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ABSTRACT 

This paper reports a three-dimensional modeling of the volcano Bandai  near The Aizuwakamatsu City. 

Aizuwakamatsu is located in the western part of Fukushima Prefecture, in the southeast part of Aizu basin. 

A volcano model is coded as multilevel height map. To visualize the terrain, tessellation is not required. 

During the recursive voxel subdivision on each level, voxels are projected onto the base surface (plane). The 

altitude corresponding to this address and a level of details are calculated, and use it to modify coefficients of 

the plane equation. As a result was obtained a terrain surface modulated with the values from the altitude 

map. 
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Contribution/ Originality 

This study uses a new technique for rendering terrain. The computation time in terrain 

generation is practically independent of the height map resolution. The computed coordinates, as 

well as in the case of ordinary RGB texture map, will define address in the so called "altitude 

map" or "shape texture". 

 

1. INTRODUCTION 

Terrain visualization is a difficult problem for applications requiring accurate images of large 

datasets at high frame rates. Many systems use regular terrain elevation grid with square cells. It 

leads to algorithmic simplicity of computations, database uniformity, and strict definition of 

relationship between adjacent levels of details (LODs), which results in database generation 

simplification. On the other hand regular grid obviously involves information excess when 

considering the number of grid posts. Most novel real-time visual systems have terrain skinning 

processors (TSP), which guarantee continuous LODs change with respect to surface roughness 

and viewpoint distance. One of the main reasons to incorporate TSP in the visual system is its 

ability to generate terrain skin with low depth complexity (near 1) and hence reduce the image 
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generator (IG) load when compared to traditional including terrain polygons in an environment 

database and LOD switching. TSP could be either an installable hardware device, or software 

process executed by geometry processor (GP). If TSP is an application specific device having local 

processor then it might be able to generate in real-time over 1000.000 terrain triangles when 

using regular grid and which is a considerable part of the IG system performance. This simulates 

search for a terrain skinning methods of IG unloading at the cost of more heavy TSP load, and 

particularly non-girded terrain. Regular grid could be square, or hexagonal, or triangular and so 

on. For Cartesian coordinate system most natural is square grid with axis collinear cell sides and 

grid aligned origin. Let us call this grid regular and all other – irregular. “Most” an irregular is 

grid with randomly spaced nodes. Others could have other kind of irregularity: square grid 

rotated, or shifted relatively to coordinate system, or with independently shifted nodes. Some 

properties of these grids are “regular”, and we can use them for irregular grids evaluation. 

Generally, to achieve higher compression it takes more processing resources (time, memory), 

including decompression. In our case compression factor is a number of IG input triangles under 

irregular grid model with respect to that of regular grid terrain model.  

Regular grid has fixed sampling rate for each LOD. In this case LODi is a set of triangles 

which approximates terrain so as the maximum error is not higher than appropriate constant Ei: 

Emax  Ei                                                             (1) 

Irregular grid has fixed bandwidth, and LOD with the same maximum error could have 

fewer nodes in this case. Here LODi is represented by set of triangles, organized in clusters so as 

for each of them maximum approximation error is between current LOD maximum and next 

LOD maximum: 

EiEmaxEi                                                                       (2) 

Irregular grid bandwidth wideness has two consequences. Each LOD can have “built-in” 

(implicit) surface roughness [1] and therefore database volume could be reduced.  

For regular grid the maximum amount of memory also could be specified, because of limited 

mountain‟s height. If this limit is 300m for 10m space frequency then regular and irregular grids 

will introduce the same error at regular cell size 8 times less than that of irregular. The later 

gives us a difference in triangles number about 64 times. This is in accordance with Scarlatos and 

Pavlidis [2].   

Rendering photo-realistic, complex terrain features at interactive rates requires innovative 

techniques. A polygonal model and geometric pipeline can be used but this introduces massive 

storage requirements and, ideally, a parallel implementation of the algorithm. However, features 

with high spatial frequency context (ridge lines and canyons) require large numbers of polygons 

to meet a specified level of terrain accuracy.  Using traditional polygonal representation for the 

example complex surface give rise to a range of problems such as visible surface determination, 

depth complexity handling, controlling levels of details, clipping polygons by viewing frustum, 

geometry transformations of large number of polygons [2-9]. 

Numerous methods for rendering height-based terrain surfaces have been developed [10]. 

Databases for terrain use DEM (digital elevation model) models. This standard is designed by 

U.S. Geological Survey and, on essences, is a table of heights terrain with counting out through 
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7.5 or 15 minutes. DEM model consists of two files, binary file of data in which recorded heights 

in the manner of 16- bit fixed numbers, and head file which describes a format of record of 

numbers used in the file of data (BigEndian or SmallEndian ), but in the same way area on 

terrestrial surface which describe heights in the file of data. The continuous level of detail 

algorithm takes a two-part approach in which terrain is first divided into blocks for which a detail 

level can be selected at a coarse granularity [11]. The real-time optimally adapting meshes 

algorithm builds upon the algorithm [11] by organizing terrain meshes into a triangle bintree 

structure [12]. Geomorphing to the continuous level of detail algorithms described in Rottger, et 

al. [13]. The progressive mesh technique was extended to height-based terrain, and it enables 

smooth view-dependent terrain rendering with geomorphs [14].  

Known non-polygonal methods of photorealistic relief visualization are quite slow. Attempts 

to increase speed by different types of acceleration methods (hierarchical [15], parametric [16], a 

massively parallel computer [17] or special parallel ray-casting hardware [18], hybrid ray-

casting and projection technique [19] improve the situation, but still do not achieve real-time 

speed for high performance terrain visualization. 

In order to render voxel-based terrain, proposed method must be able to convert a 3D scalar 

field representing the terrain into a set of vertices and triangles that can be rendered by the 

graphics hardware. 

A method for constructing a triangle mesh whose vertices coincide with the zero-valued 

isosurface is the Marching Cubes algorithm [20]. Although it provides many greater capabilities, 

the use of voxel-based terrain in real-time virtual simulations also introduces several new 

difficulties. The algorithms used to extract the terrain surface from a voxel map produce far 

greater numbers of vertices and triangles when compared to conventional 2D terrain. The 

development of a seamless LOD algorithm for voxel-based terrain is vastly more complex than 

the analogous problem for height-based terrain. Texturing and shading of voxel-based terrain is 

more difficult than it is for height-based terrain. In the cases that triangle meshes are generated 

for multiple resolutions, arises the cracking problem. A method for patching cracks on the 

boundary plane between cells triangulated at different voxel resolutions was described in Shu, et 

al. [21]. 

Using a voxel-based model [22], however, can achieve the same results at a much lower 

hardware requirement. As a software solution, the method is portable so it can be integrated into 

any flight simulation system regardless of hardware architecture.  

This paper describes results of some investigations concerned with modeling of a volcano 

Bandai in which it is proposed to use voxel-based terrain without triangulation. The possibility of 

high performance terrain visualization is investigated. Terrain is represented for the base of scalar 

perturbation functions [23]. The geometric model is based on non-polygonal representation, 

however it does support traditional objects, and i.e. polygonal models could also be reconstructed 

and visualized. Volume oriented rasterization algorithm and uniformity of object processing 

result in an efficient hidden surface removal and detection of spatial collisions. Chosen 

representation of terrain data is based on regular multi-level elevation map complemented with 
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levels of detail. This approach has several advantages (rapid generation and modification, efficient 

data storing and retrieving) over polygonized terrain models. 

 

2. NON-POLYGONAL TERRAIN REPRESENTATION 

The open simply connected set of points on the plane a domain of the plane was introduced in 

Vyatkin [23]. Let D be the plane domain andD  its closure. Let‟s enter the coordinate system (u, 

v) on the plane. Let x, y, z be the rectangular Cartesian coordinates of the points in the 3D 

Euclidean space 3E . Prescribe three continuous functions on the set D : 

),,(),,(),,( vuzvuyvux                                                                                             (3) 

Further assume that functions (3) have the following property. If ),(u 11 v and ),(u 22 v  

are different points of the setD , then ),,(xM 1111 zy and ),,(xM 2222 zy of the space 3E , whose 

coordinates were calculated by formulas (3), are also different: 

),2,2(2),2,2(2),2,2(2

),1,1(1),1,1(1),1,1(1

vuzvuyvux

vuzvuyvux







                                                                              (4) 

The set S of the points M (x,y,z) whose coordinates x, y, z are defined by (3), where the 

functions  ,, in the closure D  of the domain D possess the described property, is called a 

simple surface. The simple surface that is a plot of the function defined in the 3D space 

y)f(x,z  is referred to as the freeform surface F. The terrain representation based on the scalar 

field is a totality of a base surface P (in the same coordinate system as F) and the related altitude 

map. Any surface may used as the base surface, however, surface used in practice are simple 

surfaces such as planes, ellipsoids, or cylinders. The altitude map is a 2D rectangle called hereafter 

a perturbation domain 
PD of the base surface P, and the perturbation function h(u,v) is given 

inside this rectangle. The altitude map in turn determines the perturbation. The domain of h(u,v) 

is  VU ,D v)h(u,  , where U and V are the size of the rectangle. The altitude map and the base 

surface are related as follows: there exists a transformation  23 G  from the coordinate 

system of F and P to coordinate system of the map. This transformation is usually a parallel 

projection. The value of  )( FdGh  characterizes the deviation of the point dF, on the surface F 

from the point dp that is the projection of this point onto the surface P. In other words, the value 

of h (G(dF)) is equal to the scalar of vector 

v


=( Fd


 Pd


)                                                                                                                  (5) 

Therefore, the domain of the terrain can be defined as a set of point in 3, which are defined 

by the vector equation 

F


=G( v


)+ n


·h(G( v


)); v

3,                                                                                           (6) 

 where n


 is the normal to the base surface. 

If the vector v


 is outside the perturbation domain, the vector n


·h(G( v


))=0 and F


 is the 

vector on the base surface. Thus, for prescribing the form of the perturbing surface we can use a 

table of numbers, and the function h can be represented by a function of interpolation by pivotal 
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values taken from the table. In this case, we may assume that a scalar field is given in the 

perturbation domain Dp. The function h has the form: 

h(u,v)=f0+(f1-f0)(v-m_v),                                                                                                      (7) 

where 

f0 = (1-(u-m_u)) table [m_u,m_v ])+(u-m_u)table[m_u+1][m_v],  

f1 = (1-(u-m_u))table[m_u,m_v+1])+(u-m_u)table[m_u+1][m_v+1], 

where m_u is the integer part of u, m_v is the integer part of v, and table[m_u][m_v] is the 

m_uth and m_vth elements of the table. 

The terrain F based on the scalar field is specified by means of the surface and the 

perturbation function (the table of numbers, which characterizes the deviation of the surface F 

from the base one at check points). This paper considers representation of volcano Bandai based 

on the base planes. In this case, the transformation G is a parallel projection directed oppositely to 

the normal vector of the base plane. We will use the notion of the terrain F as a combination of 

the base planes and the perturbation domain; it may have a rectangular contour or be defined by 

vector equation (6). 

 

3. RENDERING METHOD 

It is proposed to describe complex geometric objects by defining (in the scalar form) the 

second-order function of deviation from the basic surface or (in the simplest form) from the basic 

plane [23]. A terrain is a particular case of such objects; it is defined by means of the basic plane 

and the perturbation function defined in an infinitely long parallelepiped. Values of the 

perturbation function are specified at the parallelepiped cross-section by a 2-D height map. As a 

basic surface we may use a plane, and then the direction of the carrier plane normal must match 

the longitudinal direction of the parallelepiped - the region of perturbation function definition.  

Since during rendering it is necessary to estimate the maximum function on a three-

dimensional or one-dimensional interval, then maps of the level of detail are preliminary 

composed for efficient calculation. The initial data form the level n if the array dimension is 2n x 

2n. Data for the level n-1 are obtained by choosing a maximum from four adjacent values of the 

level n, the rest three values are not considered further, i.e., we obtain a 2n-1 x 2n-1array. The zero 

level consists of only one value, that is, the maximum all over the height map.  

While determining the perturbation maximum, the characteristic size of the current interval 

projection is calculated, this governs the level of detail. A cruder approximation of the initial 

function is chosen for a larger interval. If a more accurate representation is required, then we 

perform bilinear or bicubic interpolation of values of heights from the last level of detail. 

Therefore a terrain model is coded as differential height map, i.e. the carrier surface is defined by 

algebraic means and only deviation from this basic surface is stored in the each node. Such a 

modeling method simplifies creation of smooth detail levels and shading. The data of height grid 

is not subject to geometry transformations as the triangle vertices do. The geometry 

transformations are only required for the carrier surface. During the recursive voxel subdivision 

on each level, the centers of the voxels onto basic plane are projected.  
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The computed coordinates, as well as in the case of ordinary RGB texture map, will define 

address in the so called "altitude map" or "shape texture". The altitude corresponding to this 

address and a level of details is calculated, and use it to modify coefficients of the plane or quadric 

equation. As a result will be obtained a smooth surface of arbitrary shape modulated with the 

values from the altitude map. But the problems solved by this algorithm require much more 

complicated methods within the traditional approach. Indeed, the common way to present terrain 

with polygons requires an abundance of polygons. Besides, the number of additional problems 

arises such as high depth complexity, hidden polygons removal, priorities, switching between 

levels of detail, clipping polygons by the pyramid of vision, etc. such problems do not appear in 

the proposed method. It is proposed to describe terrain by defining the function of deviation from 

the basic plane. Terrain is constructed on the basis of plane. Terrain is a composition of the basic 

plane and the perturbation functions f‟(x,y,z) = f(x,y,z) + r(x,y,z), where r(x,y,z) is the scalar 

perturbation function.  Put another way, r is a number computable by projection given voxel on 

the height map. Let‟s find coordinates of univariate bar - voxel v0, which will be assigned pair 

vectors  

P0=(X0,Y0,Z0) AND P1 =(X1,Y1,Z1), V0 ={P0,P1}.                                                              (8) 

Further, coordinates of voxel V0 by means of transformations G are converted in coordinate 

system height map:  

{(x0,y0,z0) ,(x1,y1,z1)}  {(u0,v0,h0) ,(u1,v1,h1)}.                                                        (9) 

Using  the transformation matrix Т in the height map coordinate system, which being 

multiplied to the matrix of geometric transformation М and gives a resulting matrix of 

transformation G. G=T*М; 





















1000

0010

0010

0001

T                                                                                                                (10) 

Then, voxel transformed coordinates (u, v, h, a) in coordinate system of height map are 

calculated from (x,y,z) voxel coordinates in model space by multiplying a vector of point in model 

space to matrix G. 
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                                                                                                                    (11) 

Further, voxel subdivision on Z coordinate (or binary voxel subdivision) is used. At this 

stage, for the current level of recursion end vector of voxel being nearest with respect to the 

observer, is supposed equal nearest end vector of voxel preceding level subdivision. Far-away 

vector of voxel is calculated as a semi-sum of vector amount of near and far-away voxel preceding 

level subdivision. 

P n i =  Pn i-1 , P f i = ( P n  i-1+Pf  i-1 )/2 .Vi = {P n i , P f i },                                            (12) 
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where Vi is a voxel of i –level of recursion, Pn i Pf i  is the coordinates of near and far-away voxel of 

i-level subdivision. 

 
Fig-1. Volcano Bandai: top view. 

 

 
Fig-2. Volcano Bandai: side view. 

 

By sizes of voxel projections corresponding recursion level is calculated level of detail. By u 

and v coordinates of points P n i and P f i is realized sample of maximum value from table 

presenting given level of detail. Calculated therefore number is a value of perturbation function of 

base plane. 

On each stage voxel subdivision on its sizes is calculated level of detail. If level of detail not 

last level, then calculated height h is compared to value of height of given level Hmax, and if 

h>Hmax, then voxel subdivision stops. 

1. define size of rectangle being voxel projection on the height map as a maximum of distance 

from the point {u0,v0} to the point {u1,v1 }-Lp; 

2. from the inequality 
12

1

2

1



levelpllevel

L define a level of detail („level‟). 

Figures 1 and 2 show a result of voxel-based terrain modeling without preliminary triangulation 

with bilinear interpolation of height values (height map resolution – 200x200), 

 

4. IMPLEMENTATION AND PERFORMANCE 

In our work two applications which visualize the volcano Bandai based on scalar perturbation 

functions have been realized. The first uses only CPU for calculations. The second uses GPU for 

calculation of depth, normal and illumination, and CPU for geometric transformations. For image 

display both versions used DirectX. Testing of productivity of the offered variants of realization 

has been made. Compute Unified Device Architecture (CUDA) from NVIDIA was used. CUDA is 

a model of parallel programming. Together with a set of software, she allows to realize programs 

in language C for execution on a graphics accelerator. Testing was performed on the processor 

Intel Core2 CPU E8400 3.0 GHz, GPU 9800 GT и 470 GTX. Test results are shown in Table 1. 
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Table-1. 

Height map resolution E8400 9800 GT 470 GTX 

128x128 802,65 milliseconds 177,03 milliseconds 21,09 milliseconds 

512x512 2033,6 milliseconds 368,9 milliseconds 42,51 milliseconds 
1024x1024 3275,6 milliseconds 680,46 milliseconds 72,35 milliseconds 

 

The main conclusion is that the computation time in terrain generation is practically 

independent of the height map resolution (See Table 1). 

 

5. CONCLUSION 

The main merits of proposed approach are the following: reduction of the load on the 

geometry processor and decrease of data flow from it to the render processor; the geometry 

processor works with the single basic plane; the right priority order is provided by the 

corresponding traversing of the tree and the set of masks; sufficiently simpler construction of 

terrain because the preliminary surface triangulation and the viewing pyramid clipping are 

unnecessary (to change the level of detail we use a mechanism similar to the usual texture 

sampling); the computation time in terrain generation is practically independent of the height 

map resolution and depends only on the screen resolution. Rendering method, described above, 

uses a graphics accelerator for most of the calculations. We can use parallel calculations in GPU 

to accelerate rendering. We successfully integrated proposed visualization method into the 

standard rendering pipeline. Verify the performance for the different scenes. For considered tests 

the application with GPU average ten times faster, than the version using only CPU.  
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