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In this paper, we generate the Adomian polynomial for major nonlinear terms which 
are mostly common in differential equations. And we applied it to Lane-Emden type of 
equations whose nonlinear terms are exponential functions. The result we obtained by 
modified Adomian decomposition method (ADM) gave a series solution which is the 
same as the Taylors series of the exact solution. 
 

Contribution/ Originality: This study contributes in the existing literature on the use of Adomian decomposition 

method. It explicitly provide the Adomian polynomials of frequently occurring nonlinear terms in a linear functional. And, for 

the first time, applied to obtain an exact solution to the Lane-Emden type of equation. 

 

1. INTRODUCTION 

Considering the significance of nonlinear equations [1] quite recently came up with ADM. The method is 

widely used to obtain approximate solution to linear and nonlinear equations in series form. A reasonable 

approximate solution depends strictly on the right form of Adomian polynomials of the nonlinear term in a linear 

functional.  Because of the different nature of nonlinearity, these polynomials are difficult to obtain, especially when 

the right codes are not written for the computer algebra system in use. Currently, there are two forms, in literature, 

on how to generate these polynomials. The standard form by Adomian [2] and the accelerated form. The most 

preferred and widely used is the standard form. Unlike other numerical methods, ADM has proved to be a reliable 

method for problems whose true solutions are hard to obtain by classical means. Nonetheless, there are barriers as 

well. However, a logical analysis for several varieties of problems in science and engineering has revealed that there 

is greater agreement between facts and solutions when ADM is used in equations with no classical solution. We 

further explore the modified ADM to solve the Lane-Emden type of equation which was solved by Supriya, et al. 

[3] using variation of parameters. 
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2. THEORY OF ADM AND ITS POLYNOMIALS 

In a general nonlinear equation 

fN                                                                      (1) 

where N is a nonlinear operator from a Hilbert space H into H, f  is a given function in H. By ADM 







0n

nAN                                                                    (2) 

and 







0n

n                                                                     (3) 

An are the Adomian polynomials that can be obtained for various classes of nonlinearity according to specific 

algorithm set by Adomian [2]. 

)(fA 011                                                                  (5) 

)(f)(fA 0!2022

2
1 


                                                         (6) 

                    . 

                    . 

                    . 

  
0i

i

d

d
!n

1
n fA

n

n


                                                                         (7) 

Where  is a grouping parameter. If the series in (2) is convergent then (3) becomes 

    f0   

     001 A   

     1012 ,A   

     . 

     . 

     . 

     1n2101nn ,...,,,A    

Thus, we can recursively obtain the solution of (1) and (3). 

 

3. NONLINEAR TERMS AND ITS ADOMIAN POLYNOMIALS 

In this section, we give the first few terms of Adomian polynomials of some frequently occurring nonlinear 

terms in a linear functional.  Suppose  

(i).               sinN                                                                                      (8) 

Applying (7), we have its Adomian polynomials as 

           00 sinA   



International Journal of Mathematical Research, 2017, 6(1): 13-21 

 

 
15 

© 2017 PAK Publishing Group. All Rights Reserved. 

           011 cosA   
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2

1
cos

2

1
  

(ii)        cosN                                                                                                                                        (9) 

Similarly, applying (7), we have its Adomian polynomials as   

   00 cosA   
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                   05041 coscos   
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(iii)     
 eN  ,   is a constant.                                                                                                             (10) 

Also, applying (7), we have its Adomian polynomials as 

             0eA0
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(iv)          tanN                                                                                                                                        (11) 

Equally applying (7), we have its Adomian polynomials as  

 00 tanA   
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Alternatively, 
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(v)   
pN  , see Agom and Ogunfiditimi [4] where p Z+                              (12) 
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(vi)   lnN                                                                                                                           (13) 
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4. NUMERICAL ILLUSTRATION 

We consider the Lane-Emden type of equation 
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The exact solution of (14) is  

 2t1ln2)t(                                                                                                            (15) 

The Taylor series of (15) is  
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The nonlinear terms of (14) are  
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The terms of (17) are specific cases of (17). So, applying the Adomian polynomials of (10) in (17), we obtained 
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In a similar manner ...,A,A,A 765  can be found. The solution of (14) by the traditional ADM was slow in 

convergence to the exact solution. So we explore the Modified ADM by Yahaya and Mingzhu [5] and  Neelima 

and Kumar [6] in conjunction with procedures in  Agom and Ogunfiditimi [7] and Agom, et al. [8]. The linear 

operator of (1) and its inverse are given as 
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On application of Modified ADM, we have 
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Thus, 
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                                                                        (18) 

Equation (18) and (16) are the same. 

 

5. CONCLUSION 

We have been able to generate the Adomian polynomials for major nonlinear terms that frequently occur in 

functional differential equations using Maple. We discovered that the application of the traditional ADM to the 

Lane-Emden type of equation yielded a slow converging series solution, possibly due to the presence of Noise term 
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(left for further research.). But the modified ADM produced an exact result which is similar to the Taylor’s series of 

the exact solution.  
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