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This paper develops a statistical arbitrage strategy based on overnight social media 
data and applies it to high-frequency data of the S&P 500 constituents from January 
2014 to December 2015. The established trading framework predicts future financial 
markets using Factorization Machines, which represent a state-of-the-art algorithm 
coping with high-dimensional data in very sparse settings. Essentially, we implement 
and analyze the effectiveness of support vector machines (SVM), second-order 
Factorization Machines (SFM), third-order Factorization Machines (TFM), and 
adaptive-order Factorization Machines (AFM). In the back-testing study, we prove the 
efficiency of Factorization Machines in general and show that increasing complexity of 
Factorization Machines provokes higher profitability – annualized returns after 
transaction costs vary between 5.96 percent for SVM and 13.52 percent for AFM, 
compared to 5.63 percent for a naive buy-and-hold strategy of the S&P 500 index. The 
corresponding Sharpe ratios range between 1.00 for SVM and 2.15 for AFM. Varying 
profitability during the opening minutes can be explained by the effects of market 
efficiency and trading turmoils. Additionally, the AFM approach achieves the highest 
accuracy rate and generates statistically and economically remarkable returns after 
transaction costs without loading on any systematic risk exposure. 
 

Contribution/Originality: This study contributes in the existing literature by predicting financial markets 

based on overnight social media data. For this purpose, we observe tweets about the S&P 500 companies during the 

time span in which stock markets are closed and forecast the future price changes based on the collected information. 

 

1. INTRODUCTION 

Within the recent past, the internet has provided an amazing amount of information reflecting real-time 

sentiments and perceptions about stock companies. Therefore, academic interest in online text mining for market 

prediction has surged over the past years. Nassirtoussi et al. (2014) gave a comprehensive review of the existing 

research on this topic and pointed out that the vast majority of literature uses classification algorithms. Only a small 

fraction applies regression analysis for describing the interactions between the media and the stock market. 

Following Nassirtoussi et al. (2014) this class is confined to Tetlock (2007); Schumaker et al. (2012); Hagenau et al. 

(2013);  Jin et al. (2013) and Chatrath et al. (2014). The seminal paper of Tetlock (2007) measured the relationship 

between information on social media and stock markets using an ordinary least squares regression.  The results 

evidence that news media data contain information about movements   in stock market activity. Schumaker et al. 

(2012) and Hagenau et al. (2013) investigated the sentiments in financial news articles and their relations to the 
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stock market by applying support vector machines. Jin et al. (2013) made forecasts by deploying a linear regression 

model based on news articles, historical stock indices, and currency exchange values. Chatrath et al. (2014) 

examined the impact of macro news on currency jumps by a stepwise multivariate regression in a Probit model. All 

of theses studies are not in a position to consider the effect of overnight textual data on future price changes – an 

obvious deficit since information in social media, news, blogs, forums, and announcements are published 24 hours a 

day, 7 days a week. 

In contrast to these previous approaches, this paper predicts financial markets based on overnight social media 

data. To be more specific, we observe tweets about the S&P 500 companies during the time span in which stock 

markets are closed and forecast the future price changes based on the collected information. Therefore, we build a 

statistical arbitrage strategy based on Factorization Machines (FMs) with different complexities, namely support 

vector machine (SVM), second-order FM (SFM), third-order FM (TFM), adaptive-order FM (AFM). Most 

notable, AFM estimates automatically all hyperparameters required by the higher-order FM model. In our back-

testing framework for the years 2014 and 2015, we demonstrate the efficiency of FMs in general and discover that 

increasing the complexity of FMs causes better performance – annualized returns after transaction costs range 

between 5.96 percent for SVM and 13.52 percent for AFM. Moreover, AFM achieves the highest accuracy rate with 

a value of 61.76 percent and possesses returns which are resistant to the impact of bid-ask spreads and do not show 

loadings on systematic sources of risk.  

To gain more insight into this study, the rest of this paper is organized as follows. Section 2 outlines the 

concept of FMs. Data sample and software are described in section 3. In section 4, we outline the study design of our 

back-testing framework. Section 5 presents empirical results and key findings. Finally, section 6 concludes and 

summarizes directions for further research.  

 

2. FACTORIZATION MACHINES 

FMs are general predictors in machine learning introduced by Rendle (2010). They aim to extract structure 

from training examples in the form of a statistical model. The application of the derived model to new cases with 

the same structure as the training examples allows for a classification or prediction given the new situation. In this 

context, each training example is represented by a feature vector x containing information about the specific case 

and a target value , which reflects the value that is predicted with the statistical model. All the feature vectors of 

the training examples can be collected in a feature matrix , while the target values form the 

corresponding target vector . 

In the following, we describe the well-known second-order FM model (Rendle, 2010) as well as the higher-order 

FM approach (Knoll, 2016b) which is a more complex generalization of the second-order FM model. Furthermore, we 

explain how to find the necessary hyperparameters employing the adaptive-order algorithm and give an insight in 

the typical learning methods used to optimize FM models. 

 

2.1. Second-order Factorization Machines       

The second-order FM model equation based on the feature vector , containing data about p features, 

can be expressed as follows (Rendle, 2010): 

 

with the model parameters , , and . Hence, the second-order FM model is 

able  to factorize  all pairwise interactions  based on the  dot product of two vectors of the matrix . This  means  
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that the parameters have different functions in this model:  captures a global intercept,  capture a  

linear  weight  for each  feature,  and    capture the second-order interactions  between  two  features,  

respectively. By adjusting the hyperparameter  (the number of second-order factors), the amount of model  

parameters factorizing a second-order interaction can be determined. Consequently, the higher the  the more 

precisely the model fits to the training data. Contrary, a rather low  abstracts more from the data in order to 

produce a generalized prediction. 

 

2.2. Higher-order Factorization Machines 

       The higher-order FM model factorizes not only second-order interactions but all interactions up to the dth 

order (Rendle, 2010): 

 

with   , , , and .  The  linear  weights  for  each  feature  can  be  included 

(excluded)  in  the  higher-order  terms  by  setting  . In  general,  the  term     factorizes  

interactions of order , from  for linear weights up to  for the  highest  included  order.  Following  this 

approach, a third-order FM is based on the following model:  

 

 

with  and the model parameters  factorizing the third-order interactions.  

2.3. Adaptive-order Factorization Machines 

One crucial task when using higher-order FMs is to determine values for the hyperparameters  and  up to 

. One could conduct a preliminary cross-validation grid search varying each of these hyperparameters. The 

disadvantage of this method is that it is very time-consuming due to the growing number of dimensions with each 

additional order of the FM approach. Thus, Knoll et al. (2018) proposed the adaptive-order algorithm to find faster 

a reasonable hyperparameter constellation. The algorithm is divided in three steps: 

    In Step 1, the highest considered order  and a score  ( ) reflecting the importance of each 

of the considered orders are determined. In this context, rl is defined as the median root mean squared 

error (RMSE) of a 10-fold cross-validation procedure conducted with a FM model containing linear 

weights and one factor at the lth order. Starting with the third order, the highest included order  is 

found when  is lower than . 
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   Step 2 determines the most favorable setting among FMs of the th order which contain the proportion 

of the number of factors for each order given the importance of each order extracted within Step 1. This is 

done following an out of sample 80/20 validation. The hyperparameters  to  are selected based on 

the model that produces the lower RMSE. 

  Within Step 3, the model parameters of the final th-order FM model (with ) are optimized 

based on the whole data set ( ). In this step, all data available during the model training are used. 

This algorithm for adaptive-order FMs pursues two objectives. First, it attempts to hold the highest included 

order as low as possible because the time complexity of model parameter optimization increases with the order. 

Second, it tries to minimize the number of model parameters because the optimization of more model parameters is 

more time-consuming. 

 

2.4. Learning Methods 

Some learning methods are described for training second-order FM models, such as stochastic gradient descent, 

stochastic gradient descent with adaptive regularization, coordinate descent, or Markov Chain Monte Carlo 

(MCMC) (Rendle, 2012). In this article, we focus on the application of the MCMC approach because it does not require 

the determination of any further hyperparameters, such as learning rate or regularization value. The intuition behind 

this learning method is to estimate each model parameter with a Gibbs-sampler based on a normal gamma 

hyperprior with unknown mean and unknown precision. 

 

3. DATA AND SOFTWARE 

Our back-testing framework appropriates two data sources for predicting future stock market returns based on 

financial information in social media from January 2014 to December 2015. Today, the internet provides an amazing 

number of information sets depicting consumer behavior. Twitter data especially reflect real-time sentiments and 

perceptions about future price trends. Due to their topicality with respect to market development, we derive social 

media data from Twitter, a free social networking and micro-blogging service with a total of 1.3 billion accounts, over 

500 million posts per day, and more than 40 supported languages (Twitter, 2017). Users of this social network 

interact via “tweets”, which are messages constricted to 140 characters per posting. This strict limit and a well-

defined markup vocabulary (e.g., RT stands for re-tweet) lead to an above- average information density. Our data set 

is directly obtained from Twitter (2017) and contains all tweets about S&P 500 companies from January 2014 to 

December 2015, resulting in approximately 10 million tweets. Concentrating on the official company names 

prevents the inclusion of tweets which are not related to the stock market, e.g., requesting the corporation 

“Amazon.com Inc.” avoids the tweet “The Amazon is a large river in South America”. Additionally, the acquired data 

set provides language, date, exact time, and further information for each tweet. 

Figure 1 reports the number of tweets over the analyzed time period. On average, we observe approximately 

15,000 tweets per day over time. However, there still exist a few outliers caused by changes in the stock market, e.g., 

we find a peak with over  50,000 tweets per day on the 19th of May 2014 – not surprising since AT&T Inc. presents a 

takeover offer for the DirecTV Corporation on this day. These strong reactions via Twitter can be explained by the 

fact that DirecTV Corporation supplies a daily commodity service which is used by a large audience. 
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Figure-1. Total number of analyzed tweets in the years 2014 and 2015.  

 

Financial data originate from QuantQuote (2016) which is a leading provider of high resolution historical intraday 

stock data. We obtain minute-by-minute stock prices from all companies listed on the S&P 500 from January 2014 to 

December 2015. The corresponding exchange is opened from 

9.30 am to 4 pm Eastern time, Monday through Friday. The S&P 500 index, a highly liquid subset of the U.S. 

stock market, covers about 80 percent of available market capitalization (S&P Dow Jones Indices, 2015). Given 

thorough investor scrutiny as well as analyst coverage, this market segment serves as a true acid  test for  any 

potential capital market anomaly. Following  Stübinger and Bredthauer (2017) we perform a two-stage procedure with the 

objective of eliminating any survivor bias. First, we create a constituent list of the S&P 500 for all stocks that have 

been part of the S&P 500 for the period of January 2014 to December 2015. This information is further consolidated 

into a binary matrix, in which each element features a “1” if the stock is constituent of the index on the current day 

and a “0” otherwise. Second, we receive the historical minute-by-minute data for all stocks from QuantQuote (2016). 

Prices are adjusted for dividends, stock splits, and additional corporate actions. By applying the described two-stage 

procedure, we are able to replicate the S&P 500 constituency and the corresponding prices over time. 

The presented methodology in this paper and all relevant analyses are conducted in the programming language 

R (R Core Team, 2017). The flexible package FactoRizationMachines by Knoll (2016a) which serves as central 

component of our implementation, enables us to compare different FM approaches (see section 4). Furthermore, the 

package provides an implementation of the MCMC optimization method which allows us to conduct our simulation 

study without an extensive search for hyperparameters, such as learning rate and regularization values. Moreover, 

the package contains the adaptive-order algorithm described in section 2. 

 

4. METHODOLOGY 

For our empirical application, we opt for all tweets about the S&P 500 stock constituents and their associated 

minute-by-minute prices from January 2014 to December 2015 (see section 3). The entire data set is divided into 473 

overlapping study periods, each shifted by one day (see Figure 2). In  the  spirit  of  Knoll et al. (2018)  and  Stü binger and Endres 

(2018)  each  study  period  covers  a 30-day formation period (subsection 4.1) and a consecutive 1-day trading period 

(subsection 4.2). While the former estimates the model parameters and identifies the most suitable stocks based on in-

sample training, the latter conducts out-of-sample predictions on the corresponding trading sets. In the following, we 

provide a detailed description of the formation period and the trading period. 
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Figure-2. The empirical application consists of 473 overlapping study periods from January 2014 to December 2015. Each study 
period is built up of a 30-day formation and a 1-day trading period. 

 

4.1. Formation Period 

In the 30-day formation period, we (i) construct the document-term matrix and the corresponding future returns, 

(ii) connect the created document-term matrix and future returns by employing FMs with different complexity, and 

(iii) select the top stocks for the subsequent trading period. This subsection describes the 3-step logic outlined 

above in detail. 

In the first step, we build the document-term matrix , which poses as the feature matrix in our back-

testing framework. Therefore, we proceed along the lines of Knoll et al. (2018) and perform a six-step procedure with 

the objective of extracting high-quality information from the tweets. First, we extract the body, time stamp, and 

associated language of each tweet from the primary data set (see section 3). Second, we restrict the data set to 

English tweets and convert them to lower-case form. Third, we remove uniform resource locators, numbers, and 

punctuation marks as well as stop words based on the system for the mechanical analysis and retrieval of text by 

Salton (1971). Fourth, we focus on tweets published between 4 pm and 9.30 am before trading days to exploit the 

overnight social media data. Fifth, we remove common morphological and inflectional endings from the tweets 

using Porter’s stemming algorithm (Porter, 1980). Sixth, the tweets are transformed into a document-term matrix 

 in which rows describe the tweets and columns represent all stemmed terms. We apply binary weights for 

specifying the term frequency counts in our collection of the tweets, i.e., cell  takes the value “1” in the 

presence of term  in tweet   ( ). The complete document-term matrix  

comprises  = 463, 278 columns for all unique terms. For each study period, we exclusively consider columns related 

to terms arising in the formation period. This procedure avoids any look-ahead bias since our trading algorithm 

only converts information which has been realized. 

Afterwards, we adapt the tweets to the respective future returns, which serve as the target vector  in 

our simulation study. For this purpose, we assign each tweet to at least one S&P 500 company using pattern 

matching since a tweet can mention several stock corporations in one post. Then, the appropriated return is 

calculated by the percentage change of the price from 4 pm of the last day to 9.45 am of the current day. We choose 

the target time 9.45 am following Kim et al. (1997) and Visaltanachoti and Yang (2010) who pointed out that prices 

incorporate information from news within 15 minutes on average after the opening.  Concluding, the th row of the 

document-term matrix  characterizes the stemmed terms   of the th tweet, and the th 

element of the target vector  describes the respective return from 4 pm to 9.45 am. 
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In the second step, we combine the document-term matrix with the respective future returns. In line with Knoll et 

al. (2018) our simulation study employs models based on support vector machines, second-order FMs, third-order 

FMs, and adaptive-order FMs. In the following, we depict the key facts of the four approaches. 

Support vector machines (SVM). This naive approach describes the relationship between stemmed terms and 

respective future returns by means of one global intercept and weights for each term, i.e., any ties between the 

terms are disregarded. To be more specific, the support vector machine with a linear kernel results in the model 

, where . 

Second-order FMs (SFM). Extending the baseline approach by a term for pairwise interactions between terms 

results in the second-order FM model given by equation (1). We set  motivated by the examination of the 

dimensionality of FMs by Knoll et al. (2018) who found that most of the chosen models in their study contained 

between 6 and 10 second-order factors. 

Third-order FMs (TFM). We enlarge the second-order FM model by supplementarily considering third-order 

interactions between the terms. As such, we obtain the third-order FM model described in equation (3). Similar to 

SFM, we set . Furthermore, we set   because once more, most of the models selected during their 

study included 2 to 3 third-order factors. 

Adaptive-order FMs (AFM). All interactions between terms up to the th order are gathered in the higher-order 

FM model in equation (2). Following the algorithm outlined in section 2, we specify the highest involved order 

 and the number of factors . 

In the third step, we follow Gatev et al. (1999;2006) and select the most suitable stocks for the out-of-sample 

trading period. Our algorithm aims at identifying stocks with a minimal error between predicted and actually 

observed returns. Therefore, we select the top  target stocks per strategy possessing the lowest root relative 

squared error .  Additionally, top stocks have to depict a quorum of 25 tweets averaged per day in the 

formation period. This filter ensures that we pick stocks with sufficient information on the basis of considerable 

social media activity. We transfer the top stocks to the trading period (section 4.2). 

 

4.2. Trading Period 

The top  target stocks with the lowest root relative squared error are considered in the 1-day trading period. 

For every top stock, we calculate the overnight return , i.e., the percentage change of the price from 4 pm of the 

last day to 9.30 am of the current trading day (see Figure 3). Furthermore, we observe  tweets   about 

the corresponding company during the overnight period, i.e., tweets are posted between 4 pm and 9.30 am. For each 

tweet , the corresponding return     from 4 pm to the target time 9.45 am is predicted using 

the estimated set of parameters.  Therefore, we merge these predictions by calculating the average prediction      

and the respective standard deviation :   
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Figure-3. The back-testing framework predicts the return from 9.30 am to 9.45 am based on the 

observed overnight return ( ) and the average predicted return from 4 pm of the last day to 9.45 am of the current trading 

day  

 

Concluding,   characterizes the average predicted return from 4 pm of the last day to 9.45 am of the 

current trading day (see Figure 3). Our framework is based on a two-stage logic. First, overnight tweets about 

stocks contain information that have an essential effect on stock returns in the future. Second, FMs capture the 

causality between overnight tweets and future returns. If our assumption holds, we are in a position to take 

advantage of these market inefficiencies, i.e., the market prices of common stocks are not always exactly priced and 

tend to deviate temporarily from the true discounted value of their future cash flows. To be more specific, the 

back-testing framework aims to predict the return from 9.30 am to the target time 9.45 am 

 based on the observed overnight return  and the average predicted return from 4 

pm of the last day to 9.45 am of the current trading day . Using the realized overnight return  and the 

predicted returns from 4 pm to 9.45 am, we are able to capture mispricings and generate profits. Therefore, we 

define transaction costs  and the risk parameter .  

If we do not observe any tweets related to the top stock during the night, our algorithm does not execute any 

trade. If we observe at least one tweet related to the top stock during the night, we apply the following trading 

rules: 

 , i.e., the   stock   is   undervalued.  Consequently, we go long in the stock and 

reverse the trade at 9.45 am. 

 , i.e., the stock is overvalued. Consequently, we go short in the stock and 

reverse the trade at 9.45 am. 

 , i.e., the stock is in its ’normal’ region. In consequence, we do 

not execute any trades. 

Since we still aim for a classic long-short investment strategy in the sense of Gatev et al. (2006) we follow 

Avellaneda and Lee (2010 )  and Stubinger  e t  a l .  (2018)  and hedge market exposure day- by-day with 

corresponding capital expenditures in the S&P 500 index. In accordance with Liu et al. (2017) and Stu¨binger 
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and Endres (2018) we set . 

Following Gatev et al. (2006) return computation is based on committed capital, the more common metric in 

trading literature. Thus, we divide the sum of net profits by the number of active stocks. A stock is called active if it 

exhibits at least one round-trip trade during the respective trading period. Following Prager et al. (2012) we depict 

bps per share per half-turn. This assumption is deemed feasible in light of our minute-by-minute data in a 

highly liquid investment universe from 2014 to 2015. 

 

5. RESULTS 

Following  the  approach  of  Chau et al. (2015)  and  Krauss and Stübinger (2017)  we  run  a holistic performance 

analysis for the top five stocks (s ) of the strategies SVM, SFM, TFM, and AFM, compared to a naive buy-and-

hold strategy of the S&P 500 index (MKT). Therefore, we analyze risk-return characteristics as well as trading 

statistics (subsection 5.1), present statistical measures of the performance (subsection 5.2), examine the profitability 

varying the target time (subsection 5.3), and discuss the returns in light of market frictions (subsection 5.4). Finally, 

we focus on AFM and investigate the exposure of the daily returns to common systematic sources of risk 

(subsection 5.5), perform a bootstrap trading (subsection 5.6), and conduct a deep dive on the dimensionality of the 

FMs (subsection 5.7). 

 

5.1. Risk-Return Characteristics and Trading Statistics 

Table 1 depicts daily risk-return measures for the analyzed period both before and after the incorporation of 

transaction costs. The majority of the metrics can be found in Bacon (2008). Irrespective of the FM model employed, 

we observe positive returns after transaction costs ranging between 2 bps per day for SVM and 5 bps per day for AFM, 

compared to 3 bps for a naive buy-and- hold strategy of the S&P 500.  

 
Table-1. Daily characteristics of returns for the top five stocks of SVM, SFM, TFM, and AFM compared to a long- only S&P 
500 benchmark (MKT) in the time frame between March 2014 and December 2015. NW as acronym for Newey-West 
standard errors with one-lag correction, and CVaR refers to the Conditional Value at Risk. 

 
Before transaction costs After transaction costs  

SVM SFM TFM AFM SVM SFM TFM AFM MKT 

Mean return 0.0004 0.0005 0.0006 0.0008 0.0002 0.0003 0.0003 0.0005 0.0003 

Standard error 

(NW) 

0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0004 

t-Statistic (NW) 2.2856 2.2894 2.8456 3.6245 1.2395 1.4451 1.5465 2.4931 0.6259 

Minimum -0.0338 -0.0169 -0.0202 -0.0169 -0.0342 -0.0173 -0.0207 -0.0173 -0.0402 

Quartile 1 -0.0005 -0.0007 -0.0007 -0.0007 -0.0006 -0.0007 -0.0007 -0.0008 -0.0041 

Median 0.0001 0.0002 0.0005 0.0003 0.0001 0.0001 0.0002 0.0001 0.0003 

Quartile 3 0.0010 0.0013 0.0017 0.0017 0.0007 0.0010 0.0012 0.0012 0.0048 

Maximum 0.0246 0.0418 0.0419 0.0400 0.0242 0.0414 0.0414 0.0396 0.0383 

Standard deviation 0.0038 0.0040 0.0043 0.0040 0.0038 0.0040 0.0042 0.0040 0.0085 

Skewness -0.5159 2.4861 1.6000 2.1865 -0.6412 2.4495 1.5002 2.2486 -0.2907 

Kurtosis 22.8953 26.2757 21.7965 21.9991 24.5109 27.5101 22.6053 23.9771 2.3528 

Historical VaR 1 % -0.0115 -0.0103 -0.0144 -0.0080 -0.0119 -0.0107 -0.0149 -0.0084 -0.0212 

Historical CVaR 1 % -0.0191 -0.0142 -0.0171 -0.0136 -0.0195 -0.0146 -0.0176 -0.0140 -0.0300 

Historical VaR 5 % -0.0030 -0.0046 -0.0046 -0.0041 -0.0030 -0.0050 -0.0052 -0.0042 -0.0144 

Historical CVaR 5 % -0.0084 -0.0079 -0.0091 -0.0074 -0.0086 -0.0082 -0.0097 -0.0076 -0.0200 

Maximum 

drawdown 

0.0414 0.0334 0.0547 0.0343 0.0632 0.0422 0.0672 0.0387 0.1263 

Share with return ≥ 

0 

0.5897 0.6060 0.6341 0.6545 0.5201 0.5518 0.5887 0.6180 0.5243 
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From a statistical perspective, the returns of AFM are also significant with Newey-West (NW) t-statistics of 2.49 

after transaction costs. A straight forward investment in the general market leads to a standard deviation of 0.0085, 

approximately 2-times higher than the key figures of the four strategies based on FMs. Moreover, SFM, TFM,  and 

AFM possess high values for the kurtosis as well as positive skewness – a pleasant property for investors (Cont, 

2001). We depict the historical Value at Risk (VaR) as propounded by J.P. Morgan’s RiskMetrics approach in Mina 

and Xiao (2001). 

The tail risk of FMs is at a very low level by contrast with the general market, e.g., the historical VaR (1 %) 

after transaction costs is -0.0084 for AFM versus -0.0212 for MKT. This picture barely changes considering the 

maximum drawdown – the decline from a historical peak is greatly reduced for FMs (3.87 percent – 6.72 percent), 

compared to the benchmark (12.63 percent). The strategy AFM produces the highest hit rate, i.e., the percentage of 

days with positive returns, with approximately 62 percent after transaction costs – complexity pays off. In summary, 

AFM achieves meaningful risk-return characteristics, even considering transaction costs. However, we have to 

investigate the robustness to systematic sources of risk. 

Table 2 portrays statistics about the trading behavior of SVM, SFM, TFM, and AFM. All FMs are 

substantially similar in their trading activity during the trading period.  Across all models, we observe 

approximately 1.60 traded top stocks and a corresponding standard deviation at approximately 0.80. This relatively 

small number is based on the fact that the trading rule is only applied once per day. The resemblance among the 

compared models is most likely driven by the same underlying trading logic as outlined in section 4 – however, the 

respective characteristics of the returns differ vastly depending on the information level extracted by the various 

complex FMs. 

 
Table-2. Daily trading volume for the top 5 stocks of SVM, SFM, TFM, and AFM. 

 SVM SFM TFM AFM 

Average number of target stocks traded per 1-day period 1.4755 1.4608 1.5324 1.6371 

Standard deviation of number of target stocks traded per 1-day 

period 

0.7584 0.7710 0.8005 0.8488 

    

In Table 3, we present advanced annualized risk-return measures for all strategies. The annualized returns after 

transaction costs range between 5.96 percent for SVM and 13.52 percent for AFM, compared to the general 

market with 5.63 percent. Across all strategies, the mean return equals the mean excess return owing to the fact 

that the risk free rate amounts to zero during the analyzed period. The standard deviation proves to be roughly 

homogeneous among the models at around 0.06, while the long-only S&P 500 benchmark leads to a standard 

deviation of 0.14. The Sharpe ratio, i.e., the excess return per unit of deviation, exceeds 2 in case of AFM – the 

excess return clearly overcompensates the risk. 

 
Table-3. Annualized characteristics of returns for the top 5 stocks of SVM, SFM, TFM, and AFM compared to a 

long-only S&P 500 benchmark (MKT) during the time frame between March 2014 and December 2015. 

 Before transaction costs After transaction costs  

SV

M 

SFM TF

M 

AF

M 

SV

M 

SFM TF

M 

AF

M 

MK

T Mean return 0.114

6 

0.134

4 

0.166

8 

0.207

9 

0.059

6 

0.082

2 

0.085

3 

0.135

2 

0.056

3 Mean excess return 0.114

6 

0.134

4 

0.166

8 

0.207

9 

0.059

6 

0.082

2 

0.085

3 

0.135

2 

0.056

3 Standard deviation 0.060

5 

0.064

2 

0.068

1 

0.064

3 

0.059

7 

0.063

2 

0.067

3 

0.062

8 

0.135

5 Downside deviation 0.039

5 

0.035

0 

0.040

2 

0.033

2 

0.040

6 

0.036

5 

0.042

4 

0.034

3 

0.096

8 Sharpe ratio 1.894

6 

2.092

2 

2.448

3 

3.234

7 

0.997

8 

1.301

1 

1.266

7 

2.151

8 

0.415

8 Sortino ratio 2.901

2 

3.835

7 

4.149

4 

6.264

9 

1.469

5 

2.254

3 

2.009

8 

3.940

6 

0.582

2 
 

 

Table 4 describes advanced drawdown metrics. Both the Sterling ratio and Calmar ratio divide the annualized 

return by the maximum drawdown in absolute terms. Additionally, the denominator within the Sterling ratio is 

augmented by a 10 percent excess risk buffer. With respect to the Calmar ratio, we observe that the annual returns of 
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the FMs are at more than 2 times the magnitude of maximum drawdown, compared to a value of 0.44 for the 

general market. The pain index, which measures the depth, duration, and frequency of losses, ranges between 0.0094 

for AFM and 0.0156 for SVM by contrast with 0.0207 for the naive buy-and-hold strategy. The highest pain ratio is 

generated by AFM (34.15), which is not surprising since it exhibits the highest mean excess return (Table 3) and the 

lowest pain index. 

 
Table-4.  Drawdown measures after transaction costs for the top 5 stocks of SVM, SFM, TFM, and AFM compared to a 
long-only S&P 500 benchmark (MKT) during the time frame between March 2014 and December 2015. 

 Before transaction costs After transaction costs  

SVM SFM TFM AFM SVM SFM TFM AFM MKT 

Sterling ratio 0.8103 1.0075 1.0781 1.5487 0.3652 0.5784 0.5103 0.9743 0.2490 

Calmar ratio 2.7691 4.0232 3.0478 6.0691 0.9436 1.9499 1.2703 3.4899 0.4461 

Burke ratio 1.9171 2.1598 2.4271 3.8165 0.9879 1.2365 1.1993 2.4265 0.2795 

Pain index 0.0097 0.0081 0.0101 0.0061 0.0156 0.0125 0.0140 0.0094 0.0207 

Ulcer index 0.0149 0.0118 0.0170 0.0099 0.0226 0.0166 0.0222 0.0144 0.0322 

Pain ratio 11.776

9 

16.539

5 

16.564

2 

34.154

6 

3.8198 6.5926 6.1032 14.389

5 

2.7163 

Martin ratio 7.7019 11.392

2 

9.8297 21.047

4 

2.6394 4.9506 3.8477 9.3803 1.7479 
 

 

Following Alexakis (2010); Do and Faff (2010) and Broussard and Vaihekoski (2012) we perform a sub-period 

analysis in an effort to discern possible fluctuating tendencies of the strategies within the portrayed time span.  

Figure 4 depicts the development of an investment of 1 USD for the analyzed strategies both before transaction 

costs (left) and after transaction costs (right). After transaction costs, we observe a growth to approximately 1.15 

USD for TFM, SFM, SVM, and MKT. As expected, AFM outperforms the other strategies over the sample period 

with a final value of 1.27 USD. Moreover, the investments using SVM, SFM, TFM, and AFM exhibit steady 

growth from March 2014 until December 2015. In stark contrast, the cumulative return of the general market 

shows strong swings and large drawdowns. 

 

Figure-4. Investment of 1 USD for SVM, SFM, TFM, and AFM compared to a long-only S&P 500 benchmark (MKT) during the 
time frame between March 2014 and December 2015 both before transaction costs (left) and after transaction costs  (right). 

 

5.2. Statistical Measures of the Performance 

Table 5 measures the degree of closeness of the predicted returns to the actually observed values. Specifically, 

we build an advanced contingency table based on each trading prediction and alongside it present additional ratios 

derived from the former. As expected, SVM does not perform well since predictions are wrong in the majority of the 

trades, i.e., the true positive rate as well as the true negative rate are below 50 percent. Since this strategy still 

achieves positive returns (see subsection 5.1), we conclude that fewer correct predictions generate high gains. Only 

AFM manages to return both a true positive rate and true negative rate above 50 percent showing that complexity 
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pays off. The diagnostic odds ratio measures the effectiveness of a strategy and exceeds 1 if we observe more correct 

decisions than wrong decisions. In contrast to SVM (0.46) and SFM (1.02), the more extensive models TFM (1.33) 

and AFM (2.58) exceed clearly the desirable threshold. The total accuracy, i.e., the proportion of true results among 

the total number of cases examined, is greater 50 percent for SFM, TFM, and AFM. The strategy AFM still 

outperforms strongly the other strategies by scoring 61.76 percent, a value similar to the percentage of days with 

positive returns (Table 1). 

 
Table-5. Statistical measures of the performance for SVM, SFM, TFM, and 
AFM during the time frame between March 2014 and December 2015. 

 SVM SFM TFM AFM 

True positive rate 0.4902 0.5658 0.6375 0.6729 

False positive rate 0.5937 0.5606 0.5694 0.4433 

False negative rate 0.5098 0.4342 0.3625 0.3271 

True negative rate 0.4062 0.4394 0.4306 0.5567 

Positive likelihood 

ratio 

0.8256 1.0092 1.1195 1.5179 

Negative likelihood 

ratio 

1.2549 0.9882 0.8419 0.5876 

Diagnostic odds ratio 0.6579 1.0213 1.3297 2.5834 

Accuracy 0.4578 0.5070 0.5395 0.6176 
 

 

5.3. Time-Varying Profitability 

In subsection 4.2, the target time 9.45 am is motivated based on the existing literature (Kim et al., 1997; Busse 

and Green, 2002; Visaltanachoti and Yang, 2010). Figure 5 investigates the annualized returns for SVM, SFM, 

TFM, and AFM for varied target times before transaction costs (left) and after transaction costs (right). Across all 

models, we observe a 3-step behavior over time with upwards shifts for the more complex approaches. To be more 

specific, the strategies based on FMs generate annualized returns of approximately 0 percent after transaction costs 

considering target times close to the opening  time.  Second, the annualized returns increase strongly until 9.45 am 

– the peaks range between 11.46 percent for SVM and 20.79 percent for AFM before transaction costs. 

Incorporating transaction costs leads to returns from 5.96 percent p.a. (SVM) to 13.52 percent p.a. (AFM). Finally, 

the returns decline to the break-even point with increasing target time – TFM and SFM cross this threshold at 

around 9.55 am. 

Our findings are well in line with the literature explaining the behavior based on the effects of market efficiency 

and market turmoils during the opening minutes. The first effect results from the fact that stock prices deviate 

temporarily from the true discounted value (Rosenberg et al., 1985; Stout, 2002). Visaltanachoti and Yang (2010) 

examined the speed of convergence using multivariate regressions and find that on average US stock prices take 

approximately 30 minutes to achieve market efficiency. The profitability of trading strategies decreases over time 

because more and more prices are adjusted to incorporate information about the corresponding firms. The second effect 

is based on high market turmoils during the first minutes of the trading day. Brooks (2011) and Wendell (2017) pointed 

out that the opening range is the easiest time span to lose money since there are a huge number of irrational and 

unpredictable events. Therefore, meaningful trading thresholds can only be defined after market makers have 

squared their offsetting positions. The effect of this above-average volatility, caused by gamble trades, lessens over 

time and disappears after around 15 minutes. Therefore, the interaction of both effects explains the return 

characteristics for varying target times. 
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Figure-5. Annualized returns for varying target times for SVM, SFM, TFM, and AFM before transaction costs (left) and after 
transaction costs (right). 

 

5.4. Market Frictions 

In this subsection, we evaluate the robustness of our statistical arbitrage strategies in light of market frictions. 

Most notably, we evaluate the impact of bid-ask spreads, i.e., the amount by which the bid price falls below the ask 

price for an asset, on our results (Abadir and Rockinger, 2003; Jondeau et al., 2015). VIM (2016) pointed out that 

the use of algorithmic trading, changes in the exchange landscape, and decimalization are the main drivers for 

falling bid-ask spreads over time. Following Voya Investment Management (2016) we apply 3 bps per share per half-

turn for the considered trading years. In contrast to Table 3, Table 6 depicts annualized risk-return characteristics 

in light of market frictions. Across all strategies, we observe positive annualized returns ranging between 2.06 

percent for SVM and 8.72 percent for AFM, compared to 5.63 percent for the general market. The standard 

deviation of MKT (0.14) is approximately two-times higher than the standard deviation of the 4 approaches based on 

FMs. As expected, the Sharpe ratios of SFM (0.53), TFM (0.72), and AFM (1.37) exceed the simple buy- and-hold 

strategy of the S&P 500 index (0.42). To summarize, these strategies produce positive results in light of market 

frictions. The return time series of AFM especially remains statistically and economically significant even with bid-

ask spreads, posing a severe challenge to the semi-strong form of market efficiency. 

 
Table-6. Annualized characteristics of returns for the top 5 stocks of SVM, SFM, 
TFM, and AFM including bid-ask spreads compared to a long-only S&P 500 
benchmark (MKT) during the time frame between March 2014 and December 2015. 

 SVM SFM TFM AFM MKT 

Mean return 0.0206 0.0343 0.0483 0.0872 0.0563 

Standard deviation 0.0621 0.0643 0.0667 0.0635 0.1355 

Sharpe ratio 0.3317 0.5334 0.7241 1.3732 0.4158 
 

 

5.5. Common Risk Factors 

In Table 7, we analyze the systematic risk exposure for the top 5 stocks of AFM after transaction costs (see 

Endres and Stübinger (2017;2018)).  In this respect, we employ three types of regression, namely Fama-French 3-

factor model (FF3), Fama-French 3+2-factor model (FF3+2), and Fama- French 5-factor model (FF5). The standard 

model FF3, introduced by Fama and French (1996) explains the sensitivity to the general market, small minus big 

capitalization stocks (SMB), and high minus low book-to-market stocks (HML). The second regression FF3+2, in the 

spirit of Gatev et al. (2006) extends FF3 by adding the factors momentum and short-term reversal. Following Fama 

and French (2015) FF5 enhances the first model by two supplemental factors, i.e., portfolios of stocks with robust 

minus weak profitability (RMW5) and conservative minus aggressive investment behavior (CMA5). All data related 



The Economics and Finance Letters, 2018, 5(2): 28-45 
 

 
41 

© 2018 Conscientia Beam. All Rights Reserved. 

to these models are downloaded from Kenneth R. French’s website (We thank Kenneth R. French for supplying all 

required data to these models on his website). 

Across all employed Fama-French models, we observe statistically significant daily alphas of 0.05 percent after 

transaction costs – similar to the raw returns. Exposure to the general market, SMB, HML, momentum, SMB5, 

HML5, RMW5, and CMA5 are statistically insignificant and close to zero due to the fact that our strategy is dollar 

neutral. Most interestingly, the short-term reversal factor shows a statistical positive loading implying that we buy 

short-term losers and short short-term winners. The FF3+2 model presents the highest explanatory power 

provoked by the short-term reversal factor. In short, AFM produces statistically significant and economically 

remarkable returns after transaction costs, does not show loadings on any systematic risk exposure, and outperforms 

the less complex benchmarks. 

 
Table-7. Exposure to systematic risk factors for daily returns after transaction 
costs of the top 5 stocks of AFM during the time frame between March 2014 
and December 2015. Standard errors are depicted in parentheses. 

 FF3 FF3+2 FF5 

(Intercept) 0.0005** 
(0.0002) 

0.0005** 
(0.0002) 

0.0005** 
(0.0002) Market −0.0083 

(0.0210) 
−0.0105 
(0.0225) 

−0.0082 
(0.0223) SMB 0.0099 

(0.0353) 
0.0011 

(0.0359) 
 

HML −0.0757 
(0.0408) 

−0.0546 
(0.0492) 

 

Momentum  0.0371 
(0.0307) 

 

Reversal  0.0879** 
(0.0330)  

 

SMB5   0.0229 
(0.0398)  

HML5   −0.0674 
(0.0564) RMW5   0.0545 
(0.0735) CMA5   −0.0352 
(0.1029) R2 0.0376 0.0525 0.0388 

Adj. R2 0.0315 0.0423 0.0285 

Num. obs. 473 473 473 

RMSE 0.0039 0.0039 0.0039 

                                            ***p < 0.001, **p < 0.01, *p < 0.05 

 

5.6. Bootstrap Trading 

In view of our remarkable returns of AFM, we compare the financial performance with one million random 

bootstraps of monkey trading.  In the sense of Malkiel (2007) and Stu¨binger (2018) we randomly combine the top 

stocks and the corresponding entry and exit signals for each of the trading days. Figure 6 illustrates the daily 

return characteristics of the bootstrapped monkey trading before transaction costs. As anticipated, the average daily 

return of the random trading is zero prior transaction costs. Most importantly, the best performing bootstrap, with 

an average daily return of 0.04 percent, achieves a weaker result than AFM (see Table 1). 

 

Figure-6. Empirical distribution of daily mean returns of 1,000,000 bootstrap tradings during the time frame between March 2014 
and December 2015 (before transaction costs). 
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5.6. Dimensionality of Factorization Machines 

In order to analyze the impact of the factors per order of the AFM model, Figure 7 shows a summary of the 

particular FM models optimized for the 473 trading periods. The left plot expresses the characteristics of the 

highest included order  among the FM models chosen, while the right diagram presents the number of FM models 

which contained a specific dimensionality ( )  corresponding to order  . The left plot reveals that the maximum 

value of the highest included order is 8. The values decline from 3, followed by 4 and 5, while 6, 7, and 8 are barely 

chosen. In this context, we note that the highest included order cannot be 2 because the adaptive-order algorithm, 

which chooses the order of the AFM models, only selects from higher-order FM models. The decreasing frequency of 

 reflects the design of the adaptive-order algorithm to use the more time-efficient lower orders rather than higher 

ones. 

The plot on the right-hand side shows that the most frequently chosen number of factors is 1 for all orders 

except the second. Consequently, the second-order factors seem to be well suited for representing the information 

extracted within the formation period. The mode of 1 factor for all other orders is probably caused by the design of 

the adaptive-order algorithm which sets the minimum number of factors for each order lower than  to 1. Hence, the 

large bar for 1 third-order factor is a result of the algorithm design as well: if the FM model with only second-order 

factors already produces good results, 1 third-order factor is added to the FM model to fulfill the higher- order 

requirement. Furthermore, there is a tendency for lower rather than higher number of factors, which also reflects the 

idea of the adaptive-order algorithm and saves computational resources. 

 

 
Figure-7. Analysis of the highest included order and the factors per order obtained by running the adaptive -order algorithm for the 
473 trading periods. 

 

6. CONCLUSION 

In this paper, we introduce a statistical arbitrage strategy using FMs to exploit overnight social media data and 

deploy it on the S&P 500 constituents from January 2014 to December 2015. Across all strategies based on FMs, 

we observe remarkable annualized returns after transaction costs for the top 5 stocks demonstrating the efficiency 

of our strategy. Moreover, we observe that increasing complexity of the FMs leads to higher profitability – annualized 

returns after transaction costs range between 5.96 percent for SVM and 13.52 percent for AFM. Additionally 

considering the risk-component, AFM outperforms the benchmarks with a Sharpe ratio of 2.15 after transaction 

costs. Furthermore, AFM achieves the highest accuracy rate with a value of 61.76 percent; the corresponding 

returns are robust against the impact of bid-ask spreads and do not load on any systematic risk exposure. 

For future research in this field, we could incorporate the time structure of the tweets during the overnight 

period assigning different weights to data at varying positions in the time frame.  In addition, terms with 

synonymous meaning might be aggregated using a dictionary, e.g., the terms “automobile” and “car” belong to the 
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category “vehicle”. Third, the feature matrix could be extended by financial data and economic data with the 

objective of more precise predictions about the future price changes. 
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