] and Makinde, et al. [39]. 

Motivated by the above investigations, the present paper deals with the problem of steady MHD boundary 

layer flow and heat transfer and nanoparticle fraction over a two-dimensional stagnation point on an infinite 

permeable wall with convective boundary condition. We also investigate the effect of suction and injection on the 

system. The governing partial differential equations are first transformed into ordinary differential equations using 

similarity transformation, before being solved numerically by using shooting technique. The numerical results 

obtained are then compared with the data available in the literature for certain particular cases of the problem, to 

support their validity. 
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2. BASIC EQUATIONS 

Consider the steady two-dimensional laminar flow of an incompressible and viscous nanofluid at the forward 

stagnation point of an infinite permeable wall, which is assumed to be an electric insulator. It is assumed that the 

velocity of the external stream (inviscid flow) is  eu x a x , where a  is a positive the constant, and wv  is the 

mass flux velocity, where 0wv  corresponds to suction and 0wv  corresponds to injection, respectively. Then, 

we assume that the constant temperature T and the constant nanoparticle fraction C in the ambient fluid (inviscid 

flow) are denoted by T and C , respectively. A uniform magnetic field 0B  is applied normal to the wall. The 

nanofluid is assumed to have constant properties. In addition, the assumptions of small magnetic Reynolds number 

and of zero electric field have been made. Cartesian coordinates x  and y  are measured along the wall and 

perpendicular to it, respectively, as shown in Figure 1.  

 

 
Figure-1. Physical model and coordinate system 

 

Under these assumptions, the basic boundary layer equations of conservation of mass, momentum, thermal 

energy and nanoparticle fraction can be written as, see Kuznetsov and Nield [9] and Katagiri [22]. 
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where u  and v  are the velocity component in the x  and y  directions,   is the kinematic viscosity,   is the 

thermal diffusivity of the nanofluid,   is the density,   is the electric conductivity, BD  is the Brownian diffusion 
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coefficient, TD  is the thermophoresis diffusion coefficient and   is the ratio between the effective heat capacity of 

the nanoparticle material and heat capacity of the fluid, 
fppp CC )/()(   , 

pC  being the specific heat at 

constant pressure.  

Following Aziz [27] and Ishak [29] we assume that the temperature of the surface of the wall is maintained by 

convective heat transfer at a certain value wT , which is to be determined later. Thus, the boundary conditions of 

Eqs. (1) - (4) are  

 
 , 0, , at 0

, , as

w f f w w

e

T
v v u k h T T C C y

y

u u T T C C y 


      



   

 (5) 

Where k  is the thermal conductivity, 
fT  is the convective fluid temperature below the surface of the wall, 

fh is 

the convective heat transfer coefficient and wC  is the constant wall nanoparticle fraction. 

 We look for a similarity solution of Eqs. (1)to (4), with the boundary conditions (5) of the following form         

 

       
1/2

1/2
, , ,

w w

T T C C a
a x f y

T T C C
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
 

 

   
     

     (6) 

where   is the stream function, which is defined as y/u   and x/-v   . Thus, we have 

      
1/2

,u a x f v a f      (7) 

where primes denote differentiation with respect to  . Therefore, in order that Eqs. (1) - (4) have a similarity 

solution, we take 

 
 

1/2

wv a s 
 (8) 

where s  is the constant mass flux where 0s   corresponds for suction and 0s   correspond for injection, 

respectively. 

 Substituting (7) into Eqs.(2) to (4), we obtain the following ordinary differential equations 

 
 21 1 0f f f f M f        

 (9) 

  
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 0
Nt

Le f
Nb

        (11) 

and the boundary conditions (5) become 
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Where /Pr   is the Prandtl number and B/DLe   is the Lewis number. Further, M  is the magnetic 

parameter, Bi  is the Biot number, Nb  is the Brownian motion parameter and Nt  is the thermophoresis 

parameter, which are defined as 

 

   1/22

0 , , ,
f B w T w

h D C C D T TB a
M Bi Nb Nt

a k T

 

   

 



  
    

   (13) 

Quantities of physical interest are the skin friction coefficients
fC , the local Nusselt number xNu and the local 

Sherwood number xSh , which  can be expressed as 

 
   2

, ,w w m
f x x

e w B w

x q x q
C Nu Sh

u k T T D C C



  
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 

 (14) 

where w  is the skin friction or shear stress and, wq  and mq  are the heat flux and the mass flux, respectively, from 

the surface of the sheet, which are defined as                              

 0 0 0

, ,w w m B

y y y

u T C
q k q D

y y y
 
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       
          

       
 (15) 

Substituting (6) into (15) and using (14), we obtain 

 
1/2 1/2 1/2Re ''(0), Re '(0), Re '(0)x f x x x xC f Nu Sh      

 (16) 

where /)(Rex xxue  is the local Reynolds numbers.  

It is worth mentioning that when 0Bi , the lower side of the wall with hot fluid is totally insulated and no 

convective heat transfer to the cold fluid upwards of the wall takes place. Further, it should be noticed at this end 

that the solution of the energy equation (10) approaches the solution of the constant surface temperature 

1)0(  as Bi . 

 

3. RESULTS AND DISCUSSION 

The ordinary differential equations (9) to (11) subject to the boundary condition (12) have been solved 

numerically for some values of the governing parameters , , , ,M s Bi Nb Nt  and Le  using a shooting method. The 

value of the Prandtl number is taken 1Pr   throughout this paper. In addition, we also interested to look on some 

physical quantities which were skin friction coefficient,  0f  , the heat flux  0  and mass flux  0 .  

The obtained results for the skin friction coefficient  0f  , for various values of the parameter M  and s  have 

been compared with those reported by Katagiri [22] and were shown in Table 1. Note that this is for the case of no 

energy and no concentration equation. From this table, we noticed that the comparison shows a very good 

agreement for each value of  0f  ,  0  and  0 . This comparison lends confidence in the numerical 
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results to be reported in the next table for several values of Le  and Bi  for both suction and injection cases. By 

referring Table 2, it shows that the values of  0f   were independent of  Le  and Bi . The values of  0  

and  0  decrease as Le  and Bi  increase except for  0  in suction case where it increase when Le  

increase. 

Fig. 2 shows the effects of s  and M  on  0f  graphically. From this figure, it shows that as both 

parameter M  and s  increase, the values of  0f   also increase. The same results also have been agreed by 

Katagiri [22] for impermeable case. From Fig. 3, as Nt  increase from 0 to 0.6, the values of  0  decrease for 

both suction and injection cases. Similar result have been observed by Aziz and Khan [18]. The graph also 

illustrate that when Nb increase,  0  decrease for both suction and injection cases. The variation of  0  

as Nt  increase have been shown at Fig. 4. We can see clear difference for both suction and injection cases where 

along with an increment of Nt  value, the value of  0  decrease for suction case but increase for injection case. 

The graph also explain the changes of  0  as Nb  increase. From Fig. 4(a), we noticed that the value of 

 0  increase when Nb  increase while  0  decrease when Nb  increase for injection case which shown at 

Fig. 4(b).  

Next,we can see the variation of  0  for different values of Lewis number, Le  and Biot number, Bi  from 

Fig. 5. The value of  0  increase for suction case while decrease for injection case when the value of Lewis 

number, Le  increase. Fig. 5 (a) illustrate that  0  was slightly decrease at the beginning as Bi  increase. 

Whilst, a slight increase of  0  at 1Bi   can be seen in Fig. 5(b) when Bi  increase. 

 Fig. 6 to 9 illustrate the effects of parameter M , s , Nb  and Bi  on velocity profile  f  , temperature 

profile     and nanoparticle fraction profiles    . These profiles satisfy the far field boundary conditions (12) 

asymptotically, which support the validity of numerical solution obtained. For Fig. 6, it shows the effects of M  on 

each profiles where the solid line refers to suction case and broken line refers to injection case. By referring to Fig. 

6(a), when the value of M  increase, the velocity also increase for both suction and injection cases. Fig. 6(b) 

explains that the temperature of the system decrease when M  increase. The same trend can be found in Fig. 6(c), 

where the nanoparticle fraction decrease when M  increase for both cases. In addition, we also can see that there 

are small influence of M  on temperature and nanoparticle profiles for suction case compared to injection case by 

referring on Fig. 6(b) and (c). 
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Fig. 7 shows the effects of s  on each profiles. From Fig. 7(a), it explained that the velocity of the system are 

increase together with s  which also obtained by Katagiri [22] for impermeable case. However, contrary to the 

present observation, Ishak [5] and Bachok, et al. [14] found that as s increase, the velocity decrease for regular 

fluid and nanofluid, respectively. Besides, the temperature and nanoparticle fraction are decreased with s  which can 

be seen in Fig. 8(b) and (c), and Bachok, et al. [14] also reported the similar result. We also noticed that the graph 

shape is still the same from the value of suction to injection. 

Fig. 8 illustrate the temperature profiles with the change of Brownion motion parameter, Nb . From Fig. 8 (a), 

it shows that the temperature increase with Nb  for both suction and injection cases. A slight different of trend can 

be seen for nanoparticle fraction when suction and injection (see Fig. 8(b)). For suction case, we can see that 

nanoparticle fraction decrease when Nb  increase.  

 Effects of Biot number Bi  on temperature profiles can be seen in Fig. 9. It shows that both temperature 

for suction and injection cases are increase together with the value of Bi . Furthermore, the higher the Bi, the 

closer the value of  0 approaching 1 at the boundary. This can be proved from the boundary condition (12) 

which reduces to  0 1   if Bi  . Aziz [27] noted the same pattern for the temperature profiles. 

Table-1.Comparison of results for the values of (0)f   for several values of M and s . 

M s  
Katagiri [22]  0f   Present Results 

 0f   

1 -1 1.116421 1.116421 

 -0.5 1.331153 1.331154 

 0 1.585327 1.585331 

 0.5 1.877166 1.877176 

 1 2.20292 2.202940 

 1.5 2.557898 2.557937 

 2 2.937316 2.937384 

 2.5 3.336797 3.336905 

 3 3.752586 3.752749 

2 -1 1.405659 1.405659 

 -0.5 1.622920 1.622924 

 0 1.873519 1.873527 

 0.5 2.156606 2.156623 

 1 2.469924 2.469955 

 1.5 2.810327 2.810379 

 2 3.174309 3.174391 

 2.5 3.558404 3.558527 

 3 3.959429 3.959605 

 

Table-2. Values of (0)f  ,  (0)  and  0 for several values of Bi when 1M  , 1s   (suction) , 1s    

(injection) and Pr 1 . 

s  Le  Bi   0f    0   0  

1 1 0.1 2.202940 0.910438 1.275161 

  0.5 2.202940 0.661393 1.113066 

  1.0 2.202940 0.487094 1.010323 

  5.0 2.202940 0.152556 0.836141 

  10.0 2.202940 0.081723 0.802935 
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 5 0.1 2.202940 0.897044 5.195860 

  0.5 2.202940 0.621653 5.073030 

  1.0 2.202940 0.441633 5.005761 

  5.0 2.202940 0.129098 4.910766 

  10.0 2.202940 0.068203 4.895214 

 10 0.1 2.202940 0.893047 10.11542 

  0.5 2.202940 0.610363 10.00105 

  1.0 2.202940 0.429316 9.941435 

  5.0 2.202940 0.12335 9.86200 

  10.0 2.202940 0.064957 9.849624 

-1 1 0.1 1.116421 0.490115 0.189373 

  0.5 1.116421 0.151282 0.222413 

  1.0 1.116421 0.080664 0.229284 

  5.0 1.116421 0.017009 0.235469 

  10.0 1.116421 0.008562 0.236289 

 5 0.1 1.116421 0.482957 0.017123 

  0.5 1.116421 0.147208 0.024405 

  1.0 1.116421 0.078291 0.025803 

  5.0 1.116421 0.016472 0.027030 

  10.0 1.116421 0.008289 0.027191 

 10 0.1 1.116421 0.482478 0.005580 

  0.5 1.116421 0.146969 0.008633 

  1.0 1.116421 0.078156 0.009209 

  5.0 1.116421 0.016442 0.009713 

  10.0 1.116421 0.008274 0.009779 

 

 

Fig-2. Variation of (0)f  with M  for several values of swhen 0.5Nb  , 0.5,Nt  10Le   and 1Bi  . 

 

 

Fig-3. Variation of (0)  with Nt for several values of Nb  when 1M  , 10Le   and 1Bi   for (a) suction and (b) injection 

case 
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Fig-4. Variation of (0)  with Nt for several values of Nb  when 1M  , 10Le   and 1Bi   for (a) suction and (b) injection 

case 

 

 

Fig-5. Variation of (0)  with Bi for several values of Le  when 1M  , 0.5Nb  , 0.5Nt   and 1Bi   for (a) suction and 

(b) injection case 
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Fig-6.  Effects of M on the (a) velocity profile  f  , (b) temperature profile     and (c) nanoparticle fraction profiles     when 

0.5,Nb  0.5Nt  , 10Le   and 1Bi   for both suction  1s   and injection  1s    cases. 

 

 

 

Fig-7. Effects of s on the (a) velocity profile  f  , (b) temperature profile     and (c) nanoparticle fraction profiles     when 

0.5,Nb  0.5Nt  , 10Le   and 1Bi  . 
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Fig-8. Effects of Nb on the (a) temperature profile     and (b) nanoparticle fraction profiles     when 1M  , 0.5Nt  , 

10Le   and 1Bi   for both suction  1s   and injection  1s    cases. 

 

 

Fig-9. Effects of Bi  on the temperature profile    when 1M  , 0.5Nt  , 0.5Nb   and 10Le   for both suction 

 1s   and injection  1s    cases. 

 

4. CONCLUSION 

We have theoretically investigated the effects of various governing parameters magnetic parameter M, 

constant suction/injection parameter s, Brownian motion parameter Nb, thermophoresis parameter Nt, Biot number 

Bi and Lewis number Le on flow field and heat transfer characteristics of the MHD stagnation point flow of a 

nanofluid at the forward stagnation point of an infinite permeable wall. The numerical results obtained are in 

excellent agreement with the previously published data available. It is found that the magnitude of skin friction 
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 0f  , the local Nusselt number  0  and the local Sherwood number  0  all are increasing with M and 

s. 
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