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ABSTRACT 

We give an overview of studies a bipolaron stability by variational method. For bipolaron formations, a 

relation is established between the variational principle and the virial theorem optimizing the electronic 

wave functions. We present a large number of qualitative and quantitative arguments, which indicate that 

the Landau-Pekar bipolaron is an axially-symmetrical formation. Much attention is paid to the analysis of 

the influence of the Coulomb electron-electron correlations on the stability of a large bipolaron. In detail we 

analyzed the criteria for determining the optimal wave functions. It is established that a step-by-step 

increase in the flexibility of the electronic wave function due to the electron correlations does not stabilize a 

one-center bipolaron. We show after into account of electron-electron correlations a singlet bipolaron retains 

spatial axially-symmetrical. At the same time, the electron-excited triplet states of Landau-Pekar bipolaron 

have spherical symmetry. The results of Kasirina and Lakhno are based on the one-center bipolaron model 

are incorrect. Presented evidence that the correct application of the variational method and correct account 

of electron-electron correlations only increase the binding energy of the bipolaron but symmetry of Hartree-

Fock approximation can not change. We adduce proofs which point to methodological errors of one-center 

bipolaron model as well as arising from their calculations incorrect physical consequences. As illustrated in 

this review the axially symmetric Landau-Pekar bipolaron can correctly interpret the experimentally 

detected spectroscopic data.  

Keywords: Large bipolaron, Electron correlations, Singlet, Stability, Triplet, Variational 

procedure, Virial. 

 

Contribution/ Originality 

We have established mathematically that the spatial symmetry of the singlet bipolaron 

Landau-Pekar is axial-symmetric. At the same time, triplet states of the bipolaron are spherically 

symmetric formations. Increasing the flexibility of the wave function does not change the spatial 

symmetry of the bipolaron. Knowledge of the bipolaron symmetry allows to correctly interpret 

experiment. 
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1. INTRODUCTION 

Recently, numerous publications have appeared on the stability of adiabatic large bipolarons 

and its dependence on the electron-phonon coupling constant and the dielectric parameters of 

polar media. The exact solution of the bipolaron problem can be reduced to finding a solution to a 

nonlinear integro-differential equation for the self-consistent field [1]. Since solution of this 

equation poses formidable difficulties, variational methods have commonly been employed to find 

various approximate solutions. However, care should be taken when directly applying the 

variational method and searching for approximations to the solution. Indeed, as the trial 

electronic function becomes more complicated, the search for a conditional (local) minimum of the 

energy of a system can be unintentionally replaced by study of the unconditional (absolute) 

minimum, which has no physical meaning. 

In this paper, we study the relation between the variational method and the virial theorem 

with regard to the problem of bipolaron stability, analyze additional restrictions which optimize 

variational electronic wave functions of bipolaron problem, and discuss the physical consequences 

of these restrictions. The complication regarding a trial electronic wave function is primarily 

related to the correct description of electronic correlations in two-electron systems. Pekar and 

Tomasevich [2] were the first to include the electron-electron correlations by introducing the 

functional dependence of the wave function on the distance between the electrons. They have 

established that the inter electron correlations do not stabilize a one-center large singlet 

bipolaron with respect to the dissociation into two large polarons. 

Studies of the dependence of the Hartree-Fock self-consistent approximation of a large 

bipolaron problem on the distance R between the centers of gravity of the polarons have shown 

that the interpolaron potential has a maximum as 0R and, therefore, a one-center state of 

large bipolaron is unstable [3-6]. A minimum of the interpolaron potential appears only at 

intermediate equilibrium distances (R> 0) between the polarons. Therefore, it is important to 

study the role played by the electron-electron correlations in the stabilization of a large bipolaron 

and elucidate whether the electron-electron correlations can indeed modify the Hartree-Fock 

approximation for the model of quasi-independent electrons so strongly that the bipolaron passes 

from an axially symmetric two-center state to a spherically symmetric one-center state as 

claimed, for example, in Refs. [7, 8]. For this aim we use the well-known principles of the 

variational method and firmly established the physical consequences due to the influence 

electronic correlations on the electronic systems. There are firmly established principles of the 

correct application of the variational method, especially important for quantum-mechanical 

systems. There are also firmly determined physical consequences associated with proper 

allowance for the effects of electron-electron correlations in electronic systems. Using these well-

known concepts, we show mathematically strongly and at the same time fallacy both variational 

calculations and the far-fetched of the physical consequences obtained for one-center model of 

Landau-Pekar bipolaron. Moreover, we shall demonstrate a clear physical sense of the arguments 

that we use.  
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2. VARIATIONAL METHOD AND VIRIAL RELATIONSHIPS 

Using the results from the adiabatic translationally invariant theory of a large bipolaron [6, 

9, 10], we can replace the integro-differential equation with an equivalent variational functional 

for the total self-consistent electronic energy E(R) of the singlet motionless bipolaron: 
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= T(R) + U(R).                                         (1) 

Here, the dielectric medium is replaced by a continuum; m* is the isotropic effective mass of 

the Bloch electron; g(r1,r2) is the electron-electron interaction operator;  ρ(r1) and  ρ(r1,r2)  are the 

one-particle and two-particle spinless electronic densities, respectively; 111*
s

 


εεε , 

ε  and 

s
  are the high frequency and static permittivities of the polar medium. The energy in Eq. (1) is 

measured from the bottom of the conduction band. Functional (1) depends parametrically on the 

distance R between centers of gravity of two polarons. For adiabatic a large polarons, the 

translational polaron effective mass is m** = 0.023αc
4m* >>m* (αс> 10 is the dimensionless 

electron-phonon coupling constant); therefore, the Born-Oppenheimer approximation can be used 

for functional (1). The quantities T(R) and U(R) are the average electron kinetic and potential 

energies. Functional (1) was analyzed in [6, 9, 10] for arbitrary distances between the polarons 

and for electronic wave functions of different degrees of complexity. In variational calculations, 

trial electronic wave functions minimizing the total energy functional are considered optimal if 

these functions satisfy the conditions of the virial theorem, which, in turn, is consequence of the 

variational principle. The importance of the virial theorem in studying the polaron energy states 

has been pointed out by Pekar [11]. It is known that if a trial electronic wave function gives 

kinetic and potential energies that do not satisfy the virial theorem, then the total energy 

obtained by the variational method is far its correct value and the wave function is not optimum. 

Using a scaling transformation of the variables, a trial wave function can be reduced to another 

normalized trial function that satisfies the virial theorem [12]. In variational calculations the 

virial theorem is not only a necessary criterion for the optimality of the wave function but also 

makes it possible to clearly to demonstrate the dependence of the bipolaron total energy on the 

distance R without resorting to complicated and not always easily verifiable calculations of the 

bipolaron total energy using wave functions that take into account electron correlations.  

Using the scaling transformation ii rr   and RR   we can write a normalized trial two-

electron wave function in the form );,();,( /n
RR  21

23
21 rrrr  , where n = 2 is the 

dimensionality of the configuration space and λ is an arbitrary scaling factor, whose value is 

determined by minimizing E with respect to parameter λ. For the particles the interaction 
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between which is inversely proportional to the distance, the total energy can be written in the 

following form 

)()()( 2 sUsTsE    ,       Rs  ,                                (2) 

 

Then, assuming that T(s) and U(s) are homogeneous functions, we find that functional (2) 

reaches an extremum when 

1)/2)(/(  dssdTTdssdUU                                  (3) 

for any value of distance R. Obviously, as 0R or at the point of an extremum of the potential, 

the scaling factor is λ = – U(λR)/2T(λR). Thus, the linear variational method allows us to 

determine the variational parameter using Eq. (3). Taking into account that the energy E is a 

homogeneous function of the variational parameter λ and the distance R, we find from Eq. (2) the 

derivative of the total energy: 

ds

sdU
s

ds

sdT
s

dR

RdE
R

)()()( 2     .                               (4) 

Substituting Eqs. (3) and (2) into Eq. (4), we obtain the well-known virial relation for the 

Coulomb system: 

0)()(2
)(

 RURT
dR

RdE
R  ,                                  (5) 

that is valid for an arbitrary distance R. Thus, when minimizing the total energy functional (1) 

with respect to the variational parameters, it is necessary that Eq. (5) be satisfied for the optimum 

wave functions at any value of R. It is important to note that the virial relation (5) follows from 

the variational principle and is a natural additional condition imposed on trial wave functions in 

variational calculations. Such problems belong to the class of isoperimetric problems. For these 

variational problems the existence of a minimum of functional (1) is a necessary but is not 

sufficient condition. A sufficient condition is closely related to the validity of Eq. (5) for any R. 

Obviously, not all of the functions for which functional (1) reaches an extremum satisfy Eq. (5) for 

any distance R. 

Since the stability of Landau-Pekar bipolaron at 0R (spherically-symmetrical case) is of the 

greatest interest, we find the second derivative of the energy with respect to R. Taking into 

account that the virial relation 2T + U = 0 is satisfied at zero distance, we obtain from Eq. (5) a 

relation between the total electronic energy of Landau-Pekar bipolaron and the kinetic energy 

[13]: 

dR

RdT

dR

REd
R
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)(
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2

0 
 .                                     (6) 

Thus, the second derivative of the total energy with respect to the variable R at the origin is 

opposite in sign to the first derivative of the electron kinetic energy. Therefore, rather than 

performing complicated calculations of the bipolaron total energy E(R), we can restrict ourselves 
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to an analysis of the dependence of the average kinetic energy on R. In this case, the virial 

theorem will be satisfied. 

For an isolated bipolaron at rest, we search for the Hartree-Fock approximation to eigen 

electron wave function of  the bipolaron Hamiltonian for the singlet ground state using the 

electronic wave function of quasi-independent electrons in the Heitler-London form: 

)()()()(~);,(0 122121 rrrrrr
b
s

a
s

b
s

a
sR   .                          (7) 

Approximation (7) we shall call the zero-order approximation. Here, the superscript a refers 

to the centre gravity of polaron at the point R1; the superscript b to the second polaron at the 

point R2; R= R1 –  R2; and  r1  and r2 are the position vectors of the first and second electrons 

measured from the centers of gravity of the first (R1) and (R2) polarons, respectively. The method 

of separating the polaron coordinates R1 and  R2 from the electronic coordinates ri is described in 

detail in Refs. [10, 14, 15]. Functional (1) with wave function (7) gives the correct asymptotic 

behavior for the total two-electron energy. At distance R  Eq. (1) with wave function (7) 

gives a doubled total energy of an isolated polaron. We approximate the one-electron wave 

function in a central field by the one-parameter function for a smoothed hydrogenic potential 

)exp()1(~)( rrrs   , where α is a variational parameter. As is well known, the wave function 

in the form of Gaussian function  )exp(~ 2r   that is used by Kashirina, et al. [7], Kashirina 

and Lakhno [8] incorrectly behaves close to points R1 and R2.Such wave functions do not have 

the so-called "cuspidal point", which is available for Coulomb functions.Pekar and Tomasevich 

[2] used wave functions that depends explicitly on the interelectronic distance 12r  only the 

single-particle functions contained simple exponential dependence (Coulomb approximation). 

However, from their analysis follow that even in this most favorable case, the one-center large 

bipolaron state remains unstable. 

Fundamentally important in calculations of the correlation effects is the choice of initial 

basic of wave functions and point of origin. It is known that when we are looking for the absolute 

(global) extremum of functional then value of its maximum is obtained in large disadvantage. In 

this case, the success of the method is largely dependent on the correct choice point of origin and 

of the two-centered functions. Therefore, to avoid this error, we need to pass to a one-center wave 

basis. Generally, in the numerical calculations using the functional (1) and two-center wave 

functions we are faced with the problem of the two-center integrals calculations. To overcome 

this difficulty, you can use the method [16]. In this representation, the electron coordinate r is 

counted off from the center a.  

When we use a one-center basis set functions unlike multicenter basic set we can avoid 

problems of wave functions redundancy. As it is well known [17], using of two-center basic set, 

as is done, for example, in the Refs. [7, 8] leads to an uncontrolled overestimation of the electron 

correlations for binding energy. In addition, the using of a one-center conception of the wave 

functions allow us to control the sequential convergence of the variational procedure.  In contrast 

to multicenter wave functions the one-center set of functions allow us to avoid problems of the set 
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wave functions redundancy. As established in the Ref. [18] using of the one-center expansion is 

ideal for calculating energy derivatives (or finite difference energies) on the nuclear coordinates. 

This advantage we shall use in the subsequent text comments. Since we are interested in the 

behavior of the total energy at distances close to zero (stability of spherically symmetric 

bipolaron), we expand the functions centered at the point b in a power series in R about the origin. 

Then, using Eq. (7), we can write the variation in the kinetic energy ΔT(R) = T(R) – 2Ts (where 

Ts is the average electron kinetic energy of an isolated large polaron in the ground state) 

associated with the formation of a bipolaron as follows: 

 372452 1007.41058.710324.12)( RRRRT c
    .                     (8) 

Here, ω is the limiting frequency of long-wavelength longitudinal optics phonons and also we 

assumed 00.1/*  . In Eq. (8), we retained the cubic terms in R. This dependence, 

corresponding to the Hartree-Fock approximation, was taken into account when deriving Eq. (8). 

In Figure 1, the change in kinetic energy )(RT  is shown as a function of the distance. It is seen 

from Figure 1 that the average kinetic energy )(RT  has a minimum at R = 0. Therefore, the first 

derivative is positive and it follows from Eq. (6) that the total Hartree-Fock energy has a 

maximum at R = 0; i.e., the bipolaron one-center state is unstable. This result (line 1, Fig.1) fully 

coincides with the results of variational calculations for a large bipolaron in the approximation of 

quasi-independent electrons (zeroth approximation) [2, 4-6] and remains valid for all values of 

the dielectric parameters of the medium admitting the existence of a large bipolaron. Analysis has 

shown [10, 14, 15] that the difference )(RT  depends only weakly on the chosen basis of the 

one-electron functions χs(r), since the bipolaron binding energy is a composite quantity and the 

errors in the choice of the basic functions are compensated [19]. For most of the quantum-

mechanical problems concerned with electronic systems, the Hartree-Fock solutions 

automatically satisfy to the virial theorem [12, 20]. However, for solutions that take into account 

the electron-electron correlations, the virial theorem imposes anadditional condition on a 

variational solution. In fact, the variational solution of the bipolaron problem is reduced not to 

finding the absolute minimum [7, 8] of the functional (1) but rather to determining aconditional 

minimum of the functional E(R) in presence of nonholomic constraints (5).  

 

3. ELECTRON CORRELATIONS AND STABILITY OF A LARGE BIPOLARON 

Hartree-Fock method takes into account the correlation of the electrons due to the skew 

symmetrization of the wave function, but, as it is know, is not taken into account the Coulomb 

electron correlations. In the variational method, the electron-electron correlations can be taken 

into account either by including an additional function that depends explicitly on the distance r12 

between electrons in the original two-electron wave function );,( 210 Rrr  or by constructing a 

two-electron function that takes into account the interaction of electronic configurations. It was 

shown in Refs. [1, 21, 22] these two approaches to the study of large bipolaron stability are 

alternatives under the assumption of the correct application of the variational method. For the 

purposes of clarity and visibility of the results, we will use the second method of accounting for 
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electron-electron correlations. We add the electronic 2p2 electron configuration to the wave 

function )R;,( 210 rr . According to Pekar [11] the 2p function corresponds to the lowest of the 

electron excited states of a large polaron. Thus, the trial electronic wave function can be written 

as the sum of the electron wave functions 0  and orthogonal complement (function 1 ): 

);,( 21 Rrr ~ 11012211210 ))()()()(();,(  СCR b
p

a
p

b
p

a
p  rrrrrr ,             (9) 

here p ~ )exp( rz   and the z axis coincides with the bipolaron binding axis. The wave 

function (9) allows us to take into account the permutation degeneracy of the system. The 

parameters β and С1 are additional variational parameters. Functions s and p  belong to the set 

of wave functions of the polaron Hamiltonian.The representation of the wave function in the form 

(9) virtually coincides with the approximation that was used in [23-25] and made it possible to 

obtain substantially more exact binding energies of the hydrogen molecule compared with the 

zeroth approximation. It was shown in Hurley [26] that the Hellman-Feynman variational 

theorem for optimum wave functions can be strictly satisfied only with such “floating” functions 

which are not at all taken into account in the works [7, 8]. Again, we expand the functions 

centered at the point b in Eq. (9) for the wave function in a power series in the vicinity of R = 0 

andweeasily obtain the following expression for the average electron kinetic energy: 

)(/)(2)( 2 RNRKRT c   ,                                    (10) 

here  

   2
1

4
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1 10887.910045.110324.1038.0107.0)( CCRCRK
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1

4
1

342 10334.21023.51058.7 CCR   + 

+  2
1

5
1

673 10417.110183.21007.4 CCR   , 

)108.610287.210573.410286.2(1)( 352369
1

2
1 RRRCCRN   . 

It is well known [27] that correlation effects are not very sensitive to variations in the 

Hartree-Fock wave function. Therefore, in Eq. (10), both β(R) and α(R) were taken to be equal to 

the functional dependence obtained for a large bipolaron with quasi-independent electrons. 

To define energy (10) it is necessary to find the numerical value of the variational parameter 

C1. The possible values of this parameter can be established even without lengthy calculation of 

the bipolaron electronic energy. Indeed, for our purposes, it is important to know the value of the 

bipolaron energy at R = 0 to compare with the results [7, 8]. Let us consider the difference 

ΔE(R=0) = E(R=0) + 2Es, which determines the effect of the interaction between polarons in 

ground state (Es). We use the virial relation 2T + U = 0, which is valid at R = 0 and relates the 

kinetic and potential energies both for the bipolaron and for large polaron of Pekar. Omitting 
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simple calculations [28, 29], we find the correlation contribution lowers the bipolaron energy, 

i.e., ΔE(R=0) > 0, if the following inequality is satisfied (for 00.1/*  ): 

02)44(22 32113
2
11

3
1  VVVCVCVC ,                            (11) 

here 

  )(||)( 2
21

121
2

1 rrrV ss  ,   )(||)( 2
21

121
2

2 rrrV ps  ,   )()(||)()( 12
1

12213 rrrrrV psps   

Since the two-electron integrals satisfy the relation V2 ≈ V1/2 with satisfactory accuracy, 

inequality (11) can be rewritten as: 

03113
2
11

3
1  VVCVCVС .                                     (12) 

Using the numerical values of the integrals and Eq. (12) we find that inequality (11) is 

satisfied if C1< – V3/3V1 0.04  (V3 > 0, V1> 0). With that end in view we calculate the second 

derivative d2E/dC1
2. After simple mathematical manipulation involving the expression for 

ΔE(R=0) and the virial relation between the average kinetic and potential energies, the second 

derivative can be found to be 

3113
2
11

3
1

2
1

2 33/ VVCVCVCdCEd  .                             (13) 

It follows from Eq. (13) that, for C1< – V3/3V1 the second derivative d2E/dC1
2> 0; i.e., the 

inclusion of electron-electron correlations in the wave function lowers the total bipolaron electron 

energy. Thus, the parameter C1 must be negative and smaller than unity. Thus is satisfied one of 

the important requirements of the variational method. Not only correlation functions should be 

close to zeroth approximation functions but also their first derivatives. Figure 2 shows that for 

spherically-symmetrical bipolaron this requirement is not obvious. Straightforward variational 

calculations [6, 13, 17] with simultaneous variation of the parameters α, β, and C1 have given C1 

= – 0.097 for R = 0 and 00.1/*  . This value does not contradict the results obtained from 

conditions (12) and (13). Using the value C1 = – 0.1, we obtain from Eq. (10) that in this case also 

d2E(R)/dR2< 0 (line 2; Fig.1). This result indicates the logical correctness of applying the 

variational method. That is, even though the bipolaron total energy at R = 0 is lowered due to the 

inclusion of electron correlations in the wave function, the bipolaron total energy reaches a 

maximum as 0R , as well as in the case of the zeroth approximation. Therefore, in agreement 

with the result of Pekar and Tomasevich [2] the one-center state of bipolaron remains unstable. 

It is known [30, 31] that, once the wave function has become close to the correct wave function, 

further changes in the wave function produce relatively small variations in the energy E(R) rather 

than fundamental changes (including a change in the symmetry of a large bipolaron). 

Let us increase the flexibility of the wave function by including one more electronic 

configuration (1s2p):  

 ))()()()(();,(~);,( 1221121021 rrrrrrrr
b
p

a
p

b
p

a
pCRR 
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  2211012212 )()r()r()(  CCC b
p

a
s

b
p

a
s  rr .                       (14) 

Just simply without resorting to hard to reproduce and cumbersome calculations with 

obscure physical meaning [7, 8], we can show that the approximate value of the variational 

parameter is equal to C2 ≈ 0.1 as R → 0. The detailed variational calculations gives for wave 

function (14) the value: C2 ≈ 0.105 at 0R  and 00.1/*  [9, 10, 28, 29]. Line 3 (Fig. 1) 

shows that a one-center large bipolaron in that case remains unstable at R = 0. Thus, no 

additional minimums do not appear for the energy of the bipolaron as it is stated in Refs. [7, 8]. 

Of course, if researcher does not violate the basic principles of the variational method (see Fig. 2). 

Additional correction functions 1 and 2 have a precise physical meaning. For example, the 

function 1  determines the contribution of the polarization effects to the binding energy. In 

accordance with theorem of Brillouin the electron excitation determined by the wave function 2

. As shown in Refs. [31, 32], the function of the form (14) proved to be very important for 

diatomic molecules at any distances between nuclei. Importantly, the correlation contributions 

must also take into account the spatial symmetry of the two-center formation. That is, we must 

consider the point group symmetry, which corresponds to the initial spatial configuration of the 

bipolaron and the irreducible representation which must transform the electronic wave function 

of the bipolaron [9, 17].The importance of considering the symmetry of a bipolaron of the 

construction of the electronic wave function consists in the fact that it allows us to formulate the 

correct regular rule of consistent expansion of the function flexibility. This rule is another natural 

restriction that is imposed on the choice of the correction functions. As is well known, the wrong 

choice of the basis set of functions is the source of large errors in the variational calculations. 

In Fig. 1 we see that with increasing flexibility of the electronic wave function the general 

trend of the contribution to the electronic kinetic energy decreasing as 0R is retained and the 

bipolaron total energy at R = 0 has a maximum (for 0R limd2E/dR2< 0 and lim dT/dR> 0). 

In this case, the spherically-symmetrical bipolaron also remains unstable with respect to 

variations in the four parameters α, β, C1 and C2 just as for the bipolaron with quasi-independent 

electrons (zeroth approximation). An analysis of the sensitivity of Eq. (6) to variations in the 

parameters C1 and C2 showed that the sign of the second derivative of the total energy 0R  

remains unchanged over a wide range of values of these parameters. It is well known [30] that 

the method of expansion wave function over the configurations can approximate the solution of 

the Schrödinger equation with arbitrary precision. 

Contrary to bipolaron calculations Kashirina, et al. [7], Kashirina and Lakhno [8] smallness 

variational parameters |C1| << 1 and |C2| << 1 indicates that the correlation effects are the 

corrections to the zero order approximation, as it is required for coupled electronic systems. As 

noted in Ref. [33] the least preconceived approach to calculate of the correlation contribution is 

the approach that simulates the sequence of the perturbation series. Large quantity of studies 

have firmly established (see, for example, [17]) that Hartree-Fock approximation gives for 

diatomic molecules contribution to the total electron energy is equal to 95 - 99.5%, and only the 

remaining 0.5 - 5% gives the correlation contribution. Evidently, for such ratio for the energies, 
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the correlation contribution cannot change the spatial symmetry of the coupled system 

corresponding to the zeroth approximation. Moreover, firmly established that with decreasing 

distance R correlation contribution to the energy decreases. However, the calculations in [7, 8] 

give a result opposite to this well-known rule. According these calculations electron correlations 

so great that they fundamentally modify the original (zeroth approximation) spatial symmetry of 

singlet Landau-Pekar bipolaron (Fig. 2).Practically, from their calculations follow that zeroth 

approximation becomes a correction to the correlation contributions. It is well known for the 

variational method the correction to the eigen value has the second order of smallness in the 

difference || 0  . 

The conclusion that the one-center model of bipolaron is unstable can be drawn without using 

Eq. (6) by directly solving the differential equation (5) which is of the Riccati type. Approximating 

the R dependence of the kinetic expression Т(R) = A + BR2 near R = 0 (Fig. 1) we obtained the 

differential equation  

0/))(( 2  ARBdRRREd .                                      (15) 

The solution to Eq. (15) can be written in the form E(R) = –B – AR2/3, where A and B are 

positive constants. Obviously, it follows that limit of 0]/)([lim 22

0



dRREd

R
. That is instability of 

spherically symmetric (one-center) large bipolaron remains in force. Thus, increasing the 

flexibility of the variational trial functions and additional accounting of electronic correlations 

does not alter fundamentally the functional dependence of the bipolaron potential on the distance 

between the centers of gravity of the polarons. Maximum of the bipolaron potential remains valid 

at R = 0 (Fig.3).At correct applying of the variational method it gives identical results [21, 22] 

for multiconfiguration wave function, and for function that depends on the electron-electron 

distance 12r .  

When we using the variational method the applicability of the virial relationships for a 

bipolaron at R = 0 and the bipolaron stability with regard to electron correlations cannot be 

ensured simultaneously without contradicting the basic principles of quantum mechanics. For 

example, we find that the absolute minimum of the electron energy of the 1s state is higher than 

that of the electron 2p state [21, 22]. In this case, the virial theorem is also satisfied. However, 

the result is obviously absurd. Thus, in a direct variational method, the optimality of the wave 

functions with regard to electron correlations should be checked not by verifying that the virial 

theorem is satisfied but also by analyzing the physical meaning of the obtained solutions. In the 

general case, minimization of the functional E(R) using a variational method is inevitably reduced 

to the absolute minimum of the system [7, 8], which can be devoid of physical meaning. It is well 

known that the correlation contribution to the total energy satisfies the same virial relations for 

zeroth approximation[20]: 

0)()(2
)(

 RURT
dR

RdE
R corrcorr

corr .                                 (16) 
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Therefore, the shape of the bipolaron potential remains the same for quasi-independent 

electrons (zeroth approximation), and for the contribution of electron correlations. That is, if the 

zeroth approximation corresponds to the minimum of two-centered formation, the contribution of 

the correlation energy also has the minimum at R> 0. However, as follow from Ref. [7] for 

0R  the direction of change in energies E(R) (Eq. (15)) and )(REcorr  (Eq. (16)) are opposite 

(compare lines 1 and 2; Fig.2).Firmly established [17] that the qualitative dependence of the 

correlation energy )(REcorr on the distance R coincides with the Hartree-Fock approximation 

(line 1; Fig. 2). Ruedenberg K. explained the physical reason of this dependence [34]. Figure 3 

shows the change in the correlation contribution of distance between center of gravity of polarons 

obtained for axisymmetrical Landau-Pekar bipolaron [9, 10]. This change is of a general nature, 

correlates with zeroth approximation, and this correlation persists in the whole region of 

existence of a large bipolaron for all values of the parameter  /* . 

It is well known that double excited electronic configurations make a smaller contribution to 

the binding energy compared to once excited configurations. Namely this argument is confirmed 

by the calculations, which are presented in Figure 3. This dependence of the correlation 

contribution on the distance R is known to be dictated by the spatial symmetry of the system 

under study [30], i.e., by the point symmetry group corresponding to the original zero-order 

approximation of spatial configuration; the true electron wave function of the bipolaron with 

electron correlations should be transformed according to an irreducible representation of the 

symmetry group. The importance of considering the bipolaron symmetry in the construction of 

the electron wave function is also in that it allows us to formulate the correct scheme to 

systematically step-by-step expansion of the basis set of a set of elements that belong to the same 

set. If the set is not invariant, then search eigenvalue of the operator is undefined. Set of functions 

with a given symmetry form a linear space, as well as their linear combination belongs to this set. 

At the same time the combination of Gaussian functions do not form a linear space.  

At short distances the greatest contribution to the binding energy comes from the so-called 

“axial” correlation between the electrons [23] which is determined by wave functions like those 

in Eqs. (9) and (14). However, calculations show that even these correlation contributions cannot 

change the axially symmetric state of the bipolaron which obtained in zero-order approximation 

(Fig. 3). We will perform a very simple mathematical analysis, which demonstrates that the 

electron correlations do not lead to the stabilization of a spherically (one-center) symmetrical 

state of a large bipolaron and even more so they do not lead to change in the symmetry of 

bipolaron as it is stated in Ref. [7, 8]. If a one-center state of a large bipolaron will be stable then 

the additional incorporation of the so-called “ionic” terms (Weinbaum’s function [35]) into the 

total two-electron wave function would result in stabilization of the bipolaron. However, simple 

and physically understandable calculations (see, for example, [9]) have show that these 

corrections do not contribute to the binding energy of the singlet large bipolaron in the ground 

state under any conditions and hence their inclusion does not play any role in the stabilization of 

one-center bipolaron. Indeed, in this case the two-electron wave function can be written as the 

sum of the wave functions [35]: 
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);,( 21 Rrr ~  )()()()();,( 21112111210 rrrrrr
b
s
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s

a
s

a
sR   .                     (17) 

Here μ is additional variational parameter, and obviously 0 ≤ μ ≤ 1.The term which 

proportional to parameter μ determines the contribution “ionic” state in bipolaron stabilization. 

However, very simple calculations with a clear and understandable physical meaning showed that 

this additional electron configuration (17) does not contribute to the stabilization energy of the 

bipolaron at distances R → 0.The electronic energy of a large bipolaron in the maximum (R = 0) 

of the bipolaron potential can be represented in the following form ( 00.1/*  ): 

 )557.0331.2016.4982.2918.0[()( 432 E
 

 222 2])791.2019.5787.2( c  .                           (18) 

The numerical parameters in Eq. (18) we obtained for the case which is the most favorable for 

the positive manifestations of so-called "ionic" correlation contributions. For polar mediums, for 

which rightly the ratio 00.1/*   direct Coulomb interaction between electrons is extremely 

weakened. From the extreme properties of the functional (18) we can see that the variational 

parameter μ = 0, i.e., one-centered correlations ("ionic" term) do not make one's contribution to 

stabilization of a spherically symmetric large bipolaron. All the more, such an electron 

correlations cannot change the spatial symmetry of the bipolaron. Equality μ = 0 for the so-called 

"ionic" of one-center correlation contribution is a cogent argument that points to the instability of 

a spherically symmetric state of singlet bipolaron. This conclusion is entirely consistent with 

Pekar’s research. At the same time if we take into account correlations in the form of (17) for 

arbitrary distances R> 0 then this leads to the stabilization of the axisymmetrical bipolaron, as it 

should be for the two-center electronic systems [17, 35]. Contribution to the binding energy is 

due to electron oscillation between two potential wells [36-38]. In which connection this 

conclusion remains valid in the entire region of admissible dielectric permittivities  /*  

(Fig.3).Thus, these are very simple calculations with a clear physical meaning demonstrate that 

singlet one-center bipolaron is unstable. 

Bipolaron one-center model [7, 8] of a large bipolaron obviously also contain an internal 

contradiction. The zero-order approximation relative to which are constructed the successive 

approximations becomes the correction to contribution in the binding energy of the bipolaron, 

caused by the effect of correlations (see Fig.2; curve 2). This is contrary to the principle of 

successive approximations. In papers [28, 29, 39-41] are demonstrated the pair bipolaron 

potentials for a wide range of dielectric constants. Potentials were obtained by the variational 

method with the wave functions, which include until seven variational parameters (zero-order 

approximation 1s2 consistently is added by electron configurations: 2p2, 1s2p, and 1s2s). In 

addition, we take into account the additional restrictions imposed by all virial relations, 
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orthogonality requirements, spatial symmetry and convergence of variational approximation. 

Within those potentials, the follow inequality:  dT/dR> 0 is likewise satisfied; i.e., for Landau-

Pekar bipolaron spherically symmetrical state remains unstable (Fig. 4). 

By increasing the flexibility of the trial wave function leads to increasing of the binding 

energy of the axisymmetrical Landau-Pekar bipolaron. However, the common character of the 

dependence of the bipolaron binding energy on the distance between polarons remains the same 

as for quasi-independent electrons (zero-order approximation) and does not depend of the 

dielectric properties of the polar medium (Figs.4 and 5). 

Figure4 shows the rapid convergence of the variational series. According to the works [17, 

30, 31] to calculate the dissociation energy of simple diatomic molecules  often is enough to 

consider only two additional electronic configurations. Increase the flexibility of the wave 

function retains the right uniform convergence of the variational procedure (compare with Figure 

2). For curve 4in Figure 4 is useda superposition of four electronic configurations: basic- 1s2 

(zero-order approximation), singly excited- 1s2p and 1s2s, and doubly excited configuration 2p2. 

In the symbolic form the trial electron wave function can be written as follows: 

  ~ )21()21()2()1( 3312
2

21
2

0 ssCpsCpCs   ,                         (19) 

here 0 , 1 , 2  and 3  are the wave functions of two-electron configurations. Function

s2 was chosen in the following analytical form: )exp()1(~ 21 rr   , where 1  and 2 additional 

variational parameters. Number of variational parameters run up to seven, but no additional 

minimums [8] does not appear (Fig. 4).On the contrary, as it is required under correct applying 

of the variational method, there is a smooth downtrend in bipolaron potential with increasing 

flexibility of trial function. At the same time is kept the dependence of the potential on the 

distance R (as for zero-order approximation) and transition to a one-center bipolaron state does 

not occur. Moreover, in accordance with correct application of variational method, a sequential 

increase in the flexibility of the wave function leads to a smooth convergence of variational series 

(Fig. 4).If the variational method is used correctly, no significant change in the binding energy of 

the bipolaron does not happen, and changes in the spatial symmetry bipolaron does not occurs. In 

this case the equilibrium distance between polarons is kept. Change in the equilibrium distance is 

due to modification of the parameter  /*  (Fig. 5).Evidently, for one-center bipolaron 

computational methods [7, 8] are used at best lead to so-called unstability of the computational 

algorithm caused by poor choice of the coordinate functions. Such features of the method lead to 

significant errors in variational calculations. As is well known, it is manifested in the fact that the 

Ritz parameters begin to change sharply, and the approximation to the solution begins 

significantly to differ from the zeroth approximation. This makes the procedure of Ritz unstable. 

Figure 5 shows that when the ratio of  /*  is increased then monotonically is decreased 

the binding energy of the bipolaron, and also is increased the equilibrium distance between 
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polarons, which is quite natural and physically logical, unlike bipolaron calculations of Kashirina, 

et al. [7], Kashirina and Lakhno [8]. Reducing the binding energy of the bipolaron increases the 

effective size of large bipolaron (Fig. 5). However, spherically symmetric pair bipolaron potential 

that obtained in Ref. [7] is not sensitive to changes of the polar medium. At the same time one-

center bipolaron potential characterized by a sharp change in the form of bipolaron potential after 

accounting of electron correlations (Fig. 2). Obviously, the limitations to the variational method, 

which are superimposed on the approximation to the solution of the equation in theirs 

calculations evidently are violated.  

In many available publications in which authors use alternative analytical methods for 

solving the bipolaron problem [42-50] it was established that a large bipolaron in the ground 

singlet state is an axially symmetrical two-center formation. The authors of the papers [42-44] 

likewise arrived at similar conclusions by analyzing the distance dependence of the bipolaron 

ground state using the Feynman path integral method. The authors of very interesting work 

[50] come to a similar conclusion. They are used approach of Feynman in their research. In Ref. 

[45], the electron correlations were included using the Gunnarson-Lundqvist density matrix 

formalism [51]. The results of that study completely confirm the results obtained by expanding 

the electronic wave function in terms of electronic configurations [6, 14, 15, 28]. Furthermore, 

incorrectness one-center bipolaron model also confirmed by studies which made in paper [52]. 

Without using a variational approach authors of this paper are demonstrated, that Hamiltonian 

for ground state of bipolaron has no spherically symmetrical solutions. Variational procedure 

without prior study of the operator, the underlying of equations or functional, can only lead to 

absolute extremals. Therefore, minimization of the functional must be performed on the class of 

admissible functions from which the function (19) is constructed. The sequence of functions i

belongs to the range of definition of the polaron functional and can there fore be called a 

minimizing sequence for this functional. Usually a system of linearly independent functions are 

selected so that it is the complete set of functions. Requirement of completeness means that you 

can approximate the solution with arbitrary precision by linear combinations of admissible 

functions, consisting of set of functions i .  

At the same time using Eqs. (5), and (6) it can easily be shown [14, 53, 54] that the triplet 

electron-excited bipolaron states are spherically-symmetric formations (with the exception of the 

electron-excited u
3 state, which is repulsive for any distance R). Outlined in this paper numerous 

arguments showed that the electron correlations do not lead to stabilization of the spherically 

symmetric bipolaron with respect to axisymmetrical Landau-Pekar bipolaron. 

 

4. INTERPRETATION OF EXPERIMENTAL DATA 

It is well established [55, 56] in experiments on magnetic and optical studies, and studies on 

the mobility of electrons that in ammonia systems there are two-electron formations with high 

mobility. Experimentally, bipolarons have been observed in organic compounds [57-59], molten 

salts [60] and ammonia-based system [61-69], in vanadium bronzes [70]. In accordance with 
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Mott N.F.[71]series of experimental results can be explained only by considering existence in a 

polar medium including ammonia the coupled two-electron diamagnetic formations.This opinion 

is shared by many researchers (see, for example, the review [65]).It should be noted that, for 

example, in ammonia alkali metal ions do not possess affinity for solvated electrons[56]. 

Moreover, the optical properties of the additional electrons are identical for both the injected 

electrons and dissolving the alkali metals. That is coupling of the cation with electrons missing. It 

is well known the experimental data on the conductivity of metal-ammonia solutions. In 

considering the experimental data on metal-ammonia solutions, one is stuck by the concentration 

dependence of equivalent conductivity and paramagnetic susceptibility. The anionic conductivity 

beyond 0.01 molar solutions is essential constant showing a minimum of about twenty per cent 

decrease at about 0.04 molar, after which the conductivity again increases with concentration. 

The paramagnetic susceptibility decreases much more rapidly at low concentrations and reaches a 

minimum at about 0.5 molar where its value is about 2.5%  of that at 10-2 molar. It is obvious that 

some pairing of spins must occur [64].   

Applicability polaron model for describing the properties of electrons in polar liquids has 

been discussed in the literature. By using the variational method it was calculated [9, 10, 27] the 

ground state of a large bipolaron and the lowest electronically excited singlet and triplet states. 

The figure 6 presents that the singlet state of Landau-Pekar bipolaron correspond to 

axisymmetrical state, while the triplet states of the bipolaron are spherically symmetrical 

formations [53, 54]. This result is physically obvious and understandable. For triplet bipolaron 

formations the electrons are at different orbitals and distant from each other. In which connection 

for a sequence of relaxation-excited electronic terms of large bipolaron, is kept well-known 

Hund's rule (Fig.6) for 0R . In variational calculations in Refs. [7, 8] singlet and triplet 

bipolarons are spherically symmetrical formations. In this case it is not obvious that the Hund's 

rule must be satisfied. 

Axisymmetrical Landau-Pekar bipolaron allow us to interpret the spectroscopic experiments. 

We demonstrate this by comparing the spectral characteristics of two-center bipolaron with 

experimental data. It has been experimentally established [72] that on photo-excitation of a 

hydrogen-saturated alkali solution by light in the UV region of the spectrum, hydrated electrons 

were formed at a concentration of 10-6 M. As one would expect, disappearance hydrated electrons 

occurred according to a second order law. Subsequent irradiation of the system by pulses of red 

light ( nm700minexp  λλ ) after disappearance of 98% of the hydrated electrons led to 

regeneration of hydrated electrons aqe  (polaron type; 05.1/*  ). Here we assumed that the 

reason of regeneration is optical excitation of the bound two electron species (bipolaron type) 

decaying to the reaction: aqaqaq eee  
 nm7002)(


.  
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Formation of molecules H2 following after disappearance of aqe  which occurs considerably 

slower than the primary process, is in favor of the existence of the bound two-electron species. 

Further experiments of flash photolysis [72] have confirmed the existence in aqueous solution of 

2)( aqe .  As it was shown in Refs. [9, 10] the transitions )21()1( 121
zpss  and 

)21()1( 121
iyxpss   will be most probably (oscillator strength in dipole approximation will be 

following: 7.0f ) where the z axis coincides with the symmetry axis of Landau-Pekar bipolaron; 

the indices in parentheses on the spectroscopic symbols  signify single-electron states, arising on 

adiabatic propagation of aqe  at the distance R . 

In Figure 6 the electronic terms of the bound two-electron species are given as functions of 

the distance R. Let us examine the dipole-allowed transition: )21()1( 121
iyxpss  , the 

frequency of which at the maximum of the absorption band in correspondence with the Frank-

Condon principle we determine from the relation of Pekar [11]: 


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here  21
0 21026.1 cE   ,  22

1 2108.6 cE    are the self-consistent total 

energies of the initial and final electronic states, respectively. The energy of reorganization of the 

polarization state of the polar medium as a result of the photo-transition ( 10 ) is determined 

from the relation 
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Here the Fourier transformation of the electron distribution in the state with two-electron 

function ),( 21 rr :  

212
2

211 )exp(|),(|)(  ddikrrrk  . 

The characteristic frequency   of the long-wavelength longitudinal optical vibrations of the 

dielectric medium which are usually bound with elastic displacements of the molecular dipoles 

around their equilibrium positions can be estimated from the half-width 2/1W  of the optical 

absorption spectrum of a large polarons. In the low-temperature limit (n< 1)  

2ln2 1
02/1 AW  .                                   (22) 

Here the energy of reorganization of the polar medium 1
0A  relates to the ps 21   photo-

transition of the polaron. Taking into account experimental value eV29021 .W /  [72] from Eq. 
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(22) we find   = 2.2·1013 sec-1. The value obtained of   is within the limits determined from 

Fröchlich phenomenological dielectric model for resonance absorption in a polar liquid   = 

7·1012 sec-1 and estimates from dispersion curves   ≈ 6·1013 sec-1. 

Considering that the photo-transition is performed from the minimum (

2/1*1
0 )/(32.4  mR c  ) of the )1( 21 s  ground term (Fig.6; curve 1), i.e., it is neglected the 

intrinsic vibrational – rotation structure of the bipolaron for the temperature conditions usual in 

experiments T = 298K from Eq. (20) we obtained:  eV411210816 22
1 .. c     . This 

corresponds to the wavelength of  mincalc nm877   .  As it is not difficult to see from Figure 

6, the final term )21(1
iyxps   (Fig. 6; curve 5) is repulsive in the entire interval of distances R, 

which finally leads to photo-dissociation of a large bipolaron. For the photo-transition  

)21()1( 121
zpss   the situation turns out to be different. The energy of the electron transition 

we calculated by using Eq. (20) equal to eV3712 . . This corresponds to the wavelength of 

mincalc nm905   . After the photo-transition the electronic subsystem turns out to be in a 

nonequilibrium state and during the time 1   is relaxes to the minimum of the term 

)21(1
zps  (Fig. 6; curve 3) through which the repulsive triplet term )1( 23 s  (Fig. 6; curve 2) 

passes. In the vicinity of the crossing point of the terms due to interactions acting on the spin 

variables (for example, transverse optical vibrations of a polar medium [73] generating an 

oscillating magnetic field). Intercombinatory singlet-triplet transition )21(1
zps ~> )1( 23 s  are 

possible with a high probability. 

With a lowering of temperature the absorption band is shifted into the long-wavelength 

region and for T = 80 K at the maximum of the absorption band eV2613 .  ( nm982calc  ). 

Theoretical wavelength is close to the experimental value nm1000exp  [72]. At the same time 

the wavelength corresponding to the energy of photo-ionization ( 22**4 /178.0 meI  ) of 

bipolaron turns out to be considerably shifted into the short-wave length region: 

mincalc nm340   . Bipolaron formation is accompanied by a shift of the maximum of 

absorption band at longer wavelengths region with respect to the band of the hydrated electron (

eV[72]73.1)(Ωmax aqe ). 

Now that, using the system of electronic terms of Landau-Pekar bipolaron (Fig.6), we will 

compare the experimental optical characteristics of the bipolaron in ammonia ( 075.1/*  ) 

with the theoretical calculations. It has been experimentally established [55, 56] that the 

maximum of the bipolaron in ammonia optical absorption band is shifted to longer wavelengths as 
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compared to that of an isolated polaron. The most probable dipole-allowed optical transition will 

be )21()1( 121
zpss  . The optical transition is assumed to take place from the minimum of the 

ground term: 2/1*1
0 )/(1.5  mR c  . The total self-consistent energies of the initial and final 

states are:  21
0 210158.1 cE   ,  22

1 21077.8 cE   , respectively; 

 221
0 21068.8 cA   . Since the optical measurements for ammonia is usually carried out at 

225 K we obtain from Eqs. (20) following energy: eV7701 . . Details of the calculations are 

shown in the publications [54, 74].  

The transition )21()1( 121
iyxpss   is also possible. In this case, for the self-consistent 

final state we have  22
1 2105.6 cE   ,  221

0 2107.2 cA   , and the transition energy 

is eV8402 . . Thus, the maximum of the bipolaron absorption band in both the first and 

second case is close to the photo-transition experimental maximum polaron in the ammonia 

system eV8850)21( .ps  and, as expected the shift takes in the long-wavelength region. 

The measurement of the position of the absorption band maximum of the bipolaron, carried out in 

[55, 56] gives the value eV810exp .  which is within the range of calculated frequencies. 

Since the absorption spectrum of a large bipolaron is significantly broadened the bands of the 

transitions )21()1( 121
zpss   and )21()1( 121

iyxpss   overlap appreciable and the 

theoretical maximum of the resulting band turns out to be precisely in the 0.81–0.82 eV energy 

range. This value is very close to the experimental value. Axially symmetric model of a large 

bipolaron allows us to interpret other experimental data, such as concentration and temperature 

dependence of the magnetic properties of polarons [75]. 

Further, it will be shown that the axial-symmetric model of Landau-Pekar bipolaron can 

correctly interprets experimental data. It has been established also experimentally [61, 69] that 

electrons in metal-ammonia systems tend to form bound two-electron species of bipolaron type of 

fairly high dissociation energy D = 0.15-0.2 eV, these species being independent of the nature of 

the dissolved metal and not bound to the initial cation of metal [64]. For bipolaron in ammonia 

theoretical estimates [9, 28, 29, 74] give the following value: D = 0.14-0.16 eV. 

 

5. CONCLUSION 

This shift of optical band is confirmed by theoretical calculations for a two-center Landau-

Pekar bipolaron [54, 74] and it is in complete agreement with the observed change in the optical 

absorption spectrum when passing from two separated (R → ∞) hydrogen atoms (spherically 

symmetrical) to a hydrogen molecule (axisymmetrical) [76], i.e., at the change from a spherically 
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symmetrical object to an axisymmetrical one. This rule is observed for other quantum physical 

objects. For example, a similar shift in the long wavelength region of the optical spectrum was 

noted for quasi-molecular biexciton with respect to the spectrum of the exciton [77]. However, 

for the one-center small bipolaron, which analogous to a helium atom, expected shift of the optical 

absorption maximum would occur to the opposite (short-wavelength) region of the spectrum. 

This is confirmed by experiment [78].Thus, inclusion of electron-electron correlation does not 

change the axial symmetry of the Landau-Pekar bipolaron, which corresponds to the zero-order 

approximation, and one-center bipolaron remains unstable. Obviously, both theoretical 

considerations and experimental observations do not confirm the stability of the spherically 

symmetrical model of bipolaron which is proposed in the works [7, 8]. 
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Figure-1. Distance dependence of the electronic kinetic energy of two-center large bipolaron: (1) 

in zeroth approximation and (2,3) solutions with allowance for electron-electron orrelations: (2) 

an additional 2p2 configuration and (3) two additional electron configurations 2p2 and 1s2p. 

 

 

Figure-2.  Line 1 is the total energy of the bipolaron in Hartree-Fock approximation (zeroth 

approximation); line 2 is the energy of the bipolaron after accounting for electron correlations. 

The figure was taken from Ref. [7]. 
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Figure 3. Distance dependence of the correlation contribution to the two-center bipolaron 

binding energy calculated for 1.05/* εε  with the addition to the Hartree-Fock approximation 

of (1) one electronic configuration (1s2p) and (2) two configurations (1s2p) and (2p2). 

 

Figure-4. Binding energy of a large two-center bipolaron ( 001./*  ) in the ground singlet 

stateas a function of the interpolaron distance.  Electronic wave function was chosen in the form 

(19). (1) – C1 = C2 = C3 = 0 (zeroth approximation); (2) – C1 ≠ 0, C2 = C3 = 0;  (3) –  C1 ≠  0, C2 ≠ 

0, C3 = 0; (4) – C1 ≠ 0, C2 ≠  0, C3 ≠  0;   (5) – triplet state of a large bipolaron. 

 

Figure-5.The binding energy of the singlet large bipolaron as a function of distance 

between polarons.  The calculations are made taking into account the electron-electron 

correlations by using wave function (19).  /*  = 1.00 (1), 1.02 (2),1.05 (3), 1.08 (4), 1.10 

(5). 
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Figure-6. The ground state and relaxation-excited quasi-molecular terms of the two-center large 

bipolaron ( 0751./*  ). We took into account the electron-electron correlations by 

superposition of electronic configurations. (1) – )1( 21 sg ; (2) – )1( 23 su ; (3) – )21(1
zg ps ; (4) – 

)21(3
iyxu ps  ; (5) – )21(1

iyxg ps  ; (6) – )2( 21
zg p ; (7) – )2( 21

iyxg p  ; (8)– )21(3
zg ps . 
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