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Classical continuum theories restrict the response of the continuum stringently to local 
actions, thus these theories are not capable to explain some phenomena precisely where 
the length scales are often sufficiently short as in nanostructures where it is required to 
consider the small length scales. This paper within the framework of nonlocal elasticity 
is concerned with the study of wave-surface features in nonlocal elasticity for cubic 
crystals. The nonlocal Christoffel equation of wave motion is derived and dispersion 
relations are obtained. The present model predicts some notable features of the 
dispersion relations in cubic crystals in comparison with classical local model. By 
considering the wave and slowness surfaces in [100], [110], and [111] planes of cubic 
crystals a perceptible change is observed with nonlocality parameter. In nonlocal 
theory longitudinal and transverse waves, become dispersive and influenced by non-
locality parameter, whereas theses waves are non-dispersive in its counterpart classical 
theory (local theory).  It is found that phase and group wave velocities for longitudinal 
and transverse modes are influenced by the nonlocality parameter only when its value 
is greater than 0.001. Numerical calculation for crystals Silicon (Si), Aluminum (Al), 
Copper (Cu), Nickel (Ni), Gold (Au) are carried and found that velocities of longitudinal 
and transverse waves continuously decreases with increases of non-locality parameter. 
Polar diagram and wave’s surfaces for phase and group velocities (m/s) of longitudinal 
and transverse and slowness surfaces are represented graphically in nonlocal elasticity.   
 

Contribution/Originality:  This study originates a generalized nonlocal Christoffel equation in the nonlocal 

theory of elasticity. Influences of nonlocal parameter () on the wave’s spectrum, anisotropy factor, slowness 

surfaces in various directions are investigated. The results obtained are exhibited in the tabular forms and 

represented graphically considering cubic crystals.  

 

1. INTRODUCTION 

In the conventional continuum mechanics, linear theory of elasticity is inherently size independent and predicts 

no dispersion and is valid only for small wave numbers.  Elastic strain, the stress and the elastic strain energy of 

defects are singular at the imperfection line. Undoubtedly, if one makes use of classical elasticity within the 

imperfect region, then such unphysical singularities then the penalty has to be compensated. Because of such 

limitations, we need to consider the small length scales such as lattice  spacing between individual atoms, grain size, 

the nonlocal elasticity theory pioneered by Edelen and Laws [1]; Edelen, et al. [2]; Eringen and Edelen [3]; 

Eringen [4] and Eringen [5]; Eringen [6] which state that the local position at a point is influenced by the action 
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of all particles of the body. Edelen [7] published a treatise in which he gave a rigorous comprehensive analysis of 

the foundations of nonlocal theories. 

In classical (local) elasticity, several researchers Miller and Musgrave [8]; Musgrave [9]; Farnell [10]; Brugger [11];  

Musgrave [12]; Buchwald and Davis [13] and Mielnicki [14] in the past splendid introduction of the fundamental 

concepts is explained and studied  the wave surfaces.  Philip and Viswanathan [15] studied the behavior of the sections of the 

inverse velocity surfaces and found that a large number of cubic crystals exhibit cuspidal edges for the sections of energy 

surfaces along the (100), (110) and (111) directions. Narasimha and Viswanathan [16] studied elastic wave surfaces for the 

(111) plane of cubic crystals. Since all these studies are in accomplished in traditional classical continuum mechanics 

models, which are scale free or size-independent, and its application to extended wave limit according to the atomic 

theory is not capable to explicate the small nanoscale size effect Gurtin and Murdoch [17]; Gleiter [18]; Lim, et al. 

[19]. Consequently, properties which are associated with nanostructures like lattice spacing between atoms, grain 

size, surface stress, etc., must be taken into consideration in any of the classical continuum models to study the 

requirement of size-dependence and which is applicable to micro and  nano structures. Recently, authors Khurana 

and Tomar [20]; Dilbag, et al. [21]; Kaur, et al. [22] studied waves problems microstretch solid, micropolar elastic 

solid half-space, and with voids in the context of nonlocal theory. Slowness is defined as the inverse of velocity and 

slowness surfaces, by means of  Christoffel equation for the wave propagation in elastic media, displays many 

interesting features as in Buchwald and Davis [13]; Lin, et al. [23]; Fein and Smith [24].  Slowness surface has an 

vital physical significance as a succinct graphical representation of the variation of all types of velocity with respect 

to direction of the slowness vector and is used as a pictographic to explain. Slowness surface are two-dimensional 

entities in three-dimensional space.  Studies  of  elastic  waves  in  such simple  and  mostly  isotropic  systems  are  

widely  available  in  the  books [25-30]. Verma [31] studied the thermoelastic slowness surfaces in anisotropic 

media with thermal relaxation in the local generalied thermoelasticity. 

In the present work, due to the establishment of the nonlocal theory, the aspects of wave quantities required in 

constructing wave fields propagating elastic media are calculated as a function of the slowness vector or of its 

direction called the wave normal.   Based on the nonlocal theory of elasticity by Eringen, analysis  of some 

interesting wave-surface features are studied for an elastic materials of cubic symmetry. Longitudinal and 

transverse waves, become dispersive but non-attenuating and influenced by non-locality parameter in this nonlocal 

theory, whereas theses waves are non-dispersive in its counterpart classical continuum mechanics theory (local 

theory).  Wave and slowness surfaces are studied in [100], [110], and [111] planes of cubic crystals. It is found 

that phase and group wave velocities for longitudinal and transverse waves are affected only when the magnitude 

non-locality parameter is greater than or equal to 0.001and decreases with increases of non-locality parameter. 

Phase and Group velocities (m/s) of longitudinal and transverse wave’s surfaces polar diagram of phase velocity 

(m/s) and slowness surfaces are also represented graphically in nonlocal elasticity materials for Silicon(Si), 

Aluminum (Al), Copper (Cu), Nickel (Ni), Gold (Au). 

 

2. NONLOCAL ELASTICITY THEORY 

Recognizing an Eringen-type nonlocal differential model [5] the stress may be associated with the 

displacement in the analogous case of nonlocal elasticity. The integral constitutive relations can be represented in a 

linear differential form as an Eringen type differential model for the nonlocal elastic media as: 

  2 21 ij ij      (1) 

Here recognizing an Eringen-type nonlocal differential model [5] the stress may be associated with the 

displacement in the analogous case of nonlocal elasticity. In the Equations 2 ij and ij  are nonlocal and local 
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stresses, respectively;    0e a is the nonlocal parameter wherein a is an internal characteristic length (lattice 

parameter, granular size or molecular diameters) and e0 is a material constant evaluated by the experiment;
2 is 

Laplacian operator. 

The basic constitutive equations of linear, homogeneous of nonlocal elastic solid are given as: 

Equations of motion 

 
,ij j i if u     (2) 

        ij ij

V

x x x x dV x       (3) 

Stress-strain relations 

 
ij ijkl klc e  ,    i, j, k, l = 1,2, 3,     (4) 

Strain-displacement relations 

                                                  
, , 2kl k l l ke u u    (5) 

Where V  is the region occupied by the body,  x x   is nonlocal kernel function and x x denotes the 

distance between the reference point x and any neighbor point x in the continuum body; the fourth order tensor of 

the elasticity 
ijklC  satisfies the (Green) symmetry conditions:   

  ijklc  = 
klijc  = 

ijlkc  =
jiklc , , ,        

                                                 (6) 

By substituting Equations 1 to 6 into Equations 1 the resulting equations governing dynamic processes in 

nonlocal elasticity in the absence of body forces  are then written as can be written as 

           
  2 2

, 0( ) 1ij j ie a u   u                                                                                         (7) 

 

3. NONLOCAL CHRISTOFFEL EQUATION AND ANALYSIS 

In the nonlocal theory of elasticity, elasto-dynamical Equation 7 describing the inertial forces can be written 

with (the displacement) as 

                     

 
2 2

2 2

2
1k i

ijkl

j l

u u
C

x x t
 

 
  

  
,                                                                                  (8) 

where    0e a is the nonlocality parameter defined in (1).   

The displacement of plane wave can be described by any harmonic form as a function of time (e.g. Fedorov [32]) 

                           
exp[ ( )]j ju U i ct n.x

                                                                                            
(9) 
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where  is the wave number, c  is the phase velocity ( =   ),   is the circular frequency, 
jU  are the constants 

related to the amplitudes of displacement, kn  (k  = 1, 2, 3)  are the components of the unit vector n  giving the 

direction of propagation. Inserting Equation 9 into Equations 8 generates the Christoffel equation of the form in 

nonlocal elasticity, we have   

                                                           ik kU  0                                                                                  (10) 

  where  

                                                 2 2 21ik ik ikc                                                                    (11)                                    

Equations 10 can be rewritten in the matrix form as   

                                                              
2V   Γ I U 0                                                                     (12) 

Equation 12 is a general nonlocal Christoffel equation, where I  is an identity matrix of order 3 and 

 2 2 2 21V c    , in which  ik  is the Kronecker delta, and ik  are the Christofied stiffness as follows: 

                                     ik ki ijkl j lC n n                                                                                      (13) 

Here, n is the unit vector in the slowness direction; summation over repeated indices is implied. The Christoffel 

Equation 12  describes a standard eigenvalue 
2V  eigenvector (U) problem for the matrix  , with the eigenvalues 

are determined by 

                                                          det 0ik                                                                                (14)   

Therefore the eigenvalue solution is performed on the nonlocal Christoffel Equation 14. Specializing the above 

Equations 10-14 for a elastic solid of a cubic symmetry, which has three elastic constants 11 12,C C  and 44C , 

consequently the local stress tensor kl  obeys 

    11 11 11 12 22 33( )C e C e e   
, 22 12 11 33 11 22( )C e e C e     

    33 12 11 22 11 33( )C e e C e    , 23 44 232  C e
, 13 44 132  C e

, 12 44 122  C e
              

  (15) 

Equation 15 represents the stress-strain relation for an elastic solid of a cubic symmetry, 

The strain tensor kle  for an elastic medium is defined as 

                     
 , ,

1

2
kl k l l ke u u  .                                                                                           (16) 

Equation 16 are the strain tensor represents the relation in terms of displacement parameters. 

Using (15), (16) in (13) we have  

  
   2 2 2

11 11 1 44 2 3( )C n C n n  
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      12 12 44 1 2 21( )C C nn  

     13 12 44 1 3 31( )C C nn  

   2 2 2
22 11 2 44 1 3( )C n C n n                                                                                                              

 

     23 12 44 2 3 32( )C C n n  

    2 2 2
33 44 1 2 11 3( )C n n C n

 

Equation 12 leading to the cubic equations in      2 2 2 21V c  for the wave velocity 
 

              
   3 2

1 2 3 0V FV FV F                                                                                               (17) 

Where 

   1 11 442F C C , 

            2 2 2 2 2 2
2 44 11 44 1 2 3 3 3 1 12 44 11 12 442 2F C C C n n n n n n C C C C C , 

        

        

          

      

2 24 4 4 6 6 6 2 2 2
3 44 12 44 1 2 3 1 2 3 1 2 3 44 11 12 12 44

2 2 2 2 2 2
11 1 44 1 12 2 44 2 11 3 44 3

(2 3 2 )

     1 1 1

F C C C n n n n n n n n n C C C C C

C n C n C n C n C n C n
 

The roots of Equation 17 can be studied and represented graphically as three unique velocity surfaces in the 

nonlocal elasticity for any cubic material. It is convenient to examine and study the waves and slowness surfaces in 

[100], [110], and [111] planes of cubic crystals in nonlocal elasticity, intersection of these surfaces with the three 

principal orthogonal planes can be investigated in nonlocal elasticity. Relationships describing the wave velocity 

surfaces in the context of nonlocal elasticity for each plane can be derived using (17). 

 

3.1. Propagation along a Cube Face 

For propagation in the plane of a cube face (001), the above equations are simplified by 

considering 1 2 3cos( ), sin( ),  0n n n    , where   is the angle between the propagation directionn  and the 

axis [100] of the crystal.  Consequently, Equation 14 become 

 

 

 

  

  

  

   

    

  

2 2 2 2 2
11 1 44 2 12

2 2 2 2 2
12 11 2 44 1

2 2 2 2 2
44 1 2

1 0

1 0 0.

0 0 ( ) 1

C n C n c

C n C n c

C n n c

    (18)

 

Equation 18  describes the Christoffel’s nonlocal equation for the wave propagation along a cube face.   

Simplifying (18) we obtain 

  
  

 
   

 

  

     

 
 
 

      
   
      

2
2 2 2

2 2 2 2 2 2 4 4
44 11 44 1 2

11 44 2 2 2
11 44 12

1

1 0.1

c

c C c C C n n
C C

C C C

 (19)
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Equation 19 demonstrate that a transverse wave polarized along OX3, with velocity 

     2 2
44 1 ,tc C  independent of the angle  , influenced by the nonlocality parameter ()  for any 

propagation direction in the (001) plane.
             

 

Solutions for the other two velocities for quasi-longitudinal and quasi-transverse waves are obtained by solving 

the second factor of Equation 19 we obtain  

          
1

22 22 2 2 2 2 2 2

, 44 11 11 44 1 2 12 44 1 24 2 1 .ql qtc C C C C n n C C n n c          
  

           (20) 

These curves exhibit the maximal symmetry of the cubic system - the stiffness tensor has the same form for all 

cubic classes, and so is invariant for the symmetry operations in the holosymmetric class. The velocity of the quasi-

transverse wave has extrema in the [100] and [110] directions, given by 

 
 

 
 

44 11 12

2 2 2 2
100 , 110 .

1 2 1
qt qt

C C C
c c

     


 

 
                                                                      (21) 

Clearly these have dependence on the non-locality parameter. When 0  or  2   refers to a pure 

longitudinal transverse wave in nonlocal elasticity.  In all other directions, equation (20) remains coupled and give 

velocities for quasi-longitudinal and quasi-transverse waves. 

 

3.2. Propagation in a Diagonal Plane 

In order to study the wave propagation in the (111) plane, it is convenient to transform to a new set of axes 

1 2,X X   and 3X   such that the 1X   axis coincides with the (111) direction of the cubic diagonal; then the 2 3X X   

plane would represent the (111) symmetry plane.  On considering the diagonal plane (110) , the suitable axes 

1 2 3OX X X    can be obtained by rotation through  
4


 about 3OX from the 1 2 3OX X X . These enable the 

velocities to be expressed in terms of 11 12,C C  and 44.C
 
The velocity of the transverse wave is 

 
      

  
    

2 2
44 11 122 2

1
cos s 2

1
tc C C C in                                                       (22) 

and the velocities of the quasi-longitudinal and quasi-transverse waves, respectively 
qlc  and 

qtc  are given by 

 

   

         

 

  
  

    
   
  

  
           

2 244 11 12
44 11

, 2 2
22 2 211 12

44 11 12 44

2
s cos

21

2 1
s cos s 2

2

ql qt

C C C
C in C

c
C C

in C C C C in

 .    

(23) 
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Clearly tc , Equation 22 , and 
qlc  and 

qtc  in Equation 23  are influenced by the nonlocality parameter () for 

any propagation in a diagonal plane.   

Equation 23 shows that tc  corresponds to a pure transverse wave. In nonlocal elasticity, become dispersive but 

non-attenuating and are influenced by non-locality parameter, while theses waves are non-dispersive and non-

attenuating in its counterpart local theory of elasticity. It can be seen that the transverse wave in nonlocal elastic 

solid travels slower than that of longitudinal wave even in the presence non-locality parameter likewise as in case of 

classical continuum mechanics. 

 

3.3. Wave Surface along a Cube Edge 

 If we consider the problem of progressive waves propagation along the [001] edge of a cubic crystal, we take 

 1 2 0n n  and 3 1n . In this case the dispersion Equation 17 has the form: 

                      2 2 2 2 2 2 2 2 2
44 44 111 1 1 0C c C c C c .                (24) 

Equation 24 demonstrate that in the case of waves surface along a cube edge waves polarized are in the plane 

(001) on mutually perpendicular directions, one wave corresponds to pure longitudinal and two waves corresponds 

to a pure transverse waves.  Clearly all the waves are dispersive and are influenced by the nonlocality parameter 

 

 3.4. Wave Surface along a Cube Face Edge 

On considering the problem of plane waves propagation along the (001) plane of a cubic crystal the problem of 

waves propagation along the [001] edge of a cubic crystal, we take   1 2cos( ), sin( )n n  and 3 0n , 

where   is the angle between the propagation direction n and the [100] axis of the crystal. In this case the 

dispersion Equation 21 has the form: 

 
                       

2
2 2 2 2 2 2 2 2 2

44 1 1 1 0.C c c A c B
             

 (25) 

where 

   11 44A C C ,       2 2
11 44 1 2 cos sB C C FF in , 

  1 11 12F C C   2 12 44 112F C C C . 

As regards the polarization of the waves, Equation 25 demonstrates that in this case one wave corresponds to 

corresponds to a pure transverse wave.  The remaining two waves are polarized in the plane (001) on mutually 

perpendicular directions, one being quasi-transverse, and the other quasi-longitudinal. It is interesting to note that 

the directions of polarization of the last two waves are influenced by the nonlocality parameter. 

 

3.5. Special Case 

Cubic symmetry with  1 2
1

2
n n . Equation 19 degenerates into one longitudinal, and two 

transverse waves      2 2
1 44 1c C , 
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         2 2
2 11 12 2 1c C C and 

          2 2
3 11 44 122 2 1 .c C C C All these waves are dispersive and depends on the nonlocality 

parameter. 

Where the nonlocality parameter    0 0e a , then Equation 19 reduces to   44) ,tc C
  

  
1

22 2

, 44 11 66 11 4 2 ,ql qtc C C C C A c     
  

                                                                       (26) 

 

which are wave velocities of  longitudinal and transverse waves  in the classical continuum mechanics theory, 

(local theory) which becomes non-dispersive non-attenuating.  

 

4. PHASE AND GROUP VELOCITIES  

The phase vectors depict the direction of the phase velocity whereas group vectors depict the direction of the 

group velocity. Based on the definition of phase velocity  pc , we can replace  . pc , then we obtain 

group velocity as  
   


  

 
   
  

. p p

g p

c c
c c .                      (27) 

Equation 27 represents the relation phase velocity whereas group velocity. 

From Equation 26 we observed that tc  remain in pure modes and 
qlc , 

qtc  ( longitudinal and transverse 

waves) become dispersive in nonlocal elasticity and are influenced by non-locality parameter. Waves are 

propagating in a dispersive medium; they will have different velocities and thus the superposed wave will have a 

phase velocity 
pc   that is different from its group velocity

gc . If, p gc c , exhibiting that dispersion is normal. In 

case of classical (local) continuum mechanics when the non local parameter    0 0e a , then p gc c (m/s) 

(longitudinal wave) and p gc c (m/s) (transverse wave) for cubic materials. Thus waves are non-dispersive in its 

counterpart local theory of elasticity.  

 

5.  SLOWNESS SURFACE 

For   0  (i.e. [100] axis), cubic symmetry with  1 21, 0,n n   from relations (21) yields the wave 

               
 

2
2 2 2 2 2 2

44 111 1 0C c C c .                                                   (28) 

In this case waves are polarized in the plane (001) on mutually perpendicular directions, from Equation 28, it is 

observed that one wave corresponds to pure longitudinal and two waves corresponds to a pure transverse waves.  

Clearly all the waves are dispersive and are influenced by the nonlocality parameter ( ). 

For 


 
2

 (i.e. [010] axis), cubic symmetry with  1 20, 1,n n  from relations (21) we obtain the following 

wave velocities:  
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                          
 

2
2 2 2 2 2 2

44 111 1 0.C c C c                                                      (29) 

In this case, from Equation 29, it is observed that one corresponding to a pure longitudinal wave, and the others to 

a pure transverse waves and are influenced by the nonlocality parameter ( ).. 

For 


 
4

 (i.e. [110] axis) cubic symmetry with  1 2
1

2
n n . Equation 21 degenerates into one 

longitudinal, and two transverse waves      2 2
1 44 1c C , 

         2 2
2 11 12 2 1c C C and 

          2 2
3 11 44 122 2 1 .c C C C All these waves are dispersive and depends on the nonlocality 

parameter. 

Where the nonlocality parameter    0 0e a , then Equation 23 reduces to   44) ,tc C
  

  
1

22 2

, 44 11 44 11 4 2 ,ql qtc C C C C A c     
  

                                                                                (30) 

 

Equation 30 exhibit that wave velocities of  longitudinal and transverse waves  in the classical continuum 

mechanics theory, (local theory) which becomes non-dispersive non-attenuating. Where the nonlocality 

parameter    0 0e a , results in (25)-(27) reduce to the corresponding local elasticity. 

Equation 17 is a cubic characteristic polynomial equation in  
2V   in nonlocal elasticity, and hence has three 

eigenvalues corresponding to a longitudinal wave, and two transverse waves in the same manner as in local case. 

The largest eigenvalue of Equation 17 corresponds to the longitudinal wave propagation an is uniquely defined, 

because the velocity of the longitudinal wave is always greater than those of the transverse.  Therefore the slowness 

sheet is the innermost one and is away from the other two which are coincident (in isotropic case) is a function of 

non local parameter. Further the polarization vector of the longitudinal wave is tangent to the wave front normal 

and the polarization vectors of the transverse waves are normal vector of the longitudinal wave, with the three 

eigenvectors forming an orthogonal system.  

 

6.  NUMERICAL DISCUSSION 

The numerical computation is carried out over cubic materials. Physical data of the substances that crystallize 

in the cubic system has only three independent stiffness constants are given in Table 1. 

From the Equation 21 the velocity of the quasi-transverse wave has extrema in the [100] and [110] directions, 

in which propagation direction [100]; Polarization[100] (Longitudinal) and (100) plane (Transverse) velocity is 

given by in Table 2.  From the table values for crystals Silicon(Si), Aluminum (Al), Copper (Cu), Nickel (Ni), Gold 

(Au) found that velocities of longitudinal and transverse waves continuously decreases with increases of non-

locality parameter when it is greater than 0.001 and the no change is observed when non local parameter is less 

than 0.001.  
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In Table 3, propagation direction [110]; polarization[100] (longitudinal) and [110] plane (transverse) and 

and [001] (transverse)  velocity: 

 
11 12 44

2 2

2

2 1
L

C C C
C

  

 



 (longitudinal),

 
 
11 12

1 2 22 1
T

C C
C

  





 

 
44

2 21
T

C
C

  



  (Transverse) with nonlocality parameter () for the Cubic Crystals in Table 1 is 

tabulated. It is observed that wave velocity pattern of TC (Transverse)  exhibits no change as in the previous case, 

whereas LC   remain slight faster in this case for all values of the non local parameter from the previous case, at the 

same time 1TC  remain slower than both the TC  and LC  . Velocities of longitudinal LC  and transverse ( LC , 1TC ) 

waves continuously decreases with increases of non-locality parameter, when it is greater than 0.001 and the no 

change is observed when non local parameter is less than 0.001. In this case relation among the three velocities is 

1T T LC C C  in nonlocal elasticity. 

In Table 4, propagation direction [111]; polarization[111] (longitudinal) and (111) plane (transverse) velocity: 

 
11 12 44

2 2

2 2

3 1
L

C C C
C

  

 



 (longitudinal),

 
 

11 12 44

2 23 1
T

C C C
C

  

 



  with nonlocality parameter () for the cubic 

crystals in Table 1 is tabulated. In this case, similar behavior is observed as in the previous case for all values of non 

local parameter (which were taken Table 2, Table 3).  In this direction longitudinal wave speed is higher than the 

previous values, and exhibit the same behavior but with different speeds. 

Using the data in the Table 1 the velocity of the quasi-transverse wave has extrema in the [100] and [110] 

directions, depends upon nonlocality parameter () given by 

     
 

44

2 2
[100]

1
T

C
C

  



, 

 
11 12

2 2
[110] ,

2 1
T

C C
C

  





   

44

11 12

[100] 2

[110]
T

F

T

C C
A

C C C
 


The ratio of 

these values is independent of non local parameter () 

Here FA  is the anisotropy factor for crystals of a cubic symmetry, which is clearly not influenced by the non 

local parameter. Table 5 tabulate the anisotropy factor of crystals in Table 1 of a cubic symmetry. 

Figures 1 to Figure 3 exhibit the wave surfaces of quasi-longitudinal, quasi-transverse and transverse for 

silicon for the nonlocal parameter 0,  0.01,   and 0.5.  

Figures 4 to Figure 6 display the slowness surfaces of quasi-longitudinal, quasi-transverse and transverse for 

silicon for   nonlocal parameter 0,  0.01,   and 0.1. 

Variation of phase velocity speed with nonlocality parameter for Gold (Au), Silicon(Si), Aluminum (Al), Copper 

(Cu) and Nickel (Ni) with  angle 4   is plotted in Figures 7 to Figure 11 respectively. These figures show 

that there is steep gradient in the neighborhood of 0.01   in all of these curves before tends to become 

horizontal.  
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Further variation of phase wave speed with nonlocality parameter for Nickel (Ni) and Silicon(Si), with  angle 

2  and  
00  is exhibited in Figures 12 to Figure 13 respectively. In Figure 14, phase and group velocities 

variation with nonlocality parameter for quasi-longitudinal, quasi-transverse and transverse for Silicon(Si) when 

angle   between the propagation direction is  4  is plotted.  

Slowness surfaces for all the three modes in the absence of nonlocality parameter for Silicon(Si), Cupper (Cu), 

Nickle (Ni) and Gold (Au)  when propagation direction is in a diagonal plane is plotted in Figures 15 to Figure 18 . 

 

Table -l.  Physical constants of cubic crystals in  10 210 N/m  or  11 210 dynes/cm  and density is in  3g/cm
.
 

Cubic Crystals 
Material  11C

 

 10 210 N/m
 

12C
 

 10 210 N/m
 

44C
 

 10 210 N/m
 


 

 3g/cm
 

Silicon(Si) 16.56 6.39 7.59 2.329 
Aluminum (Al) 10.73 6.08 2.83 2.709 

Copper (Cu) 17.0 12.0 7.55 8.93 
Nickel (Ni) 25.3 15.5 12.4 8.90 
Gold (Au) 19.25 16.30 4.24 19.3 

Source: Physical constants of cubic crystals Fedorov [32]. 

 

Table-2. Propagation direction [100]; Polarization[100] (Longitudinal) and (100) plane (Transverse) Velocity: 

 
11

2 21
L

C
C

  




 

(Longitudinal), 

 
44

2 21
T

C
C

  




  (Transverse) with nonlocality parameter () for the Cubic Crystals in Table 1. 

Nonlocality parameter  Velocity 

Si 
(m/s) 

Al 
(m/s) 

Cu 
(m/s) 

Ni 
(m/s) 

Au 
(m/s) 

 
 

31.10   

LC  

 

TC  

8432.29 6293.55 4663.14 5331.69 3158.18 

5842.5 3232.13 2907.69 3732.64 1482.19 

0.01   

LC  

 

TC  

8431.87 6293.23 4362.92 5331.43 3158.02 

5842.21 3231.97 2907.54 3732.45 1482.12 

0.1   

LC  

 

TC  

8390.44 6262.31 4341.48 5305.23 3142,51 

5813.51 3216.09 2893.26 3714.11 1474.84 

0.5   

LC  

 

TC  

7542.07 5629.12 3902.51 4768.81 2824.76 

5225.69 2890.9 2600.71 3338.57 1325.71 

1   

LC  

 

TC  

5962.53 4450.21 3085.2 3770.08 3770.08 

4131.27 2285.46 2056.05 2639.37 1048.07 

1.5   
LC  

TC  

4677.39 3491.03 2420.23 2957.49 1751.84 

3420.84 1792.86 1612.89 2070.49 822.17 
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Table-3. The velocity of the quasi-transverse wave has extrema in the [100] and [110] directions, given by propagation direction [110]; 

polarization[100] (longitudinal) and [110] plane (transverse) and  [001] (transverse) velocity: 

 
11 12 44

2 2

2

2 1
L

C C C
C

  

 




 

(longitudinal),

 
 
11 12

1 2 22 1
T

C C
C

  





 

 

 
44

2 21
T

C
C

  




  (transverse) with nonlocality parameter () for the cubic crystals in Table 1. 

Nonlocality parameter  Velocity 

Si 
(m/s) 

Al 
(m/s) 

Cu 
(m/s) 

Ni 
(m/s) 

Au 
(m/s) 

 
 

31.10   

LC  

TC
 

1TC  

9132.62 6439.94 4969.11 6070.74 3377.39 

5842.50 
4672.62 

3232.13 
2929.59 

2907.69 
1673.19 

3732.64 
2364.40 

1482.19 
874.21 

0.01   

LC  

TC
 

1TC  

9132.17 6439.62 4968.86 6070.44 3377.22 

5842.21 
4672.39 

3231.97 
2929.44 

2907.54 
1673.10 

3732.45 
2346.29 

1482.12 
874.17 

0.1   

LC  

TC
 

1TC  

9087.30 6407.98 4944.45 6040.62 3360.62 

5813.51 
4649.43 

3216.09 
2915.05 

2893.26 
1664.88 

3714.11 
2334.76 

1474.84 
869.87 

0.5   

LC  

TC
 

1TC  

8168.47 5760.06 4444.51 5429.84 3020.83 

5225.69 
4179.32 

2890.90 
2620.31 

2600.71 
1496.54 

3338.57 
2098.69 

1325.71 
781.92 

1   

LC  

TC
 

1TC  

6457.74 4553.73 3513.69 4292.66 2388.17 

4131.27 
3304.04 

2285.46 
2071.53 

2056.05 
1183.12 

2639.37 
1659.16 

1048.07 
618.16 

1.5   

LC  

TC
 

1TC  

5065.87 3572.24 2756.37 3367.44 1873.44 

3420.84 
2691.90 

1792.86 
1625.04 

1612.89 
928.12 

2070.49 
1301.55 

822.17 
484.93 

 

 
Table-4. Propagation direction [111]; Polarization [111] (Longitudinal) and (111) plane (Transverse) Velocity: 

 
11 12 44

2 2

2 2

3 1
L

C C C
C

  

 




 

(Longitudinal),

 
 

11 12 44

2 23 1
T

C C C
C

  

 




  with nonlocality parameter () for the Cubic Crystals in Table 1. 

 

Nonlocality 

parameter 

 Velocity 

Si 
(m/s) 

Al 
(m/s) 

Cu 
(m/s) 

Ni 
(m/s) 

Au 
(m/s) 

31.10   
LC  

TC
 

9354.43 6488.01 5155.30 6297.85 3227.95 

5092.53 3033.79 2164.39 2883.51 1114.36 

0.01   

LC  

TC
 

9353.96 6487.68 5155.04 6297.54 3227.79 

5092.28 3033.64 2164.28 2883.36 1114.30 

0.1   
LC  9308.01 6455.81 5129.71 6266.60 3211.93 
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TC
 

5067.26 3018.73 2163.65 2869.20 1108.83 

0.5   

LC  

TC
 

8366.86 5803.05 4611.04 5632.97 2887.17 

4554.90 2713.51 1935.89 2579.09 996.71 

1   

LC  

TC
 

6614.58 4587.71 3645.35 4453.25 2282.51 

3600.96 2145.21 1530.45 2038.95 787.97 

1.5   

LC  

TC
 

5188.90 3598.90 2859.64 3493.42 1790.55 

2824.83 1682.84 1200.59 1599.48 618.14 

 

 

Table-5. Anisotropy Factor ( FA ). 

Cubic Crystals Material Anisotropy Factor 

Silicon(Si) 1.563 
Aluminum (Al) 1.217 

Copper (Cu) 3.02 
Nickel (Ni) 2.531 

Gold (Au) 2.875 
                                                      Source: Physical constants of cubic crystals Fedorov [32]. 
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Figure-1. Wave surfaces of quasi-longitudinal, quasi-transverse and transverse for silicon for in the absence of nonlocal parameter. 
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Figure-2. Wave surfaces of quasi-longitudinal, quasi-transverse and transverse for silicon for nonlocal parameter 0.01   . 
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Figure-3. Wave surfaces of quasi-longitudinal, quasi-transverse and transverse for silicon for nonlocal parameter 0.5   . 
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Figure-4. Slowness surfaces of quasi-longitudinal, quasi-transverse and transverse for silicon in the absence of nonlocal parameter. 

 

2 10
4

1.510
4

1 10
4

5 10
5

0 5 10
5

1 10
4

1.510
4

2 10
4

2 10
4

1.510
4

1 10
4

5 10
5

5 10
5

1 10
4

1.510
4

2 10
4

Transverse
Quasi Transverse
Quasi Longitudinal

Slowness surfaces for Silicon (Si)

FIG2 1 0.01

 
Figure-5. Slowness surfaces of quasi-longitudinal, quasi-transverse and transverse for silicon for   nonlocal 

parameter 0.01  . 
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Figure-6. Slowness surfaces of quasi-longitudinal, quasi-transverse and transverse for silicon for   nonlocal 

parameter 0.1   . 
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Figure-7.  Variation of phase velocity  with  nonlocality parameter for Gold (Au) when angle   

between the propagation direction is  4.
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Figure-8.  Variation of phase velocity  with  nonlocality parameter for Silicon(Si) when angle   

between the propagation direction is  4.
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Figure-9.  Variation of phase velocity  with  nonlocality parameter for Aluminum (Al) when angle 

  between the propagation direction is  4.
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Figure-10.  Variation of phase velocity  with  nonlocality parameter for Copper (Cu) when angle   

between the propagation direction is  4.  

 

 
Figure-11.  Variation of phase velocity with  nonlocality parameter for Nickel (Ni) when angle   between the propagation direction 

is  4.
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Figure-12.  Variation of phase velocity  with  nonlocality parameter for Nickel (Ni) when 

angle   between the propagation direction is  2.
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Figure-13.  Variation of phase velocity  with  nonlocality parameter for Silicon(Si) when angle   

between the propagation direction is  
00 .  
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Figure-14.  Variation of phase and group velocities  with  nonlocality parameter for Silicon(Si) 

when angle   between the propagation direction is  4 for all the three modes. 
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Figure-15.  Slowness surfaces for all the three modes in the absence of nonlocality parameter for Silicon (Si) 
when propagation direction is in Propagation in a diagonal plane. 
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Figure-16.  Slowness surfaces for all the three modes in the absence of nonlocality parameter for Cupper (Cu)  when propagation 
direction is in Propagation in a diagonal plane. 
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Figure-17.  Slowness surfaces for all the three modes in the absence of nonlocality parameter for Nickle (Ni)  when propagation direction 
is in Propagation in a diagonal plane. 
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Figure-18.  Slowness surfaces for all the three modes in the absence of nonlocality parameter for Gold (Au) when propagation direction is in 
Propagation in a diagonal plane. 

 

7. CONCLUSIONS 

Various features of the slowness or wave surface have been well acknowledged and qualitatively understood in 

classical (local) elastic solids, a very few study has been accomplished in nonlocal elasticity. Analytical scheme to 
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determine the wave surface in general is based on the Christoffel equation [33] has been undertaken in this article 

we have derived the nonlocal Christoffel equation for anisotropic material, and then specializing it to the material of 

cubic symmetry. On the basis of this equation the following conclusions are drawn: 

(i). A general nonlocal Christoffel equation is derived, eigenvalue solution is performed on the on this equation 

for materials of cubic symmetry. 

(ii). Propagation along a cube face transverse wave polarized along OX3, with velocity 

     2 2
44 1 ,tc C  independent of the angle  between the propagation direction n  and the 

axis of the crystal, influenced by the non local parameter ()  for any propagation direction in the (001) 

plane. 

(iii). When 0  or  2   refers to a pure longitudinal, transverse waves in nonlocal elasticity.  In all 

other directions, these waves’ remains coupled and give velocities for quasi-longitudinal and quasi-

transverse waves. 

(iv). Propagation in a diagonal plane, although longitudinal and transverse  waves travel on mutually 

perpendicular directions, one being quasi-transverse, and the other quasi-longitudinal waves, are 

influenced by the nonlocality parameter () . 

(v). Phase and group wave velocities for longitudinal and transverse modes are influenced by the nonlocality 

parameter only when its value is greater than 0.001. Numerical calculation for crystals Silicon(Si), 

Aluminum (Al), Copper (Cu), Nickel (Ni), Gold (Au) are carried and found that velocities of longitudinal 

and transverse waves continuously decreases with increases of non-locality parameter. 

(vi). Phase and group velocities are same when the nonlocal parameter is set equal to zero Figure 14, exhibiting 

that  waves are non-dispersive in its counterpart local theory of elasticity. 

(vii). When    0
 
or 


 

2
 ,  from the slowness surfaces, waves are polarized and are dispersive one 

corresponds to pure longitudinal and two waves corresponds to a pure transverse also they are influenced 

by the nonlocality parameter ( ). 

(viii). Anisotropy factor for crystals of a cubic symmetry is not influenced by the non local parameter. 

It is   expected to continue this study of this concepts and the development of computational tools that simulate 

wave propagation in general anisotropic media. 
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