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This work highlights the use of an algorithm in evaluating and verifying a complex 
Boolean expression that are used in fabricating digital decoder systems. Digital 
decoders are built by human beings and, unfortunately, humans make mistakes. Both 
design errors and faulty implementation may lead both the hardware and software 
components of systems to behave in unexpected ways, which in turn may lead to 
business losses and even risky situations. Karnough maps, Boolean algebra theorems 
and laws are some of the techniques that can be used to simplify and reduce complex 
Boolean algebra expressions and truth table can be used to confirm that the reduced 
Boolean algebra expression is the same as the original, complex Boolean algebra 
expression. However, generating the truth table manually is tedious, especially when 
the Boolean algebra equation or expression has many Boolean variables. Therefore, this 
work presents novel algorithms to verify and evaluate complex Boolean expression 
from the fabricated decoder circuit.  
 

Contribution/Originality:  This study documents the importance of using an algorithmic approach in checking 

and evaluating the equality of a complex Boolean expression and its simplified form from the fabricated decoder 

circuit. This is to ensure that the hardware and software systems are designed with reduced or no errors.  

 

1. INTRODUCTION 

A Digital Decoder Integrated Circuit (DDIC) is a device that converts a digital format into another.  A typical 

example of the DDIC device is the conversion of the Binary Coded Decimal (BCD) to Seven-Segment Display 

Decoder. Seven-segment Light Emitting Diode (LED) type provides a very convenient way of displaying 

information in numerical form, letters or even alphanumerical characters. 74LS47 decoder can produce 

the required numbers of HEX from 0 to 9 and display the correct combination of LED segments. 

Moreover, the seven-segment values for "0" through "9" has four inputs. The inputs are used to 

determines which of the segments on a seven-segment LED display should be on or off.  The seven-

segment display are shown in Figure 1. The seven-segment display in Figure 1 shows how to derive the 

Boolean expressions to build a driver circuit. It‟s application in digital systems are present in this modern 

society. An average person might use thousands of digital devices in each lifetime. Consumer electronics 
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such as decoders, digital cameras, mobile phones, televisions, stereo equipment, and microwave ovens are 

examples of these devices. Moreover, hardware and software systems can control technological products 

such as missiles, airplanes, elevators, medical devices, ships, etc. These electronic devices are built and 

fabricated by human beings. The device hardware and software components are expressed using Boolean 

algebra expression. Digital software and hardware components of a system is one of the applications of 

Boolean algebra. A one-to-one correspondence exits between a digital circuits and Boolean expressions. 

Boolean expressions have a digital circuit design and vice versa. However, humans make mistakes that 

results in hardware and software systems misbehaviour, which in turn may lead to loss of business and 

even risky situations. Consequently, Karnough maps, Boolean algebra theorems and laws were applied in 

simplifying complex Boolean algebra expression. In order to determine the equality between a complex 

and simplified Boolean algebra, truth table are applied in confirming that the two Boolean algebra are the 

same. However, it is quite difficult to produce a truth table that has many variables.  Example is shown in 

Table 1 that involves four input variables. Therefore, this work presents the use of novel algorithms in order 

to evaluate the equality between a simplified and complex Boolean algebra expression.  It is necessary to 

state that the word, Boolean, was coined by George Boole. He is a mathematician that has done a classical 

work on logic. Boolean algebra contains a set of two possible values, two binary operators and one unary 

operator. The set satisfies five properties such as commutativity, associativity, distributivity, existence of 

identity and complement [1]. In Table 2, displays binary operators of Boolean algebra, AND, OR and 

one unary operator, NOT [2].  The evaluation of the equality between a complex and simplified Boolean 

expression is demonstrated in the design of the seven-segmented decoder display. 

 

 
Figure-1. Seven Segment Display and Values for "0" Through "9". 

                               
Table-1. 7-segment display with 4-input truth table. 

Digit A B C D a b c d e f g 

0 0 0 0 0 1 1 1 1 1 1 0 
1 0 0 0 1 0 1 1 0 0 0 0 
2 0 0 1 0 1 1 0 1 1 0 1 
3 0 0 1 1 1 1 1 1 0 0 1 
4 0 1 0 0 0 1 1 0 0 1 1 
5 0 1 0 1 1 0 1 1 0 1 1 
6 0 1 1 0 1 0 1 1 1 1 1 
7 0 1 1 1 1 1 1 0 0 0 0 
8 1 0 0 0 1 1 1 1 1 1 1 

9 1 0 0 1 1 1 1 1 0 1 1 
                     Note: 1=ON, 0=OFF. 

 

Where: 

S0 (=a) = A'B'C'D' + A'B'CD' + A'B'CD + A'BC'D + A'BCD' + A'BCD + AB'C'D' + AB'C'D = A + C + BD + B'D', 

S1 (=f) = A'B'C'D' + A'BC'D' + A'BC'D + A'BCD' + AB'C'D' + AB'C'D = A + C'D' + BD' + BC', 

S2 (=g) = A'B'CD' + A'B'CD + A'BC'D' + A'BC'D + AB'C'D'+ AB'C'D= A + BC' + B'C + CD', 

S3 (=b) = A'B'C'D' + A'B'C'D + A'B'CD' + A'B'CD + A'BC'D' + A'BCD + AB'C'D' + AB'C'D = B'+ C'D' + CD, 

S4 (=e) = A'B'C'D' + A'B'CD' + A'BCD' + AB'C'D' = B'D' + CD', 

S5 (=d) = A'B'C'D' + A'B'CD' + A'B'CD + A'BC'D + A'BCD' + AB'C'D' + AB'C'D = A + CD' + BC'D + B'C + B'D', 
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S6 (=c) = A'B'C'D' + A'B'C'D + A'B'CD + A'BC'D' + A'BC'D + A'BCD' + A'BCD + AB'C'D'+ AB'C'D = A + B + 

C'+ D. 
Table-2. Binary operators of boolean algebra. 

And 0 1 Or 0 1 

0 0 0 0 0 1 
1 0 1 1 1 1 

Note:  “ „ ”: „0 = 1, „1 = 0. 

 

2. LITERATURE REVIEW 

Boolean algebra is applied in and out of computer science domain. In the field of psychiatry, for 

example, Boolean algebra operations are linked to show how operations of nervous system work. Boolean 

algebra variants satisfy the properties of fuzzy sets [3]. Boolean algebra laws simplify both long and 

complex logic expressions [4]. Human errors are bound in the design and implementation of digital 

systems, the need to verify the equality between a complex Boolean algebra expression that have been 

simplified is very important. Therefore, it is required that formal verification is used in checking that a 

computerized system satisfies a specification that describes the correct behaviour of the system. This is to 

ensure that the hardware and software systems are designed with reduced or no errors. This important 

discipline of formal verification started since early 1980‟s and was referred to as model checking [5]. 

Model checking have been the essential part of the system development cycle in the design of Very Large 

Scale Integration (VLSI) circuits [6] and has been used to assist the design and implementation of 

telecommunication systems software [7]. Moreover, μ-calculus is one of the notable model-checking 

techniques. There are studies on μ-calculus with Boolean Equation Systems that uses model checking [8-

15] but, the computational complexity of the μ-calculus model checking problem is dissonant, and no 

polynomial time algorithm has been discovered. Therefore, Mader [16] provides a broad study of the 

properties of Boolean equation systems. She shows how the μ-calculus model-checking problem are 

solved in terms of Boolean equation systems. In addition, Mader provided algebraic manipulations as a 

proof system for solving general Boolean equation systems problems. This led an initial steps to an 

iterative algorithm to solve general form Boolean equation systems called Gauß elimination. Groote and 

Willemse [17] show how a μ-calculus formula can be transformed into a defined parameter to define 

Boolean equation system. According to Groote and Willemse [18]; Groote and Willemse [19] various 

solution methods for parameterized Boolean equation systems were studied. Truth table were used to 

evaluate logical expressions in order to determine truth table results with an arithmetic version [20]. 

However, the computational complexity of evaluating the equality of a complex Boolean algebra and its 

simplified form is still dissonant. Thus, the need to develop further solution and methods that are 

efficient in practice. Therefore, this work presents a novel algorithm that do not only verifies Boolean 

algebra equations but evaluate Boolean algebra expressions used in digital decoders. 

 

3. EXPERIMENTAL AND COMPUTATIONAL DETAILS 

3.1. Correspondence between Simplified Blinking Circuits and Boolean Functions 

LED (Light Emitting Diode) is a semiconductor light emitting diode. A small light is emitted when current can 

pass through LED, which gives impression to the users that circuit is active. The basic idea was driven from a 

common cathode 7-segment LED display using combinational logic circuit.  The first aspect of this circuit is 

decoder. A decoder is a combinational circuit that converts a binary or BCD (Binary Coded Decimal) number to the 

corresponding 7-Segment Display. This combinational logic circuit is a system of logic gates consisting of outputs 

and inputs. The output depends only on the present state of the inputs. The logic circuit is designed with 4 (four) 

inputs and 7(seven) outputs, each representing an input to the display integrated circuit (IC) as shown in Figure 2  

It is necessary to state that the design of the logic circuits requires a good knowledge of Boolean algebra and logic 
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gates.  The original complex Boolean algebra expressions of the seven-segment decoder are given in Figure 3. 

There are three methods of simplifying complex Boolean expression, these are a: algebraic, b: Karnough map and c: 

Quine-McCluskey. Karnough‟s map is used in this work.  Using Karnough‟s map, logic circuitry for each input to 

the display with their simplified Boolean expressions are designed in Figure 4. There are lots of applications using 

LEDs. These applications can be found in highways to indicate traffic lights, signaling, and showing moving 

pictures in an advertisement board. 

 

 
Figure-2. The logic circuit of the BCD to 7-Segment Converter. 

                                        

 
Figure-3. The seven-segment decoder complex Boolean algebra expressions. 
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Figure-4. Karnough‟s Map simplification of the 7 Segment Decoder. 

 

4. RESULTS AND DISCUSSION 

4.1. Algorithms for Evaluating Complex Boolean algebra Expression in 7-Segment Decoder 

The complex Boolean expressions in the segment decoder and their simplified forms have been stated 

in Figure 3. The authors developed a novel algorithm for verifying these expressions. The essence of 

using the algorithms is because of the difficult nature of manually using truth tables that have many 

Boolean variables. 

 

4.2. Expression 

A set of logical values with Boolean algebra in the S0 (=a) of the seven-segment display. Suppose A, 

B, C and D are the elements of the set S0, algorithm establishes that complex Boolean algebra expression: 

A'B'C'D' + A'B'CD' + A'B'CD + A'BC'D + A'BCD' + A'BCD + AB'C'D' + AB'C'D equals (=) the 

simplified Boolean algebra expression: A + C + BD + B'D' is follows below: 

Boolean expression 4.2a (Boolean A, B, C,D) 

1    Read in data 

1.1 Captures A 

1.2 Captures  B 

1.3 Captures C 

1.4 Captures D 

2 Determine expression4.2a 

2.1 firstterm = NOT A AND NOT B AND NOT C AND NOT D 

2.2 secondterm = NOT A AND NOT B AND C AND NOT D 

2.3 thirdterm = NOT A AND NOT B AND C AND D 
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2.4 fourthterm = NOT A AND B AND NOT C AND D 

2.5 fifthterm = NOT A AND B AND C AND NOT D 

2.6 sixthterm = NOT A AND B AND C AND D 

2.7 seventhterm = A AND NOT B AND NOT C AND NOT D 

2.8 eighthterm = A AND NOT B AND NOT C AND D 

2.9 left = firstterm OR secondterm OR thirdterm OR fourthterm OR fifthterm OR sixthterm OR sevethterm OR 

eightterm 

2.10 right = A OR C OR (B AND D) OR (NOT B AND NOT D) 

2.11 IF variables in the left = variables in the right THEN 

2.11.1 result equals “The Expression Holds” 

ELSE 

2.11.2 result equals “The Expression does not Hold” 

3. Display result 

 

4.3. Expression  

A set of logical values as Boolean algebra in S1 (=f) of the seven-segment display. Suppose A, B, C 

and D are members of the set, the algorithm that can be used to verify the complex Boolean algebra 

expression: A'B'C'D' + A'BC'D' + A'BC'D + A'BCD' + AB'C'D' + AB'C'D is equal to (=) the simplified 

Boolean algebra expression: A + C'D' + BD' + BC' is follows below: 

Boolean expression4.3f (Boolean A, B, C,D) 

1 Read in  data 

1.1 Captures A 

1.2 Captures  B 

1.3 Captures C 

1.4 Captures  D 

2 Determine expression4.3f 

2.1 firstterm = NOT A AND NOT B AND NOT C AND NOT D 

2.2 secondterm = NOT A AND B AND NOT C AND NOT D 

2.3 thirdterm = NOT A AND B AND NOT C AND D 

2.4 fourthterm = NOT A AND B AND C AND NOT D 

2.5 fifthterm = A AND NOT B AND NOT C AND NOT D 

2.6 sixthterm = A AND NOT B AND NOT C AND D 

2.7 left = firstterm OR secondterm OR thirdterm OR fourthterm OR fifthterm OR sixthterm 

2.8 right = A OR (NOT C AND NOT D) OR (B AND NOT C) 

2.9 IF variables in the left = variables in the right THEN 

2.9.1 result equals “The Expression Holds” 

ELSE 

2.9.2 result equals “The Expression does not Hold” 

3. Display result 

 

4.4. Expression  

A set of logical values as Boolean algebra in S2 (=g) of the seven-segment display. Suppose A, B, C 

and D are members of the set, the algorithm that can be used to verify the complex Boolean algebra 

expression: A'B'CD' + A'B'CD + A'BC'D' + A'BC'D + AB'C'D'+ AB'C'D is equal to (=) the simplified 

Boolean algebra expression: A + BC' + B'C + CD' is follows below: 
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Boolean expression 4.4g (Boolean A, B, C,D) 

1 Read in  data 

1.1 Captures A 

1.2 Captures B 

1.3 Captures C 

1.4 Captures D 

2 Determine expression4.4g 

2.1 firstterm = NOT A AND NOT B AND NOT C AND NOT D 

2.2 secondterm = NOT A AND NOT B AND C AND D 

2.3 thirdterm = NOT A AND B AND NOT C AND NOT D 

2.4 fourthterm = NOT A AND B AND NOT C AND D 

2.5 fifthterm = A AND NOT B AND NOT C AND NOT D 

2.6 sixthterm = A AND NOT B AND NOT C AND D 

2.7 left = firstterm OR secondterm OR thirdterm OR fourthterm OR fifthterm OR sixthterm 

2.8 right = A OR (B AND NOT C) OR (C AND NOT D) 

2.9 IF variables in the left equals variables in the right THEN 

2.11.1 result equals “The Expression Holds” 

ELSE 

2.11.2 Result equals “The Expression does not Hold” 

3. Display result 

 

4.5. Expression 

A set of logical values as Boolean algebra in S3 (=b) of the seven-segment display. Suppose A, B, C 

and D are members of the set, the algorithm that can be used to verify the complex Boolean algebra 

expression: A'B'C'D' + A'B'C'D + A'B'CD' + A'B'CD + A'BC'D' + A'BCD + AB'C'D' + AB'C'D  equals (=) 

the simplified Boolean algebra expression: B'+ C'D' + CD is follows below: 

Boolean expression 4.5b (Boolean A, B, C,D) 

1 Read in  data 

1.1 Captures A 

1.2 Captures B 

1.3 Captures C 

1.4 Captures D 

2 Determine expression 4.5b 

2.1 firstterm = NOT A AND NOT B AND NOT C AND NOT D 

2.2 secondterm = NOT A AND NOT B AND NOT C AND D 

2.3 thirdterm = NOT A AND NOT B AND C AND NOT D 

2.4 fourthterm = NOT A AND NOT B AND C AND D 

2.5 fifthterm = NOT A AND B AND NOT C AND NOT D 

2.6 sixthterm = NOT A AND B AND C AND D 

2.7 sevethterm = A AND NOT B AND NOT C AND NOT D 

2.8 eighthterm = A NOT B AND NOT C AND D 

2.7 left = firstterm OR secondterm OR thirdterm OR fourthterm OR fifthterm OR sixthterm OR seventhterm OR 

eighthterm 

2.8 right = NOT B OR (NOT C AND NOT D) OR (C AND D) 
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2.9 IF variables in the left equals variables in the right THEN 

2.9.1 result equals “The Expression Holds” 

ELSE 

2.9.2 result equals “The Expression does not Hold” 

3. Display result 

 

4.6. Expression 

A set of logical values as Boolean algebra in S4 (=e) of the seven-segment display. Suppose A, B, C 

and D are members of the set, the algorithm that can be used to verify the complex Boolean algebra 

expression: A'B'C'D' + A'B'CD' + A'BCD' + AB'C'D' equals (=) the simplified Boolean algebra expression: 

B'D' + CD‟ is follows below: 

Boolean expression 4.6e (Boolean A, B, C,D) 

1 Read in  data 

1.1 Captures A 

1.2 Captures B 

1.3 Captures C 

1.4 Captures D 

2 Determine expression4.6e 

2.1 firstterm = NOT A AND NOT B AND NOT C AND NOT D 

2.2 secondterm = NOT A AND NOT B AND C AND NOT D 

2.3 thirdterm = NOT A AND B AND C AND NOT D 

2.4 fourthterm = A AND NOT B AND NOT C AND NOT D 

2.5 left = firstterm OR secondterm OR thirdterm OR fourthterm 

2.6 right = (NOT B AND NOT D) OR (C AND NOT D) 

2.7 IF variables in the left = variables in the right THEN 

2.7.1 result equals“The Expression Holds” 

ELSE 

2.7.2 result equals “The Expression does not Hold” 

3. Display result 

 

4.7. Expression 

A set of logical values as Boolean algebra in S5 (=d) of the seven-segment display. Suppose A, B, C 

and D are members of the set, the algorithm that can be used to verify the complex Boolean algebra 

expression : A'B'C'D' + A'B'CD' + A'B'CD + A'BC'D + A'BCD' + AB'C'D' + AB'C'D equals (=) the 

simplified Boolean algebra expression: A + CD' + BC'D + B'C + B'D' is follows below: 

  Boolean expression4.7d(Boolean A, B, C,D) 

1 Read in  data 

1.1 Captures  A 

1.2 Captures B 

1.3 Captures C 

1.4 Captures D 

2 Determine expression4.7d 

2.1 firstterm = NOT A AND NOT B AND NOT C AND NOT D 

2.2 secondterm = NOT A AND NOT B AND C AND NOT D 

2.3 thirdterm = NOT A AND NOT B AND C AND D 
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2.4 fourthterm = NOT A AND B AND NOT C AND D 

2.5 fifthterm = NOT A AND B AND C AND NOT D 

2.6 sixthterm = A AND NOT B AND NOT C AND NOT D 

2.7 seventhterm = A AND NOT B AND NOT C AND D 

2.8 left = firstterm OR secondterm OR thirdterm OR fourthterm OR fifthterm OR sixthterm OR sevethterm 

2.9 right = A OR (C AND NOT D) OR (B AND NOT C AND D) OR (NOT B AND C) OR (NOT B AND NOT D) 

2.10 IF variables in the left = variables in the right THEN 

2.10.1 result equals “The Expression Holds” 

ELSE 

2.10.2 result equals“The Expression does not Hold” 

3. Display result 

 

4.8. Expression 

A set of logical values as Boolean algebra in S6 (=c) of the seven-segment display. Suppose A, B, C 

and D are members of the set, the algorithm that can be used to verify the complex Boolean algebra 

expression : A'B'C'D' + A'B'C'D + A'B'CD + A'BC'D' + A'BC'D + A'BCD' + A'BCD + AB'C'D'+ AB'C'D  

equals (=) the simplified Boolean algebra expression: A + B + C'+ D is follows below: 

Boolean expression4.8c(Boolean A, B, C,D) 

1 Read in  data 

1.1 Captures A 

1.2 Captures B 

1.3 Captures C 

1.4 Captures D 

2 Determine expression4.8c 

2.1 firstterm = NOT A AND NOT B AND NOT C AND NOT D 

2.2 secondterm = NOT A AND NOT B AND NOT C AND D 

2.3 thirdterm = NOT A AND NOT B AND C AND D 

2.4 fourthterm = NOT A AND B AND NOT C AND NOT D 

2.5 fifthterm = NOT A AND B AND NOT C AND D 

2.6 sixthterm = NOT A AND B AND C AND NOT D 

2.7 seventhterm = NOT A AND B AND C AND D 

2.8 eighthterm = A AND NOT B AND NOT C AND NOT D 

2.9 ninethterm = A AND NOT B AND NOT C AND D 

2.10 left = firstterm OR secondterm OR thirdterm OR fourthterm OR fifthterm OR sixthterm OR sevethterm OR 

eightterm OR ninethterm 

2.11 right = A OR B OR (NOT C) OR D 

2.12 IF variables in the left = variables in the right THEN 

2.12.1 result equals “The Expression Holds” 

ELSE 

2.12.2 result equals “The Expression does not Hold” 

3. Display result 

These algorithms can be implemented using Java programming language. These algorithms can be 

implemented in Java. The reason for choosing Java was that Java programming provides Boolean data 

type, together with all the relevant Boolean operators. The algorithms have been implemented in a Java 
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class and tested separately. All these Boolean expressions used in fabricating the 7-segment decoder 

circuit. 

 

5. CONCLUSION 

We established in this paper the importance of Boolean algebra applications towards the design of 

computer hardware and software. We presented novel algorithms approaches in checking and evaluating 

complex Boolean expression from the fabricated decoder circuit. These algorithms have been 

implemented and verified using Java programming language. 
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