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Nonparametric regression is an approach used when the structure of the relationship 
between the response and the predictor variable is unknown. It tries to estimate the 
structure of this relationship since there is no predetermined form. The generalized 
additive model (GAM) and quantile generalized additive (QGAM) model provides an 

attractive framework for nonparametric regression. The QGAM focuses on the features 
of the response beyond the central tendency, while the GAM focuses on the mean 
response. The analysis was done using gam and qgam packages in R, using data set on 
live-births, fertility-rate and birth-rate, where, live-birth is the response with fertility-
rate and birth-rate as the predictors. The spline basis function was used while selecting 
the smoothing parameter by marginal loss minimization technique. The result shows 
that the basis dimension used was sufficient. The QGAM results show the effect of the 
smooth functions on the response variable at 25th, 50th, 75th and 95th quantiles, while 
the GAM showed only the effect of the predictors on the mean response. The results 
also reveal that the QGAM have lower Akaike information criterion (AIC) and 
Generalized cross-validation (GVC) than the GAM, hence producing a better model. It 
was also observed that the QGAM and the GAM at the 50th quantile had the same 
R2adj(77%), meaning that both models were able to explain the same percentage of 
variation in the models, this we attribute to the fact that mean regression and median 
regression are approximately the same, hence the observation is in agreement with 
existing literature. The plots reveal that some of the residuals of the GAM were seen to 
fall outside the confidence band while in QGAM all the residuals fell within the 
confidence band producing a better smooth.  
 

Contribution/Originality: This study is one of the very few studies that have investigated quantile generalized 

additive model as a robust alternative to generalized additive model. In the study of both models, the work revealed 
through some comparison criteria that QGAM is a better alternative to GAM and also illustrated this through 
some graphs. 

 

1. INTRODUCTION 
The classical approach for estimating a regression function is the parametric regression estimation, but models 

with additive nonparametric effects offer a valuable dimension reduction device throughout applied statistics. 
Parametric regression assumes that the structure of the regression function is known and depends only on some 
parameters, and uses the data to estimate the (unknown) values of these parameters. In linear regression it is 
assumed that the regression function is a linear combination of the components of the predictor variable for some 
unknown parameters. The general linear regression model is a form of parametric regression, where the 
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relationship between the predictor variable „x‟ and the response variable „y‟ has some predetermined form with the 
parameterized relationship between them given as, say; 

                    (1) 

where  is independent and identically distributed random errors, with mean zero, the Equation 1 is known as 

the regression function of Y on X, where the unknown parameter estimate (assumed to be linear in the model) are 

estimated from the data. Furthermore, they are often easy to interpret, for instance in a linear model (when f(x) is a 
linear function) the absolute value of the coefficient  indicates how much influence a component of X has on the 

value of Y, and the sign of   describes the nature of this influence (increasing or decreasing the value of Y). 

However, parametric estimates have a big drawback. Regardless of the data, a parametric estimate cannot 
approximate the regression function better than the best function which has the assumed parametric structure [1]. 

In contrast to parametric regression, the nonparametric regression comes in when the structure of the 
relationship between the response and the predictor variable is unknown. Nonparametric regression tries to 
estimate the structure of the relationship between the response and the predictor variable since there is no 
predetermined form for the relationship between them. The nonparametric regression methods are simply 
alternative statistical approaches used when some assumptions valid for parametric regression methods are not met. 
The non-parametric methods make fewer assumptions; they are more flexible, more robust, and applicable to non-
quantitative data.  The generalized additive model and quantile generalized additive model provides an attractive 
framework for nonparametric regression. The quantile generalized additive model focuses on the features of the 
response beyond the central tendency, while the generalized additive model is focused on the mean response. In this 
work, we intend to show that the quantile generalized additive model is a robust alternative to the generalized 
Additive models. 
 

2. GENERALIZED ADDITIVE MODEL (REGRESSION SPLINE) (GAM): 
A generalized additive model is a nonparametric technique; it is a generalized linear model with a linear 

predictor having sum smooth functions of the predictor variable. These models assume that the mean of the 
response variable depends on an additive predictor through a nonlinear link function, Trevor and Robert [2]. 
Generalized additive models permit the response probability distribution to be any member of the exponential 
family of distributions. The structural form of the model is given by Equation 2. 

     (2) 

Equation 2 shows the structure form of the Generalized additive model, given that  and is the 

response variable from an exponential family, X is the design matrix of the predictors,  is the corresponding 

parameter vector, and the fj are smooth functions of the predictors, x. The model allows flexible specification of the 
dependence of the response variable on the predictors, by specifying the model only in terms of „smooth functions‟, 
rather than detailed parametric relationships. Considering a univariate function, we introduce a smooth function of 
one predictor, given by the form; 
          (3)  

where is a response variable,  is a predictor,  is a smooth function and the are i.i.d  random 

variables. A regression procedure can be viewed as a method for estimating how the value of y depends on the 
values of x1,…,xn. The standard linear regression model assumes the expected value of „y‟ has a linear form; 

     (4) 

Given a sample of values for y and x, estimates of are often obtained by the least squares 

method. The additive model generalizes the linear model by modeling the expected value of y as;
 

In other to estimate the function f, a bases has to be chosen for it, that is to define the space of functions of 

which f (or a close approximation to it) is an element for some unknown values of hence; 

       (5) 
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Equation 5 presents the basis function, where  are smooth spline functions in the 

exponential family, given as its “basis” function. Therefore  is the “basis” function and β = [ β1 :β2 :…: βp] 

are the coefficients. The number of “basis” functions depends on the number of inner knots (that is a set of ordered, 
distinct values of xj) as well as the order of the spline. Specifically, if we let m denote the number of inner knots, the 
number of „basis‟ functions will be given as K = p + 1 +m. 

Let‟s define a quantity; 
          (6) 

Equation 6 is the quantity that relates to the mean of the response through a link function, where 
 are the smooth functions that define the additive component. Therefore we can say that the 

relationship between the mean  of the response variable and  is defined by a link function . An 

estimation procedure for additive models known as backfitting was used; it was introduced by Breiman and 
Friedman [3]. This method allows the component functions of an additive model to be represented using almost 
any smoothing or modeling technique but the degree of smoothness of a model is hard to integrate into this 
technique. 

The basic idea behind backfitting is to estimate each smooth component of the additive model by iteratively 
smoothing partial residuals from the additive model, with respect to the predictor(s) that the smooth relates to. The 
partial residuals relating to the jth smooth term are the residuals resulting from subtracting all the current model 
term estimates from the response variable, except for the estimate of jth smooth. Almost any smoothing method (and 
mixtures of methods) can be employed to estimate the smooths. Here is a more formal description of the backfitting 
algorithm.  

1.  Set .  

2. Obtain the partial residual for j=I,…,p and set to be equal to the partial residual. 

 

3. Continue previous step until the functions stop changing that is until. 

 

Where the  is approximately 0. 

 

3. QUANTILE GENERALIZED ADDITIVE MODELS (QGAM) 
The most popular nonparametric model is the conditional mean regression model. However, compared with a 

conditional mean function, the conditional quantile regression function, when evaluated at different quantiles, can 
reveal an entire distributional relationship between the predictor and the response variable. The traditional quantile 
regression is concerned with the estimation of the τth conditional quantile regression of y for given x which often 

sets a linear model as: 
         (7) 

Where X is a vector of predictors, is a vector of the quantile regression coefficients and  is a 

univariate response continuous variable with cdf F(y). To estimate of the coefficients, Koenker and Bassett [4], 
proposed an L1-weighted loss function given as; 

    (8) 

Equation 8 represents the L1-weighted loss function, where  is a loss function, such that: 

     (9) 

https://stats.stackexchange.com/questions/384909/formulating-quantile-regression-as-linear-programming-problem
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Formulating quantile regression as a linear Programming problem, we have the residuals represented as; 

, hence the sum in the minimization problem in Equation 8 can be written as;  

 (10) 

Equation 10 is an  expanded form of L1-weighted loss function in Equation 8. So that the positive residuals 
associated with the response which lies above the regression line are assigned weights  while the negative 

residuals associated with observed responses below the regression line are assigned weights of ( . For 

instance When τ=0.7 each positive residual is weighted 7 times that of a negative residual with weight 1−τ=0.3 and 

so in optimum for every observation above the regression line approximately 7 will be placed below the line. Hence 
the regression line represents the 0.7 quantile. 
Hence the linear program in Equation 3 is analyzed and solved using the standard form; 

 

                

To achieve this standard form, g must be positive. To achieve this, residuals are decomposed into positive and 
negative part using slack variables such that: 

          (11) 

Equation 11 shows the components of the decomposed residual, given that the positive part is;  
 and the negative part: 

       (12) 

Equation 12 shows the expanded negative part and positive part of the decomposed residual. The sum of residuals 
assigned weights by the loss function is then given as; 

      (13) 

Equation 13 shows the weights assigned by the loss function to the residuals, where  is a n X 1 vector, whose 

coordinates are all equal to 1. This then results to; 
 (14) 

Equation 14 is the minimization form of the problem as given by Koenker-Roger [5]. 
Quantile generalized additive model (QGAM) assumes that   has an additive structure such that Equation 

7 becomes 
 

 where the p additive terms are fixed smooth functions, defined in terms of spline bases. A marginal smooth 

functions is given as; say , where  are unknown coefficients and  

are known spline basis functions, Fasiolo, et al. [6]. Our aim is to estimate these spline basis functions together 
with the parameter  at all quantiles. In other to get the estimates we solve; 

 

where  is as defined in Equation 4,  and  denotes the total variation of the 

derivative or gradient of the function s, Koenker-Roger. [7]. 
 

4. RESULTS 
The analysis was done using a data set on live-births, fertility-rate and birth-rate, where live-birth is the 

response variable with fertility-rate and bir-thrate as the predictor variables. This analysis was done using the gam 
and qgam packages in R software. 

https://stats.stackexchange.com/questions/384909/formulating-quantile-regression-as-linear-programming-problem
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4.1. Generalized Additive Model results (GAM)   

 
Table-1. Approximate significance of smooth terms. 

Smooth terms edf Ref.df F-value p-value 

s(Fertility-Rate) 7.537 8.321 46.34 <2e-16 *** 

s(BirthRate) 7.294 8.694 46.09 <2e-16 *** 

 
Table 1 shows that the smooth functions significantly affect the response. 

 
Plots from Generalized Additive Model (GAM) 

 

Figure-1. Residual plot for Fertility-rate 

 

Figure-2. Residual plot for Birth-rate 

 
The Figure 1 & 2 above shows that some of the residual values didn‟t fall within the confidence band. 
 

4.2. Quantile Generalized Additive Model results (QGAM) 

 
Table-2. Approximate significance of smooth terms. 

                                     25th quantile 

Smooth terms Edf Ref.df Chi-square p-value 

s(Fertilityrate) 6.441 7.230 441.7 <2e-16 *** 

s(BirthRate) 6.773 8.128 515.8 <2e-16 *** 

                                      50th quantile 

Smooth terms Edf Ref.df Chi-square p-value 

s(Fertilityrate) 7.126 7.939 559.1 <2e-16 *** 

s(BirthRate) 6.863 8.201 580.9 <2e-16 *** 

                                     75th quantile 

Smooth terms Edf Ref.df Chi-square p-value 

s(Fertilityrate) 7.364 8.117 1442 <2e-16 *** 

s(BirthRate) 10.182 11.689 1485 <2e-16 *** 

                                      95th quantile 

Smooth terms Edf Ref.df Chi-square p-value 

s(Fertilityrate) 6.103 6.891 933.4 <2e-16 *** 

s(BirthRate) 9.056 10.469 1061.0 <2e-16 *** 
                        Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1. 

 
From the table we can observe that expected degrees of freedom for QGAM are less wiggly in smoothness than 

that of gam, because their expected degrees of freedom values are smaller except for the smooth function of 
birthrate for 75th and 95th quantile. We can also see that all the smooth curves for both gam and QGAM show 
significant changes in the response. 
 
4.3. Plots Form Quantile Additive Model 

Figure 3 & 4 shows that in quantile generalized additive models the residual values fall within the confidence 
band, producing a better smooth than the GAM model. 
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Figure-3. Residual plot for Fertility-rate 

 

Figure-4. Residual plot for Birth-rate 
 

Table-3. Comparison Criteria. 

Models R-

sq.(adj) 

Deviance 

explained 

AIC (Akaike 

information criterion) 

GCV (generalised 

cross-validation) 

GAM 0.77 79% 5095.657 4.2931e+11 

QGAM(25th quantile) 0.721 79.4% 5087.255 2513.338 

QGAM(50th quantile) 0.77 74.4% 5091.31 2516.059 

QGAM(75th quantile) 0.726 81.5% 5086.55 2524.178 

QGAM(95th quantile) 0.695 96%* 5074.61* 2511.248* 

 
The results show that QGAM models have lowered AIC and GCV‟s than the GAM model and it‟s a proof that 

QGAM model denotes a better performance in comparison with the GAM model. Based on all the models the 95th 
quantile best fits the model with proportion of deviance explained as 96% and also has the least AIC and GCV 
denoting the best among all the models (Table 3). It can be said that the outcomes of GAM and QGAM at 50th 
quantile have shared similar properties in terms of R2

adj which is supposed to be because gam uses response based 
on mean centered value while 50th quantile uses responses based on the median value which is equivalent. 
 

Table-4. Adequacy of the basis dimension. 

Model Smooth functions k' K-index p-value 

GAM s(Fertilityrate) 19 1.24 1.00 

s(BirthRate) 19 1.01 0.54 

QGAM(25th quantile) s(Fertilityrate) 19 1.05 1.00 

s(BirthRate) 19 0.85 0.42 

QGAM (50th quantile) s(Fertilityrate) 19 1.24 1.00 

s(BirthRate) 19 1.02 0.57 

QGAM (75th quantile) s(Fertilityrate) 19 0.94 0.96 

s(BirthRate) 19 0.84 0.56 

QGAM (95th quantile) s(Fertilityrate) 19 0.45 0.40 

s(BirthRate) 19 0.43 0.15 

 
Table 4 shows significant p-value which indicates the basis dimension chosen is adequate for all the models. 

Though for the 75th and 95th quantiles there appears to be a missing pattern left in the residuals because the k-index 
is lower than 1. 
 

5. CONCLUSION 
Motivated by the need to show that the quantile generalized additive model is a robust alternative to 

generalized additive model. The basic framework, outlined above, represents smooth functions in regression models 
using spline basis function. Selecting the smoothing parameter by marginal loss minimization was done through the 
fast stable method of Wood, et al. [8]. The result shows that the basis dimension used was sufficient. The results 
also show that the expected degrees of freedom (edf) for the QGAM were smaller than that of the GAM except for 
the smooth functions of birthrate at the 75th and 95th quantiles. The comparison criteria in Table 2 reveals that the 
qgam models have lower AIC and GVC than the gam model, hence a better model. It was observed that the GAM 
model and the QGAM at the 50th quantile had the same R2

adj(77%), meaning that both models were able to explain 
the same percentage of variation by the models, this we could attribute to the fact that GAM is based on mean 
centered value and the QGAM for 50th quantile is based on the median value of the response and in literature mean 
regression and median regression are approximately the same, hence the observation is in agreement with existing 
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literature. Also from the plots in fig 1-4, we observe that the residuals of the GAM didn‟t all fall within the 
confidence band but for QGAM all the residuals fall within the confidence band producing a better smooth. 
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