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This paper studies the global dynamics of an SIR epidemic switching model with zero 
co-infectives and intervention programmes. The model considers two epidemics of non-
specific nomenclature in which the first epidemic is a precondition to the outbreak of 
the second epidemic. Analytical study of the model exposed the two epidemic steady 
states, namely, epidemic-free equilibrium (EFE) and epidemic endemic equilibrium 
(EEE). Both equilibrium states are shown to be globally attractive points with respect 
to the criteria of the basic reproduction number using Lyapunov stability theory. Some 
sufficient conditions on the model parameters are obtained to show the existence of the 
forward bifurcation. Finally, numerical simulations are done to exemplify the 
qualitative results and the impact of switching and intervention programmes. The 
numerical results shown that switching reduces the susceptibility and infectivity of the 
first epidemic and increases that of the second epidemic. Also, depending on the 
severity of the both epidemics, the different levels of intervention programmes are 
needed to reduce the number of infectives in both epidemics. However, equal 
intervention programmes are recommended for both epidemics to avoid neglecting one 
epidemic during outbreaks of the two epidemics.     
 

Contribution/Originality: This study is one of the few studies in mathematical epidemiology which have 

investigated the role of switching in an SIR model of two epidemics with zero co-infectives. In addition, Lyapunov 

functions theory and Center Manifold method is applied to the model for the global stability analysis and existence 

of forward bifurcation respectively. 

 

1. INTRODUCTION 

Infectious diseases continue to present epidemic and pandemic challenges around the world. For instance, the 

emergence of the 2003 SARS epidemic [1], 2009 A/HINI influenza pandemic [2], the 2014-15 Ebola epidemic in 

West Africa [3] and the recent outbreak of COVID-19 pandemic in 2019 [4] globally are worth mentioning. In 

epidemiology, epidemic refers to an increase in the number of cases of a disease above an expected value in a 

population at a given time. An epidemic takes place when an agent and susceptible hosts are present in adequate 

numbers with effective contact rates while pandemic refers to an epidemic that has spread over several countries or 

continents, usually with large numbers of infectives [5]. 

Different compartmental models form a key aspect of mathematical epidemiology in which the majority of the 

past models of two epidemics are focused on coinfections [6]. These coinfection models include HIV and malaria 

co-infection [7] , Hepatitis B and HIV co-infection [8], HIV/TB co-infection [9] and listeriosis and anthrax co-
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infection [10]. The instance of switching from one form of the epidemic to the other without co-infection is almost 

a negligible area of research. 

The switching of an epidemic has to do with the transition process or movement from one infectious disease to 

another infectious disease, that is, the first epidemic is a precondition to the outbreak of the second. The classical 

view of switched systems is that they evolve according to the mode-dependent continuous dynamics and experience 

transition between modes which are triggered by certain events [11]. The abrupt change in the structure or 

parameters of a dynamical system and the control of a continuous system with a switch controller are the two 

reasons that result in a switched system [12]. 

Modelling of the epidemic switched system has not been widely explored. However, Meng and Deng [13] 

studied the stability of stochastic switched SIR epidemic systems with discrete or distributed time delay. They made 

use of Lyapunov function and Ito’s differential rule for the analysis of stochastic switched systems and further 

proved that switching the system can eradicate the disease. A regime-switching SIR epidemic model with 

degenerate diffusion was investigated by Jin, et al. [14]. They established the asymptotic behavior of the system 

using Markov semigroup theory.  Rami, et al. [15] investigated the spread of disease in an SIS epidemiological 

model for a structured population. Their model was an extension of Fall, et al. [16]. The model considered a time-

varying switched model, in which the parameters of the SIS model were subject to abrupt change. The stability 

analysis results were derived from the joint spectral radius based on the . The paper recommends the extension 

of the work to the SIR compartmental type of disease switched system. On the other hand, Wang, et al. [17] 

proposed the threshold dynamics of switched multicity epidemic models with pulse control. The model developed 

was switched HIV models with transported-related infections. The Razumikhin-type stability theory was employed 

to show that the disease will go to extinction based on the condition that . Naji and Hussien [18] 

formulated an epidemic model that describes the dynamics of two types of infectious diseases with both horizontal 

and vertical transmissions. The local and global stability of the equilibrium points of the model was analysed. Both 

local bifurcations analysis and Hopf bifurcation analysis for the four-dimensional epidemic model was studied. 

Looking at the suggestion made by Rami, et al. [15] to extend the modelling of epidemic switching from SIS  

to the Susceptible-Infected-Recovered (SIR) epidemic, we are motivated to propose a SIR epidemic switching 

without co-infection. In our model, the two epidemics considered are of the nonspecific type and epidemic 1 is a 

prerequisite to the epidemic 2. 

The rest of the paper is organized as follows: Section 2, is the model formulation and invariant region of the 

system while the existence of the equilibrium states and computation of the basic reproduction number are 

presented in Section 3. In Section 4, numerical simulations are carried out to display the effect of the switching rate 

and intervention programmes on the two epidemics. The discussion of the numerical simulation is described in 

Section 5 while Section 6 is the conclusion. 

 

2. MODEL FORMULATION AND THE CLOSED DOMAIN 

The host population  is compartmentalized into six classes; namely, Susceptible for Epidemic 1 ( ), 

Infectious for Epidemic 1 ), Recovery for Epidemic 1 ( ), Susceptible for Epidemic 2 ( ), Infectious for 

Epidemic 2 ( ), and Recovery for Epidemic 2 ( ). The assumptions below and the flow diagram in Figure 1 have 

been adopted for the model derivation. Table 1 describes the parameters of the model. The following are the 

assumptions of the model.  
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i. The two epidemics are not co-infected. 

ii. An individual can only be susceptible to one epidemic at the same time. 

iii. Without being infected with Epidemic 1, one cannot be infected by Epidemic 2. (i.e. Epidemic 1 is a pre-

requisite to Epidemic 2). 

iv. Epidemic 1 can switch to Epidemic 2 but not vice versa. 

v. Infected individuals for epidemic 1 with very low immunity switches fast to epidemic 2 while those that 

recovered permanently from epidemic 1 immediately become susceptible to epidemic 2. 

 

Table-1. Parameter description of the Model. 

Parameters                               Description 

 
The number of individuals that enter into the susceptible class of 
epidemic 1 either by birth or immigration. 

 
The transmission rate for Epidemic 1. 

 
The number of individuals that enter into the susceptible class of 
epidemic 2 either by birth or immigration. 

 
The transmission rate for Epidemic 2. 

 
Switching parameter. 

 
Intervention Programs for epidemic 1 and epidemic 2 respectively. 

 
Mortality rate due to infection for Epidemic 1. 

 
Mortality rate due to infection for Epidemic 2. 

 
Natural death rate 

 
The rate at which individuals infected with Epidemic 1 recovered. 

 
The rate at which individuals infected with Epidemic 2 recovered. 

 
The rate at which individuals recovered from Epidemic 2 becomes 
susceptible. 

 
Probability of acquiring high immunity. 

 

 
Figure-1. Flowchart for an SIR switching model without co-infection. 
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With the above assumptions, the set of the differential equation for the proposed SIR switched system is: 

  (1) 

 

with 

 and . 

Theorem 1. The closed domain  is positive invariant and 

attractive to the system (1). 

Proof.  Assume  to be any solution of the system (1) with any 

arbitrary initial condition. Then by summing together the entire system of Equation 1  yields: 

        

 (2a) 

 .          

 (2b) 

By the standard comparison theorem [19],  we obtain from Equations 2a and 2b that 

        

 (3) 

and consequently from Equation 3, it can be shown that 
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.       

 (4) 

Therefore, from Equation 4, it implies that is a positive invariant. In addition, when  

approaches Hence, all solution in  approach, enter or stay in (i.e. is attracting).  

From now onwards, it is sufficient to consider the dynamic of the switched system (1) in since the equations 

are mathematically well-posed and epidemiologically sensible. 

 

3. EXISTENCE OF THE EQUILIBRIUM STATES AND BASIC REPRODUCTION NUMBER 

Two basic equilibrium states of the model (1) are investigated by setting the right-hand side of the model 

system to zero. The first equilibrium state is the epidemic-free equilibrium (EFE) that is represented by 

with and .  Moreover, the basic reproduction number of the model 

system (1) denoted by  is the maximum of the reproduction numbers computed using the Next-generation 

approach [20] related to each epidemic. We have the basic reproduction number, , given as 

 ,         

 (5) 

where  

         

 (6) 

and 

          

 (7) 

 and  denote the reproduction numbers for epidemic 1 and epidemic 2 respectively in Equation 5. 

 

3.1. Stability Analysis of Epidemic-Free Equilibrium State 

Here, we examine the local asymptotic stability of system  at  using the linearized stability theory. 
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Theorem 2. The epidemic-free equilibrium point of the model  is locally asymptotically stable if  

Proof: The linearized form of the system  at the epidemic-free equilibrium state, , is given by the Jacobian 

matrix,  

 , (8) 

 (8) 

where  

       

 (9) 

The eigenvalues of the Jacobian matrix of Equation 8 are 

 ,  and  .

 (10) 

The Equation 10 have negative eigenvalues if  and . This implies that the Epidemic-free 

equilibrium state, , is locally asymptotically stable when .   

Hence, this completes the proof of Theorem 2.      

 

3.2. Global Stability of Epidemic-Free Equilibrium State 

The following theorem prove the global asymptotic stability of the system (  at in the absence of a 

switching parameter. 
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Theorem 3. The model exhibits a stable global asymptotic behaviour at epidemic-free equilibrium state when  

 and   

Proof: Using Lyapunov function adopted from Naji and Hussien [18]  

 
The Lyapunov derivative along the trajectories of system (1) gives 

      

 (11) 

where . 

Adding and subtracting of and in the first and second brackets respectively of Equation 11 and with little 

algebra yields  

  

Since  and using Equations 6 and 7 at , we have 

  

But, .  

So,  

. 

This implies that, 

.  

Therefore, is a global attractive point and by LaSalle invariance principle [21] the epidemic-free equilibrium 

point is globally asymptotically stable whenever  and  . This is shown graphically in Figure 2.  
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         (a)                   (b) 

Figure-2. Global stability of the epidemic-free equilibrium state for the infected individuals in Epidemic 1 and 2. 

 

The parameter values used in Figure 2 are  

 with different initial conditions. (a) . (b)  

 

3.3. Existence and Stability of Epidemic Endemic State 

The epidemic endemic equilibrium denoted by can be obtained from the 

following: 

     

 (12) 

From the second and third equations of Equation  when  we have 
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 (13) 

.           

 (14) 

Substituting Equation in the first equation of the system equation gives 

 .            

 (15) 

Making use of the fact  in Equation (13), we get 

 .       (16) 

With  of Equation  and  of Equation  in Equation and with little algebra gives  

.          

 (17) 

Therefore, substituting Equation (17) into Equations (14) and (15) yields 

 and   . 

Also, from the sixth and fifth equation of Equation , we get 

            

 (18) 

and 

.        

 (19) 

Implementing Equations  into the fourth equation of Equation  and simplifying yields 

.     

 (20) 
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Upon substitution of Equations with  and a bit manipulation 

results to: 

 ,          

 (21) 

where  

,  

,  

.  

The Equation  is a quadratic polynomial equation with a positive solution 

           

 (22) 

Hence, with Equation (22) the epidemic endemic equilibrium state, exists when 

 which implies that . 

 

3.4. Local Stability of the Epidemic Endemic Equilibrium State  

The local stability of the epidemic endemic equilibrium state is proved using the centre manifold theorem [22]. 

The theorem depends on the existence of bifurcation near . The bifurcation can be forward or backward 

bifurcation. A forward bifurcation means that the endemic equilibrium is local asymptotically stable when  

and the disease-free equilibrium state is local asymptotically stable when .  

Since  and , the bifurcation is considered in two ways: 

i. when , . So that .  

ii. when , . So that .  

We rewrite Equation 1 by letting . 

This yields  
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 (23) 

where ,  are as defined in Equation (9),   and . 

Theorem 4. The system (1) exhibits a forward bifurcation at . Hence, the endemic equilibrium state,  is 

locally asymptotically stable when  but close to 1. 

Proof. This is proved in two ways as stated above using the concept of Castillo-Chavez and Song [22]. 

Case (i). when , we choose  as the bifurcation parameter that occurs at . So from 

Equation 6,   . 

The Jacobian matrix,  at EFE when  with has a simple zero eigenvalue and negative 

eigenvalues in Equations (8) and  (10).  

Applying the Theorem 4.1 of Castillo-Chavez and Song [22] let  be the right 

eigenvector associated with the zero eigenvalue. Multiplying the Jacobian Matrix  of Equation (8) with  

and equating to zero at , we have 

, ,   , 

.   

Similarly, the left eigenvector of the Jacobian  of (8) associated with the zero eigenvalue is given by 

 and it satisfies . Transposing Jacobian   first and multiply by ,  

we have . 
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The function      will be used to find bifurcation coefficients or constants  and  

from the system of Equation (23) since .  Note that  and  are calculated based on the relations given in 

Castillo-Chavez and Song [22]. The associated non-zero partial derivatives of  at EFE,  for the model are  

. 

Substituting the respective partial derivatives into  and using the properties that , we have after 

simplifying that 

 and  .     

 (24a) 

Case (ii). When ,  is chosen as the bifurcation parameter that occurs at . So from 

Equation 7,    . Following this same method for case (i), we have  and 

. The Jacobian matrix,  of Equation (8), at EFE when  with 

has a simple zero eigenvalue and negative eigenvalues in Equation 10.  

The function,    is used to find   and  from the system Equation 

(23) since . The associated non-zero partial derivatives of  at EFE,  for the model are given by 

  . 

Upon substituting the respective partial derivatives into  and  using the properties that yields 

  and  .   (24b) 

Since  and , we have from Equations (24a)  and (24b) that  and  in both ways. 

Therefore, by Theorem 4.1 of Castillo-Chavez and Song [22] which stated that a forward bifurcation exists if 

 and . This implies that local asymptotic stability of endemic equilibrium state exists for  but 

close to 1.  
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The above proved cases are graphically illustrated in Figure 3.  
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        (i)                (ii) 

Figure-3. Forward bifurcation plot displaying (i)  as a function of  and (ii)  as a function of . 

 

Here, the parameter values used in Figure (3) are  

 

3.5. Global Stability of the Endemic Equilibrium State 

Theorem 5. The epidemic endemic equilibrium state,  of the system  is globally asymptotically stable in  

if  , and  . 

Proof: To prove this theorem, the work by Gupta, et al. [23] is used to construct a Lyapunov function  of the 

kind: 

,  

 (25) 

where  

and  are the positive constants to be determined. 

The time derivative of in Equation  gives 
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.        (26) 

At equilibrium state,  

.      

 (27) 

So, substituting Equation (27) into Equation (26) gives  

. We define mean value of  and  so that 

 

Using the hypothesis that  and  yields 

 if  since   

On the other hand,  and   

 Thus, by Lasalle invariant principle [21] the epidemic endemic equilibrium state,  is globally asymptotically 

stable when  and  which implies that . Graphically, this is shown in Figure 4. 
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             (a)      (b) 

Figure-4. Global stability of the epidemic endemic equilibrium state for the infected individuals in Epidemic 1 and 2. 
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The parameter values used in Figure 4 are  

 

with different initial conditions. (a) . (b) 

. 

 

4. NUMERICAL SIMULATIONS 

In this section, the numerical simulation of the system  is carried out using the set of parameters values 

given in Table 2. This is to study the impact of switching, intervention programmes and the proportion of infected 

people developing immunity on the epidemiology of infectious diseases. Some of the parameters' values are taken 

from Literature while some are assumed. The fourth-order Runge-Kutta scheme is used to solve the system . 

 

Table-2. Parameter Values. 

Parameters Values Source Parameters Values Source 

 
20 [18] 

 
0.1 [18] 

 
10 Assumed 

 
0.1 [18] 

 
0.75 [18] 

 
0.3 [18] 

 
0.75 Assumed 

 
0.3 Assumed 

 
0.2 Assumed 

 
0.3 Assumed 

 
(0,1) Assumed 

 
0.3 [18] 

 
(0,1) Assumed 

 
(0,1) [18] 
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Figure-5. Simulation solution of the model (1) for the impact of switching on the Susceptible and Infected populations of the epidemic 1 and 2. 
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Figure-6. Simulation solution of the model (1) for the impact of interventional programmes on the infected population of the epidemic 1 and 2. 

 
Figure-7. Simulation solution of the model (1) for the impact of interventional programmes on the infected population of the epidemic 1 and 2. 

 

 

Figure-8. Contour plot of the reproduction numbers for epidemics 1 and 2 . (a)  as a function of switching ( ) and 

recovery,  (b)  as a function of switching ( ) and intervention progamme, .  (c)  as a function of the intervention 

programme ( ) and recovery, .  
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5. DISCUSSION 

Figure 5 demonstrates the impact of switching on the transmission dynamics of two epidemics.  It is observed 

that when switching rate is increasing, the susceptible and infected populations for epidemic 1 decrease while the 

susceptible and infected population for epidemic 2 increases. This contributes to the endemicity of epidemic 2. It 

implies that the presence of switching in the epidemiology of the two epidemics reduces the susceptibility of the first 

epidemic and increases that of the second epidemic. Also, the process of transiting from epidemic 1 to 2 eliminates 

the infectivity tendencies of the first epidemic. This coincides with the result of Meng and Deng [13] that 

switching eradicates the spread of disease. 

The impact of the intervention programmes  on the infected populations of epidemic 1 and 2 are 

illustrated in Figure 6. The intervention programmes are meant to minimize the transmission rates of the two 

epidemics. It is observed that when the intervention programme for epidemic 1 is given more priority over the 

intervention programme for epidemic 2 , it reduces the number of infectives of epidemic 1 as 

regards to epidemic 2. Conversely, the same argument holds for epidemic 2 when the intervention programme for 

epidemic 2 is given more priority over the intervention programme for epidemic 1 , it reduces 

remarkably the number of infectives for epidemic 2. However, when the intervention efforts of both epidemics are at 

an equal level , it reduces the number of the infected individuals of both epidemics but they 

are above when  for epidemic 1 and when  for epidemics 2. This implies that 

different levels of intervention programmes are needed to reduce the number of infectives in both epidemics that is 

the epidemic 1 requires intervention programme more than that of epidemic 2 to reduce its number of infectives 

while the epidemic 2 requires intervention programme greater than that of epidemic 1 to lower its number of 

infectives. However, we advise an equal level of intervention programmes for both epidemics so that one epidemic 

will not be neglected during another epidemic.  

Figure 7 shows that the more infected individuals of epidemic 1 develop strong immunity, the more it lowers 

the number of infectives that switch to epidemic 2 and hence reduces the prevalence of both epidemics. This implies 

that any drugs/medications that can boost the immunity of the infected individuals in epidemic 1 will also help to 

reduce the infectives of epidemic 2. 

Figure 8 displays the relationship between the reproduction numbers for epidemics 1 and 2. The reproduction 

number for epidemic 1 is less than unity, ) in two ways: i. when the intervention programme for epidemic 

1 is greater than 24% , the recovery rate for infected individuals in epidemic 1 is greater than 0.4, 

 and switching rate is greater than or equal to 0.1  and ii. when ,  

and  (see Figure 8 a and b).  For epidemic 2,  the reproduction number for epidemic 2 is less than unity, 

) in two ways: when the intervention programme for epidemic 2 is greater than 36%  and 

the recovery rate for infected individuals in epidemic 2 is greater than 0.15,  or when  
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and  (see Figure 8a).  For epidemic 1, it will be easy to achieve low switching rate,  by 

increasing recovery rate and its intervention programme since low switching rate will reduce the number of 

infectives in epidemic 2 (see Figure 5).  Also, the epidemic 2 requires high intervention programme and high 

recovery rate to eliminate the disease in epidemic 2. Thus, high intervention programmes and high recovery rates 

for the two epidemics are needed to bring the reproduction numbers of the two epidemics less than unity.  Also, to 

have low switching rate means that more infectives in epidemic 1 will have to develop strong immunity by taking 

supplement and drugs that will boost their immunities when they recovered. 

 

6. CONCLUSION  

In this paper, we presented an SIR epidemic switched model and studied the dynamics of two infections with 

switching condition and intervention programmes. The analytical results of the model shown that there exists only 

two non-negative equilibrium points; the epidemic- free equilibrium (EFE)  in the case of no infection and the 

epidemic-endemic equilibrium (EEE) denoting the presence of infection in the population. The EFE is locally 

asymptotically stable if the basic reproduction number is less than unity and globally stable when  in the 

absence of switching parameter. Furthermore, the model undergoes forward bifurcation at   in two ways: i. 

when the reproduction number for epidemic 1,  and the reproduction number for epidemic 2,  

with  as the bifurcation parameter; ii. , with the bifurcation parameter . Any 

of both conditions changes the stability behaviour of the system from stable to unstable around . The analysis of 

the model shows that an epidemic endemic equilibrium is globally asymptotically stable whenever . This 

gives the restriction of the epidemics within the endemic domain. The other results achieved (both analytical and 

numerical) suggest that the value of the reproduction numbers,  and , can be less than one by increasing 

both the intervention programmes and the immunity rate. In addition, switching reduces the susceptibility and 

infectivity of the first epidemic and increases that of the second epidemic. Moreso, it emerges from our study that 

different levels of intervention programmes are needed for both epidemics.  However, for one epidemic not to record 

more infectives, we advise equal intervention programmes for both epidemics. For future research, suitable 

epidemics that share similar characteristics to the dynamics of the proposed model can be applied.  
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