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. 

 
As generalizations of the classic set covering problem (SCP), both the set K-covering 
problem (SKCP) and the set variable (K varies by constraint) K-covering problem 
(SVKCP) are easily shown to be NP-hard.  Solution approaches in the literature for the 
SKCP typically provide no guarantees on solution quality.  In this article, a simple 
methodology, called the simple sequential increasing tolerance (SSIT) matheuristic, 
that iteratively uses any general-purpose integer programming software (Gurobi and 
CPLEX in this case) is discussed.  This approach is shown to quickly generate solutions 
that are guaranteed to be within a tight tolerance of the optimum for 135 SKCPs 
(average of 67 seconds on a standard PC and at most 0.13% from the optimums) from 
the literature and 65 newly created SVKCPs.  This methodology generates solutions 
that are guaranteed to be within a specified percentage of the optimum in a short time 
(actual deviation from the optimums for the 135 SKCPs was 0.03%).  Statistical 
analyses among the five best SKCP algorithms and SSIT demonstrates that SSIT 
performs as well as the best published algorithms designed specifically to solve SKCPs 
and SSIT requires no time-consuming effort of coding problem-specific algorithms—a 
real plus for OR practitioners.  
 

Contribution/Originality: This study documents a methodology that iteratively uses integer programming 

software to efficiently generate solutions that are guaranteed to be very close to the optimums for the set K-

covering problem.  A significant benefit of this methodology is that no problem specific algorithm needs to be coded 

by the user. 

 

1. INTRODUCTION 

The set k-covering problem (SKCP) is a generalization of the classic set covering problem.  The SKCP involves 

finding the columns of an m x n 0-1 matrix that cover each row of the matrix at least k times at minimal cost (the 

classic set covering problem only covers each row at least once). The SKCP can be mathematically represented as 

the following integer program:   

Minimize                                 (1) 
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Subject to                                                (2) 

{0,1}jx   ,  {1,2,..., }j n                                           (3) 

Algebraic expression (1) is the objective function which must be minimized.  Inequalities (2) are the constraints 

that guarantee each row i is covered by at least k columns, and conditions (3) force each variable xj to be either 0 or 

1.  The set variable K-covering problem (SVKCP) has the same formulation as the SKCP except that the value of K 

can be different for each of the m constraints in (2).  Note that, to the authors’ knowledge, no solution procedures or 

problem instances currently exist in the literature for the SVKCP. 

The SKCP has a number of important real-world applications and plays a significant role in many areas, such as 

scheduling, location, marketing, logistics, computational biology, and wireless networks [1].  For example, in 

communication or distribution problems where reliability is important, it is not sufficient to cover each element 

only once.  Another application of the SKCP comes from the domain of bioinformatics.   Researchers divide 

chromosomes into two regions: hot spots, where chromosome recombination takes place, and haplotype blocks, 

which complement the chromosomes.  If we want each pair of the haplotype patterns to be distinguished by k or 

more mutations or single nucleotide polymorphisms (SNPs), then we have a robust tagging SNP problem which 

can be modeled as a SKCP [2].    

The SVKCP is a straightforward extension of the SKCP in which the K value can differ for each row constraint.  

Although, to the authors’ knowledge, the SVKCP has not been explicitly studied in the literature, one can easily 

envision real-world applications of the SVKCP.  For example, if a geographic area needed to be serviced by fire 

stations, the optimal location of the fire stations could be formulated as a SVKCP.  Each row of the matrix in this 

SVKCP would represent a neighborhood that should be serviced by at least two fire stations (one primary and one 

backup), but some neighborhoods might need to be serviced by more than two fire stations (for example, a 

neighborhood with a hospital in it).   

It is important to note that the problems (SKCP and SVKCP) that are being addressed in this research both 

require that all rows of a matrix be covered by K columns at minimum cost (K varies by row for the SVKCP).  

However, there are related problems in the literature that have similar names, but different objectives.  Specifically, 

the maximum set K-covering problem (MKCP) consists in selecting a subset of K columns from a given set of n 

columns, in such a way that the number of rows covered by the selected columns is maximized (see Lin and Guan 

[3]).  Another related problem is the K-set cover problem (K-scp) that seeks to cover all rows of a matrix with the 

minimum number of columns such that each column chosen can cover at most K rows (see HAE, et al. [4]). 

As extensions of the classic set covering problem, both the SKCP and the SVKCP can easily be shown to be 

NP-hard.  To avoid the potential for excessive computing times, up to this point, solutions reported in the literature 

for the SKCP (note that the SVKCP has not previously been discussed in the literature) have not guaranteed the 

quality of their solutions. 

Normally in the literature, for a set of test problem instances, approximate solution method results are 

compared to optimal or best-known results that were determined by executing an exact algorithm for a long period 

of time—sometimes up to 24 hours [5] or more!  Researchers assume that, if an approximate solution method 

performs well on a limited set of problem instances, it will perform well on other problems—this is the weakness of 

using approximate solution methods with no guaranteed bounds on solution quality.  Such approximate solution 

methods will be discussed in the next section and include methods by Al-Shihabi [6]; Pessoa, et al. [5]; Salehipour 

[7] and Wang, et al. [8]; Wang, et al. [9]. 

In this article a methodology first discussed in McNally [10] referred to as the simple sequential increasing 

tolerance (SSIT) matheuristic is used to quickly solve 135 SKCPs commonly used in the literature and 65 SVKCPs 

introduced in this article.  Lu, et al. [11] used SSIT to quickly (average of 88 seconds on a standard PC) generate 
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solutions guaranteed to be close (average within 0.094% of the optimums) on 270 multidimensional knapsack 

problem (MKP) instances commonly used in the literature.  These results are far better than other published 

metaheuristic results for the MKP. Dellinger, et al. [12] used SSIT to quickly (average of 63 seconds on a standard 

PC) generate solutions guaranteed to be close (average within 0.080% of the optimums) on 51 generalized 

assignment problems (GAP) instances commonly used in the literature.  These results are very competitive with the 

best published solution methods for the GAP.     

The key feature of the SSIT solutions is that they are guaranteed to be within a tight tolerance of the optimum. 

Another important feature of SSIT is its iterative use of any general-purpose integer programming software 

(Gurobi and CPLEX in this article, but other software could be used just as easily).  This combined with a user-

defined sequence of loosening tolerances and maximum execution times for each tolerance makes SSIT a very 

flexible solution methodology.  SSIT can be considered a matheuristic because it uses math programming combined 

with a heuristically determined sequence of tolerances and execution times.   Since SSIT takes advantage of the 

power of a general-purpose exact solution method, no problem-specific algorithm is required which can be a 

substantial time saver for operations research (OR) practitioners.       

In the next section, the relevant literature will be reviewed.  Then, a brief overview of the SSIT matheuristic 

will be provided in Section 3.  In Sections 4 empirical results obtained from using the SSIT matheuristic to solve 

135 SKCPs will be discussed and statistically compared to the leading published solution approaches specifically 

designed to solve the SKCP.  In Section 5 empirical results for 65 SVKCPs will be presented.  This article will close 

with some conclusions and suggested future work. 

 

2. RELEVANT LITERATURE 

The five main solution approaches designed specifically to solve the SKCP that appear in the literature are: 

DLLCCSM (diversion local search based on configuration checking and scoring mechanism). This 

algorithm is presented in Wang, et al. [8] and uses a local search algorithm.  First, to overcome the cycling 

problem in local search, the set k-covering configuration checking (SKCC) strategy is proposed.  Second, a cost 

scheme of elements is used to define a scoring mechanism.  Then, the SKCC strategy and scoring mechanism are 

combined to decide which subset should be selected as a candidate solution component.   

MLQCC (multilevel score heuristic with quantitative configuration checking). This algorithm is 

presented in Wang, et al. [9] and uses a local search algorithm.  To overcome the cycling problem in local search, a 

new quantitative configuration checking (QCC) is proposed.  Also, a subset property called subscore, redefines 

property score [8].  A new multilevel (ML) score heuristic, which is a linear combination of subscore and score is 

developed.     

SALEHIPOUR_HEURISTIC.  This algorithm is presented in Salehipour [7] and is a heuristic that first 

generates a lower bound and then builds a feasible solution from the lower bound.  The feasible solution is improved 

through a removal local search. 

LP-MMAS_LS. This algorithm is presented in Al-Shihabi [6] and uses a hybrid algorithm consisting of linear 

programming, max-min ant system and local search.  The algorithm exploits the LP-relaxation solution by 

classifying the columns based on their reduced costs. 

LAGRASP.   This algorithm is presented in Pessoa, et al. [5] and uses a hybrid GRASP (greedy randomized 

adaptive search procedure) Lagrangean heuristic that uses GRASP with a path-relinking heuristic that uses 

modified costs to obtain approximate solutions. 

The performance of these five approximate solution methods on 135 SKCPs will be compared both empirically 

and statistically in a later section to results obtained from using several SSIT scenarios with Gurobi to solve these 

same 135 SKCPs.  However, it is important to remember that all the above-mentioned solution procedures are 

explicitly designed to solve the SKCP and more importantly provide no guarantees on solution quality!  This is in 
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sharp contrast to our use of SSIT to solve SKCPs because SSIT uses strictly general-purpose software with no 

time-consuming algorithm coding required and does provide bounds on the solutions that it generates. 

 

3. OVERVIEW OF THE SIMPLE SEQUENTIAL INCREASING TOLERANCE 

MATHEURISTIC 

The motivation [10] behind the simple sequential increasing tolerance (SSIT) matheuristic is to try to have the 

best of two worlds.  Namely, SSIT makes use of state-of-the-art optimization software (such as CPLEX or Gurobi) 

combined with loosening tolerances to obtain solutions that are guaranteed within known and relatively tight 

tolerances of the optimum in a timely manner.  By using commercially available and state-of-the-art optimization 

software instead of highly complex specialized codes for the particular combinatorial optimization problem (COP) 

being solved, SSIT can be used in a straightforward manner by both OR practitioners as well as researchers with no 

problem-specific coding required.  The SSIT matheuristic is very flexible and robust because the user can specify 

the number of tolerances as well as their specific values based on their needs.  The maximum execution time for 

each tolerance is also specified based on the specific needs of the user.  Although the SSIT concept is very intuitive, 

this is the first article to discuss and quantify the benefits of using SSIT specifically to solve SKCPs.   

As indicated earlier, SSIT can be considered a multi-pass methodology in which the program terminates if the 

goal tolerance is met.  If it is not met, then the tolerance is ―loosened‖ and the current best solution is used as input for 

the next step in the solution process.  The ―loosened‖ tolerance allows the branch-and-bound tree in the commercial 

software to be pruned more quickly.  The worst-case scenario for SSIT is that it does not terminate until the sum of 

the maximum execution times for each tolerance is reached.  In this case, the software gap at termination will 

indicate how close the best SSIT solution is to the optimum.  Specifically, for a minimization COP, the optimization 

software provides the gap between the best lower bound and the best solution.   

The pseudo code below summarizes the SSIT methodology for a generic COP.   

 

3.1. SSIT Matheuristic  

1. Begin  

2. Input the number of phases N 

3. Input tolerance T_i and maximum execution time t_i for phases i=1, ..., N 

4. Input COP details    

5. Run integer programming software program to solve COP 

6. For 1<=i<=N-1, 

7. IF integer programming software running time in phase i is less than t_i or i=N, FINISH 

8. ELSE,  

9. Take best solution obtained from Phase i and save it as SOL_i. 

10. Run integer programming software program with SOL_i as the warm start and tolerance T_{i+1} and 

maximum execution time t_{i+1}.  

11. i=i+1 

12. LOOP through step 7-11 until FINISH. 

The flow chart of SSIT is also provided in Figure 1. 

The benefit of SSIT using general purpose integer programming software such as CPLEX or Gurobi and, at 

the same time, requiring no problem-specific coding is significant.  For the problems discussed in this article, all the 

software default settings were kept except the time and tolerance per SSIT pass. In particular, the OR practitioner 

or researcher does not need to develop code or test a problem-specific algorithm.  Furthermore, practitioners will 

find that there is a wealth of examples that come with most optimization software (definitely CPLEX and Gurobi), 

which are ready to run out of the box. 
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                                                                 Figure-1. SSIT flowchart. 

 

These templates often only require a few adjustments before they are ready to run domain specific 

combinatorial optimization problems. Practitioners can also quickly find answers to many software specific 

questions in the online forums and extensive manuals.  Additionally, for industrial systems that use SSIT, the 

performance of these systems is ―automatically‖ improved when new versions of the optimization software are 

installed.   

It is important to note that there is no need to ―optimize‖ either the number of tolerances used or their values 

as well as the execution times for each tolerance.  These values are both user and problem specific and can be easily 

adjusted to meet the users’ needs!  

Although it is common for OR practitioners to use commercial software at the default tolerance for a fixed 

amount of time and use the best solution generated when the execution time ―runs out‖, SSIT provides an alternate 

to this approach that will be shown to provide bounded solutions quickly. 

 

4. SKCP EMPIRICAL RESULTS 

4.1. Problem Instances 

In Beasley’s OR library there are set covering problems that are used by researchers to test algorithms 

developed to solve the set covering problem (SCP).  Sixty-five SCP instances are commonly used to solve weighted 

set covering problems (WSCP) in which the objective function coefficients are positive integers.  Specifically, data 

sets 4, 5, 6, A, B, C, D, E, F, G, and H are commonly used by researchers. These problem instances are summarized 

in Table 1 below.  In contrast, if the cost coefficients are all the same or typically all equal to one, then the problem 
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is called a minimum cardinality set covering problem (MCSCP) or a uni-cost set covering problem.  This current 

research will focus on solving weighted SKCP and SVKCP instances. 

 

Table-1. WSCP Instances from Beasley’s or Library. 

Data Set Rows Columns Density Instances 

SCP4 200 1000 2 10 
SCP5 200 2000 2 10 
SCP6 200 1000 5 5 
SCPA 300 3000 2 5 
SCPB 300 3000 5 5 
SCPC 400 4000 2 5 
SCPD 400 4000 5 5 
SCPE 50 500 20 5 

SCPNRE 500 5000 10 5 
SCPNRF 500 5000 20 5 
SCPNRG 1000 10,000 2 5 
SCPNRH 1000 10,000 5 5 

 

In the literature, it is common for researchers to use the following 135 SKCP instances based on Beasley’s SCP 

instances.  Specifically, researchers use the 45 problem instances in data sets 4, 5, 6, A, B, C, and D with three 

different K values.  How the K values are determined will now be given.  KMIN = 2 for all 45 problem instances.  

KMAX has the same K value for all rows of a problem, but can differ for the 45 problem instances.  For a given 

problem instance (from data sets 4, 5, 6, A, B, C, and D), the KMAX value is equal to the sum of the ones in a row 

with the minimum number of ones.  KMED is equal to the ceiling of (KMIN + KMAX)/2.  Hence, researchers 

typically report algorithm results by K value, KMIN, KMED, and KMAX. 

 

4.2. SSIT Results for the SKCP 

In order to use the SSIT matheuristic to solve SKCPs, a sequence of increasing tolerances and corresponding 

maximum execution times must be specified and an integer programming software package must be selected.  The 

purpose of this article is to demonstrate that the SSIT matheuristic works with any integer programming software 

package.  Obviously, the better the selected optimization software is in terms of generating good solutions quickly, 

the better the solution generated by SSIT. 

The authors considered two leading optimization software packages: CPLEX (12.9) and Gurobi (9.1).  Both of 

these are highly sophisticated general purpose optimization packages that are easy for practitioners and researchers 

to use to solve large-scale integer programming problems in particular.  Empirical testing on more than 50 

combinatorial optimization problems using both CPLEX and Gurobi resulted in no statistical difference in either 

solution quality or execution time required given the same parameter settings for both software packages.  Hence, 

the authors decided to use both: Gurobi for the empirical analysis of the SKCPs and CPLEX for the empirical 

analysis of the new SVKCPs (discussed in Section 5).  Also, to demonstrate that SSIT is not PC dependent, two 

different PCs were used—one for the SKCP analyses and a different one for the SVKCP analyses.  The SKCPs will 

be analyzed using Gurobi on a computer with the following specifications: an AMD Ryzen 7 3700X 8-Core 

Processor and 16 GB RAM on Windows 10 Home 64-bit.  The number of threads is 8.   The SVKCPs will be 

analyzed using CPLEX on a computer with the following specifications: 16 GB RAM on Windows 10, Intel 

processor with 2.9 GHz, and 1000 GB hard drive.  By default, CPLEX uses a number of threads equal to the 

number of cores or 32 threads (whichever number is smaller). The operating system manages any contention for 

processors.  The PC used has 4 cores, so the number of threads is 4.  A thorough discussion of the performance of 

the latest versions of CPLEX versus Gurobi for solving combinatorial optimization problems is a topic for another 
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article.  In this article the power and robustness of SSIT regardless of the integer programming software used or 

the PC used is demonstrated.  

For the SSIT analysis of the SKCP, three SSIT scenarios (SSIT1, SSIT2, and SSIT3) were used.  Limited 

preliminary empirical analysis using the PC specified above for SKCPs indicated that tight bounds (less than 1%) 

could be achieved in under 600 seconds for even the most difficult problems tested.  Hence for this application, the 

total execution times would add to 600 seconds.  Three SSIT scenarios will demonstrate how shifting more 

execution time to the looser tolerances will for these 135 SKCPs reduces the average execution time.  The specifics 

of these three SSIT scenarios are given in Table 2. 

 

Table-2. SSIT scenario execution times (seconds) for each tolerance. 

 
Tolerances 

 
0.0001 0.001 0.003 0.005 0.007 0.009 

SSIT1 60 60 120 120 120 120 
SSIT2 60 60 60 120 120 180 
SSIT3 30 60 90 120 120 180 

 

The results of executing the three SSIT scenarios for the 135 SKCPs are summarized in Table 3, 4, and 5.  

Detailed results for all 135 SKCPs are available upon request.   

 

Table-3. Summary results averaged over 135 SKCPs. 

SSIT 
scenario 

Average guaranteed maximum 
deviation from optimum (%) 

Average actual deviation 
from optimum (%) 

Average execution 
time (seconds) 

SSIT1 0.136 0.032 84 

SSIT2 0.137 0.032 75 
SSIT3 0.131 0.030 67 

 

In Table 3, results for each of the three SSIT scenarios (SSIT1, SSIT2, and SSIT3) are averaged over all 135 

SKCPs.  The guaranteed maximum deviation from the optimum column shows the farthest away the SSIT solutions 

can be without knowing the exact value of the optimums.  Over all 135 SKCPs, the average guaranteed farthest 

deviations the SSIT solutions are from the optimums are 0.136%, 0.137%, and 0.131% for SSIT1, SSIT2, and SSIT3 

respectively.  However, comparing these 135 SSIT solutions to known optimums or best-known solutions, the SSIT 

solutions, on average, actually only deviated 0.032%, 0.032%, and 0.030% from the optimums for SSIT1, SSIT2, and 

SSIT3 respectively.   

Additionally, these very impressive results required, on average, only 84 seconds, 75 seconds, and 67 seconds 

for SSIT1, SSIT2, and SSIT3 respectively.  For SSIT3, the execution times were 180 seconds or less for 120 of the 

135 SKCPs (89%) and 120 seconds or less for 113 of the 135 SKCPs (84%).  There is next to no differences among 

the three SSIT scenarios in terms guaranteed maximum deviation from the optimum and actual deviation from the 

optimum.  However, the SSIT3 scenario has the smallest average execution time of 67 seconds which is a 20% 

reduction over the SSIT1 average execution time and an 11% reduction over the SSIT2 average execution time.  

Table 4 shows average execution time and deviations for each SSIT scenario by KMIN, KMED, and KMAX.  

The results in Table 4 indicate that, regardless of the SSIT scenario, the KMED SKCPs require the most effort to 

solve and the KMIN SKCPs require the least effort to solve.  However, regardless of SSIT scenario, even for the 

KMED problems, the average times are less than 180 seconds.  Except for time, the results differ very little by 

SSIT scenario.  

Table 5 shows the distribution of the tolerances at which SSIT terminated based on SSIT scenario and K value.  

As was evident from earlier analyses, the results differ very little based on the particular SSIT scenario.  For 
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example, regardless of SSIT scenario, all 45 KMIN SKCPs terminated at the tightest tolerance of 0.0001.  As 

previously observed, again regardless of SSIT scenario, the KMED problems required the most effort to solve.   

 

Table-4. Average execution time and deviations for each SSIT scenario by KMIN, KMED, and KMAX. 

 
Average guaranteed maximum 
deviation from optimum (%) 

Average actual deviation 
from optimum (%) 

Average execution 
time (seconds) 

KMIN 
   

SSIT1 0 0 0.5 
SSIT2 0 0 0.5 
SSIT3 0 0 0.5 
KMED    
SSIT1 0.296 0.071 178.6 
SSIT2 0.298 0.070 151.4 
SSIT3 0.295 0.065 145.0 
KMAX    
SSIT1 0.111 0.025 73.0 
SSIT2 0.113 0.027 71.9 
SSIT3 0.114 0.023 54.4 

 

The robustness of SSIT is that knowing the difficulty of the KMED instances (for example, from preliminary 

empirical analysis), if the OR practitioner wanted tighter guaranteed bounds for these problems and more computer 

time was not an issue, more time could be spent at the tighter tolerances.  Exactly how much time at each tolerance 

would depend on the particular application.  However, regardless of the SSIT scenario, the KMED SKCPs had a 

guaranteed maximum deviation from the optimum of under 0.3% (actual deviation of 0.07%) and average execution 

times under 180 seconds.            

 
Table-5. Termination tolerances distributions for each SSIT scenario by KMIN, KMED, and KMAX. 

 Tolerances 

 0.0001 0.001 0.003 0.005 0.007 0.009 

KMIN       
SSIT1 45      
SSIT2 45      
SSIT3 45      
KMED       
SSIT1 19 2 6 3 10 5 
SSIT2 19 2 4 5 11 4 
SSIT3 19 1 6 4 11 4 

KMAX       
SSIT1 20 2 23    
SSIT2 20 3 20 2   
SSIT3 16 7 21 1   

Note: Comparisons of our SSIT results with the best published algorithms specialized specifically to solve the SKCP will now be given. 

 

4.3. SKCP SSIT Results Compared to Other Metaheuristics 

Although, as operations research practitioners, the authors appreciate the guaranteed bounds that the SSIT 

matheuristic provides, there may be readers that are interested in seeing how the SSIT solutions compared to the 

five best performing metaheuristics for the SKCP reviewed earlier in this article.  In Table 6, 7, and 8, the SSIT 

results for the 135 SKCPS typically used for empirical experiments by researchers will be compared to Wang, et al. 

[8]; Wang, et al. [9]; Salehipour [7]; Al-Shihabi [6] and Pessoa, et al. [5] discussed earlier in this article.    



Review of Computer Engineering Research, 2021, 8(2): 76-95 

 

 
84 

© 2021 Conscientia Beam. All Rights Reserved. 

Table-6A. Comparison of SSIT with Other Metaheuristics. 

PROBLEM KMIN OPT/BKS ALSHIHIBA PESSOA SALEH WANG 
2017 

WANG 
2019 

SSIT1 SSIT2 SSIT3 

SCP41 2 1148 1150 1150 1150 1148 1148 1148 1148 1148 
SCP 42 2 1205 1205 1205 1205 1205 1205 1205 1205 1205 
SCP 43 2 1213 1213 1214 1214 1213 1213 1213 1213 1213 
SCP 44 2 1185 1189 1185 1185 1185 1185 1185 1185 1185 
SCP 45 2 1266 1266 1266 1266 1266 1266 1266 1266 1266 
SCP 46 2 1349 1349 1349 1352 1349 1349 1349 1349 1349 
SCP 47 2 1115 1115 1115 1115 1115 1115 1115 1115 1115 

SCP 48 2 1225 1225 1225 1225 1225 1225 1225 1225 1225 
SCP 49 2 1485 1485 1485 1485 1485 1485 1485 1485 1485 
SCP 410 2 1356 1360 1356 1359 1356 1356 1356 1356 1356 
SCP 51 2 579 580 579 579 579 579 579 579 579 
SCP 52 2 677 677 679 677 677 677 677 677 677 
SCP 53 2 574 576 574 575 574 574 574 574 574 
SCP 54 2 582 584 587 585 582 582 582 582 582 
SCP 55 2 550 550 550 550 550 550 550 550 550 
SCP 56 2 560 560 560 561 560 560 560 560 560 
SCP 57 2 695 695 695 695 695 695 695 695 695 

SCP 58 2 662 664 662 664 662 662 662 662 662 
SCP 59 2 687 687 687 687 687 687 687 687 687 
SCP 510 2 672 672 672 672 672 672 672 672 672 
SCP 61 2 283 283 283 283 283 283 283 283 283 
SCP 62 2 302 302 302 302 302 302 302 302 302 
SCP 63 2 313 313 313 313 313 313 313 313 313 
SCP 64 2 292 292 292 294 292 292 292 292 292 
SCP 65 2 353 353 353 353 353 353 353 353 353 
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Table-6B. Comparison Of SSIT With Other Metaheuristics Results For Kmin Skcp Data Sets A, B, C, and D. 

PROBLEM KMIN OPT/BKS AL-SHIHIBA PESSOA SALEH WANG 2017 WANG 
2019 

SSIT1 SSIT2 SSIT3 

SCPA1 2 562 562 563 563 562 562 562 562 562 
SCPA2 2 560 564 560 560 560 560 560 560 560 
SCPA3 2 524 526 524 524 524 524 524 524 524 
SCPA4 2 527 527 527 527 527 527 527 527 527 
SCPA5 2 557 558 559 558 557 557 557 557 557 
SCPB1 2 149 150 149 149 149 149 149 149 149 
SCPB2 2 150 150 151 150 150 150 150 150 150 

SCPB3 2 165 165 165 165 165 165 165 165 165 
SCPB4 2 157 157 157 157 157 157 157 157 157 
SCPB5 2 151 152 152 151 151 151 151 151 151 
SCPC1 2 514 516 515 515 514 514 514 514 514 
SCPC2 2 483 490 486 483 483 483 483 483 483 
SCPC3 2 544 546 544 545 544 544 544 544 544 
SCPC4 2 484 485 485 484 484 484 484 484 484 
SCPC5 2 488 488 490 489 488 488 488 488 488 
SCPD1 2 122 123 122 122 122 122 122 122 122 
SCPD2 2 127 127 127 127 127 127 127 127 127 

SCPD3 2 138 138 138 138 138 138 138 138 138 
SCPD4 2 122 123 123 122 122 122 122 122 122 
SCPD5 2 130 131 130 130 130 130 130 130 130 
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Table-7A. Comparison Of SSIT With Other Metaheuristics Results For Kmed Skcp Data Sets 4, 5, and 6. 

PROBLEM KMED OPT/BKS AL-SHIHIBA PESSOA SALEH WANG 
2017 

WANG 
2019 

SSIT1 SSIT2 SSIT3 

SCP41 7 8350 8373 8366 8363 8352 8352 8350 8350 8350 
SCP 42 6 6111 6123 6117 6118 6111 6111 6111 6111 6111 
SCP 43 5 4676 4681 4690 4681 4676 4676 4676 4676 4676 
SCP 44 5 4670 4683 4679 4674 4670 4670 4670 4670 4670 
SCP 45 7 8389 8400 8409 8398 8392 8389 8389 8389 8389 
SCP 46 6 6416 6427 6432 6419 6416 6416 6416 6416 6416 
SCP 47 6 6281 6282 6284 6282 6281 6281 6281 6281 6281 

SCP 48 7 8421 8435 8439 8427 8427 8424 8421 8421 8421 
SCP 49 6 7101 7127 7121 7106 7101 7101 7101 7101 7101 
SCP 410 5 5355 5367 5364 5358 5355 5355 5355 5355 5355 
SCP 51 13 11205 11226 11239 11213 11209 11206 11205 11205 11205 
SCP 52 14 14418 14443 14473 14436 14428 14424 14418 14418 14418 
SCP 53 13 11476 11532 11513 11488 11487 11476 11476 11476 11476 
SCP 54 12 9944 9970 9965 9956 9950 9948 9944 9944 9944 
SCP 55 12 10880 10888 10918 10898 10895 10881 10880 10880 10880 
SCP 56 12 10581 10609 10629 10597 10591 10582 10581 10581 10581 
SCP 57 14 14919 14940 14984 14934 14946 14924 14919 14919 14923 

SCP 58 12 10622 10539 10687 10635 10623 10622 10622 10622 10622 
SCP 59 12 11042 11071 11081 11053 11049 11047 11042 11042 11042 
SCP 510 13 12436 12469 12475 12451 12450 12436 12436 12436 12436 
SCP 61 17 7653 7679 7692 7669 7653 7653 7653 7653 7653 
SCP 62 16 6739 6760 6773 6752 6739 6739 6747 6747 6746 
SCP 63 18 8309 8350 8365 8317 8309 8309 8309 8309 8309 
SCP 64 18 8546 8569 8585 8567 8546 8546 8546 8546 8546 
SCP 65 18 9038 9068 9070 9060 9038 9038 9038 9038 9038 
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Table-7B. Comparison Of SSIT With Other Metaheuristics Results For Kmed Skcp Data Sets A, B, C, and D 

PROBLEM KMED OPT/BKS AL-SHIHIBA PESSOA SALEH WANG 
2017 

WANG 
2019 

SSIT1 SSIT2 SSIT3 

SCPA1 21 21224 21297 21324 21281 21241 21224 21236 21236 21241 
SCPA2 21 21739 21810 21820 21793 21750 21740 21749 21753 21744 
SCPA3 21 20095 20165 20155 20148 20126 20097 20113 20115 20102 
SCPA4 22 22865 22959 22985 22916 22880 22880 22875 22866 22864 
SCPA5 20 18643 18709 18706 18694 18660 18648 18641 18641 18646 
SCPB1 61 29145 29214 29234 29218 29184 29145 29201 29211 29188 
SCPB2 60 28075 28175 28187 28196 28124 28075 28135 28128 28109 

SCPB3 59 27825 27934 27944 27899 27852 27825 27891 27878 27878 
SCPB4 58 25664 25764 25742 25773 25695 25664 25707 25694 25703 
SCPB5 60 28188 28295 28297 28310 28262 28188 28239 28247 28245 
SCPC1 30 32613 32730 32763 32761 32648 32613 32646 32676 32639 
SCPC2 31 32705 32837 32871 32848 32745 32705 32749 32776 32777 
SCPC3 31 34428 34553 34610 34542 34451 34428 34496 34487 34477 
SCPC4 30 31329 31466 31495 31472 31372 31329 31397 31364 31374 
SCPC5 29 30030 30116 30196 30177 30061 30030 30082 30077 30087 
SCPD1 82 38935 39091 39132 39073 38991 38935 39012 39022 39022 
SCPD2 83 38935 39090 39098 39116 39038 38935 39035 39035 39037 

SCPD3 81 39134 39256 39271 39314 39221 39134 39209 39209 39209 
SCPD4 82 38723 38835 38879 38894 38814 38723 38798 38794 38814 
SCPD5 83 40268 40401 40409 40404 40362 40268 40338 40342 40332 
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Table-8A. Comparison Of SSIT With Other Metaheuristics Results For Kmax Skcp Data Sets 4, 5, and 6. 

PROBLEM KMAX OPT/BKS AL-SHIHIBA PESSOA SALEH WANG 
2017 

WANG 
2019 

SSIT1 SSIT2 SSIT3 

SCP41 11 18265 18265 18290 18273 18265 18265 18265 18265 18265 
SCP 42 9 12360 12378 12405 12369 12370 12360 12360 12360 12360 
SCP 43 8 10396 10397 10398 10396 10403 10396 10396 10396 10396 
SCP 44 8 10393 10415 10427 10401 10396 10395 10393 10393 10393 
SCP 45 11 18856 18861 18856 18863 18856 18856 18856 18856 18856 
SCP 46 10 15394 15426 15419 15411 15404 15394 15394 15394 15394 
SCP 47 10 15233 15261 15280 15249 15236 15233 15233 15233 15233 

SCP 48 11 18602 18635 18628 18610 18613 18612 18602 18602 18602 
SCP 49 10 16558 16586 16591 16563 16568 16562 16558 16558 16558 
SCP 410 8 11607 11615 11618 11616 11607 11607 11607 11607 11607 
SCP 51 24 35663 35722 35749 35679 35716 35685 35670 35670 35671 
SCP 52 26 45396 45449 45433 45412 45428 45409 45396 45396 45396 
SCP 53 24 36329 36374 36388 36349 36368 36343 36329 36329 36329 
SCP 54 21 28017 28044 28051 28037 28035 28026 28017 28017 28017 
SCP 55 22 32779 32808 32878 32795 32802 32788 32779 32779 32779 
SCP 56 21 29608 29656 29653 29632 29632 29618 29608 29608 29608 
SCP 57 25 41930 41964 41954 41944 41956 41946 41930 41930 41930 

SCP 58 22 32320 32358 32405 32344 32344 32332 32320 32320 32320 
SCP 59 22 33584 33600 33655 33602 33608 33599 33584 33584 33584 
SCP 510 24 38709 38779 38807 38737 38756 38730 38709 38709 38709 
SCP 61 31 23510 23559 23534 23536 23510 23510 23525 23523 23510 
SCP 62 29 19934 19980 20025 19964 19940 19934 19952 19953 19956 
SCP 63 34 27983 28021 28027 28014 27983 27983 27983 27983 27994 
SCP 64 33 26442 26477 26530 26475 26446 26446 26456 26449 26450 
SCP 65 33 27069 27090 27124 27084 27069 27069 27071 27071 27071 
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Table-8B. Comparison Of SSIT With Other Metaheuristics Results For Kmax Skcp Data Sets A, B, C, and D. 

PROBLEM KMAX OPT/BKS AL-SHIHIBA PESSOA SALEH WANG 2017 WANG 2019 SSIT1 SSIT2 SSIT3 

SCPA1 40 68507 68620 68669 68579 68590 68528 68518 68518 68518 
SCPA2 39 65842 65940 65922 65881 65927 65863 65861 65861 65860 
SCPA3 40 66829 66978 67016 66879 66891 66864 66839 66860 66863 
SCPA4 41 72334 72436 72465 72398 72398 72351 72342 72338 72342 
SCPA5 38 60491 60609 60625 60553 60539 60498 60503 60503 60503 
SCPB1 119 105491 105580 105636 105522 105560 105491 105532 105532 105532 
SCPB2 118 102883 102988 103046 103007 102941 102883 102937 102937 102912 
SCPB3 115 98255 98334 98445 98400 98347 98255 98311 98311 98311 
SCPB4 114 93729 93797 93836 93807 93800 93729 93783 93783 93760 
SCPB5 118 102761 102878 102905 102822 102867 102761 102829 102832 102832 
SCPC1 58 112471 112595 112667 112557 112565 112476 112538 112524 112501 
SCPC2 59 113916 114017 114145 113974 114012 113925 113950 113950 113948 
SCPC3 59 117416 117505 117680 117544 117501 117446 117454 117454 117449 
SCPC4 58 110823 110945 111091 110935 110938 110851 110869 110869 110894 
SCPC5 56 104428 104509 104591 104506 104518 104428 104457 104488 104427 
SCPD1 162 144815 144891 145060 145055 144961 144815 144891 144935 144941 
SCPD2 163 144020 144165 144218 144177 144138 144020 144182 144172 144141 
SCPD3 159 140450 140542 140685 140655 140589 140450 140530 140609 140533 

SCPD4 162 143391 143470 143582 143544 143488 143391 143504 143504 143497 
SCPD5 163 146249 146308 146452 146373 146342 146249 146294 146294 146294 
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To try to determine how good heuristic solutions are, Pessoa, et al. [5] ran each of the 135 problem instances 

for up to 24 hours using CPLEX (Version 11).  Pessoa, et al. [5] found proven optimal solutions for all 45 KMIN 

instances, for 25 KMED instances, and for 25 KMAX instances.  Researchers typically compare their results to 

these CPLEX results.  The best-known solutions of Pessoa, et al. [5] were updated based on better solutions 

obtained by Wang, et al. [9] (in blue in the tables).  Best known solutions were also updated based on SSIT results 

(in red in the tables). 

Table 6, 7, and 8 compare the results of using SSIT1, SSIT2, and SSIT3 as described previously in this article 

with the best results (over 10 independent runs) reported in Wang, et al. [8]; Wang, et al. [9]; Salehipour [7]; Al-

Shihabi [6] and Pessoa, et al. [5] to solve the 45 SKCPs at KMIN, KMED, and KMAX respectively. 

To make a simple comparison among the five previously published best performing SKCPs and the three SSIT 

scenario results for the 135 test instances, the average deviation from the optimum or best-known solution for each 

of the five solution methods are calculated over all 135 test instances. The average deviations from the 

optimum/BKS objective function value over all 135 problems for Al-Shihabi [6] was 0.20%, for Pessoa, et al. [5] 

was 0.23%, for Salehipour [7] was 0.13%, for Wang, et al. [8] was 0.05%, and for Wang, et al. [9] was 0.01%.  All 

three SSIT scenarios had the same (to two decimal places) average deviation from the optimum/BKS objective 

function value over all 135 problems of 0.03%.  All of these solution procedures generated very good results for the 

135 test SKCP instances, with SSIT giving the second-best results at only an average 0.03% deviation from the 

optimums.  Detailed statistical analyses of these eight solution methods will be provided in Section 4.4. All three 

SSIT scenarios provide excellent bounds (guaranteed to be on average within a tolerance of 0.136%, 0.137%, and 

0.131% of the optimums) for these 135 SKCPs with respectable average execution time of 84, 75, and 67 seconds for 

SSIT1, SSIT2, and SSIT3 respectively. 

Let’s look a little closer at the major advantage that SSIT has over the other approximate solutions methods 

specifically when solving the SKCP.  It was just shown that Wang, et al. [9] on average only deviated 0.01% from 

the optimums for these 135 SKCPs.  In contrast, the three SSIT scenarios all performed ―poorly‖ with an average 

deviation of 0.03% from the optimum for each SSIT scenario.  The real strength of SSIT, in the opinion of the 

authors of this article, is the fact that without expending excessive computer time to determine optimums, the SSIT 

scenario results are on average absolutely guaranteed to be within 0.136%, 0.137%, and 0.131% of the optimums for 

SSIT1, SSIT2, and SSIT3 respectively.  Additionally, SSIT obtains these excellent results using general purpose 

commercial software with default parameter settings—no specialized algorithms or computer codes are needed.  

Furthermore, as pointed out earlier, leading integer programming software packages such as CPLEX and Gurobi 

offer a large number of pre-defined problem templates and customer support. 

Finally, suppose that an OR practitioner was faced with the need to solve a SKCP for an actual real-world 

application and had access to CPLEX or Gurobi.  The OR practitioner could code the MLQCC algorithm of Wang, 

et al. [9] and solve his/her problem using MLQCC and obtain a solution that was probably very good, but exactly 

how good would be totally unknown.  Alternately, The OR practitioner could easily use SSIT in conjunction with 

CPLEX or Gurobi.  If the decision would have major financial implications for his/her corporation and the SKCP 

was very large, the OR practitioner might very well be willing to invest several hours of computing time to 

generate a solution that had a reasonably tight bound on it.  If the reader was the OR practitioner, would the reader 

use the Wang, et al. [9]; Salehipour [7] MLQCC algorithm or the SSIT methodology?  

 

4.4. Statistical Analyses  

In this section, with the 135 SKCP instances (45 KMIN instances, 45 KMED instances, and 45 KMAX 

instances), the three SSIT scenarios (SSIT1, SSIT2, and SSIT3) suggested in this article are compared to the top 

five SKCP solution methods Wang, et al. [8]; Wang, et al. [9]; Salehipour [7]; Al-Shihabi [6] and Pessoa, et al. 

[5] in the literature. Tukey’s pairwise comparison (after significant differences among the eight methods are 
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detected from the one-way repeated measures ANOVA) is used for the three K values (KMIN, KMED, and KMAX). 

Tukey [13] the common significant level at 5% is applied in the analyses.  

In the tables of the following sub-sections, Wang, et al. [8]; Wang, et al. [9], Saleh, Al-Shihiba, and Pessoa 

indicate Wang, et al. [8]; Wang, et al. [9]; Salehipour [7]; Al-Shihabi [6] and Pessoa, et al. [5] respectively. 

Table 9, 10, and 11 summarize the pairwise comparisons among the eight methods in terms of percent deviation 

from the optimum for KMIN, KMED, and KMAX, respectively. Note that the percent deviation from the optimum 

is getting smaller in order of A, B, C, and D, and methods that do not share a letter are significantly different.  

 

4.4.1. Comparison – KMIN 

Readers can check many results from Table 9 including (1) there is no statistically significant difference 

between Al_Shihiba and Pessoa and (2) there is no statistically significant difference among Saleh, Wang, et al. [8]; 

Wang, et al. [9], and the three SSIT scenarios (SSIT1, SSIT2, and SSIT3). 

 

Table-9. Summary – Three SSIT scenarios vs. Top five methods. with KMIN. 

Grouping Information Using the Tukey Method and 95% Confidence. 

Method N Mean Grouping 

Al_Shihiba 45 0.0020897 A   

Pessoa 45 0.0012286 A B  

Saleh 45 0.0007770  B C 

SSIT2 45 0.0000000   C 

WANG 2019 45 0.0000000   C 

WANG 2017 45 0.0000000   C 

SSIT3 45 0.0000000   C 

SSIT1 45 0.0000000   C 

                                                    Note:  Means that do not share a letter are significantly different. 

 

4.4.2. Comparison – KMED 

In Table 10, readers can check many results such as (1) Pessoa shows the worst performance, (2) there is no 

statistically significant difference among Wang, et al. [8] SSIT1, SSIT2, and SSIT3 and (3) Wang, et al. [9] shows 

the best performance but the difference between SSIT3 and Wang, et al. [9] is not statistically significant. 

 

Table-10. Summary – Three SSIT scenarios vs. Top five methods with KMED. 

Grouping Information Using the Tukey Method and 95% Confidence. 

Method N Mean Grouping 

Pessoa 45 0.0037011 A    

Al_Shihiba 45 0.0026969  B   

Saleh 45 0.0022919  B   

WANG 2017 45 0.0008584   C  

SSIT1 45 0.0007062   C  

SSIT2 45 0.0007020   C  

SSIT3 45 0.0006546   C D 

WANG 2019 45 0.0000800    D 

                                                              Note: Means that do not share a letter are significantly different. 

 

4.4.3. Comparison – KMAX 

Readers can check many results from Table 11 including (1) there is no statistically significant difference 

between Saleh and Wang, et al. [8] and (2) there is no statistically significant difference among the four best 

performing methods - Wang, et al. [9] SSIT1, SSIT2, and SSIT3. 
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Table-11. Summary – Three SSIT scenarios vs. Top five methods with KMAX. 

Grouping Information Using the Tukey Method and 95% Confidence. 

Method N Mean Grouping 

Pessoa 45 0.0018616 A    

Al_Shihiba 45 0.0011707  B   

Saleh 45 0.0008030   C  

WANG 2017 45 0.0006769   C  

SSIT2 45 0.0002701    D 

SSIT1 45 0.0002488    D 

SSIT3 45 0.0002315    D 

WANG 2019 45 0.0001604    D 

                                                      Note:  Means that do not share a letter are significantly different. 

 

In the next section, a test set of 65 SVKCP instances will be defined and solved using SSIT. 

 

5. SVKCP EMPIRICAL RESULTS 

5.1. SVKCP Data Sets 

 Since the SKCP instances commonly used in the literature to test SKCP solution approaches are based on 

SCPs from Beasley’s OR-library, the SVKCPs defined now will also be based on these SCPs as well as the SKCPs 

previously discussed.  The 65 SCPs from Beasley’s data sets 4, 5, 6, A, B, C, D, E, F, G, and H will be used to create 

SVKCPs. 

Recall that, for a given SCP, KMAX is equal to the sum of the ones in a row with the minimum number of ones.  

For each of the 65 SCPs mentioned above, the following 65 SVKCPs will be defined by randomly selecting integer 

K values for each row of the problem from the integers in the interval [2, KMAX].  In other words, instead of a 

fixed K value for all the rows of the problem (as is the case for SKCPs), the K values vary by row, but are integers 

randomly taken from the integers in the interval [2, KMAX].  For example, for SCP41, the interval would be from 

2 to 11, so each row in the corresponding full interval SVKCP would have a K value of either 2 , 3, 4, …,10, or 11.  

The actual K values used for each row for the 65 SVKCPs, are available on the cloud at SVKCP_K-values.xlsx.   

 

5.2. SSIT for the SVKCP 

To demonstrate that SSIT performs well on other PCs, software, and scenarios, the 65 SVKCPs just defined 

were solved using CPLEX on a PC with specifications: 16 GB RAM on Windows 10, Intel processor with 2.9 GHz, 

and 1000 GB hard drive.  By default, CPLEX uses a number of threads equal to the number of cores or 

32 threads (whichever number is smaller). The operating system manages any contention for processors.  The PC 

used has 4 cores, so the number of threads is 4.  For these SVKCPs, only one SSIT scenario is used.  Specifically, the 

SSIT scenario used for the 65 SVKCPs was 0.001 at 300 seconds, 0.003 at 60 seconds, and 0.005 for 60 seconds.  

This scenario contrasts with the SSIT scenarios used for the 135 SKCPs because for this scenario most of the time 

is spent at the tightest tolerance. The SSIT solution details for these SVKCPs are provided in Table 12. 

From Table 12, one can see that all SSIT solutions for the 65 SVKCPs are guaranteed to be within 0.1% of the 

optimum and only required an average of 12.2 seconds to solve each SVKCP and 120 out of the 130 SVKCPs (over 

92%) required less than 2 seconds of solution time.  To demonstrate the power of the SSIT matheuristic, these 65 

SVKCPs were solved in CPLEX with a tolerance of T= 0.0001 (the default) and up to one hour of execution time.  

Of these 65 SVKCPs, 47 terminated within the one-hour time limit and hence had found solutions guaranteed to be 

within 0.01% of the optimum—optimum for all intent purposes.  However, 18 had not terminated after 3600 

seconds of execution time.   

 

 

https://nam02.safelinks.protection.outlook.com/ap/x-59584e83/?url=https%3A%2F%2Flivekutztown-my.sharepoint.com%2F%3Ax%3A%2Fg%2Fpersonal%2Fbmcna842_live_kutztown_edu%2FETcbUUvCuxpNkc-ODQrgHxEBJpWAysL5O_92LfBqT2qtIA%3Fe%3DpO2MzW&data=02%7C01%7Cvasko%40kutztown.edu%7C64253d9a98094dc4186208d84455afd2%7C03c754af89a74b0abd4bdb68146c5fa4%7C1%7C0%7C637334482290100557&sdata=t2xxsEbyIG6eYsIZFSdFGocDx1R6nKnbzL3lEH9llgQ%3D&reserved=0
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Table-12. SSIT Results for 65 SVKCPs. 

 T=0.001  T=0.001 

Problem OBJ FN Time Problem OBJ FN Time 

SVKCP41 11019 0.14 SVKCPB1 65005 0.13 
SVKCP42 6773 0.08 SVKCPB2 62609 0.47 
SVKCP43 5619 0.09 SVKCPB3 59285 0.22 
SVKCP44 6408 0.17 SVKCPB4 59069 0.25 
SVKCP45 9860 0.03 SVKCPB5 63159 0.27 
SVKCP46 8094 0.08 SVKCPC1 62757 0.61 
SVKCP47 8355 0.06 SVKCPC2 62543 0.20 
SVKCP48 9829 0.13 SVKCPC3 66477 1.19 
SVKCP49 9153 0.17 SVKCPC4 63568 0.83 
SVKCP410 6926 0.16 SVKCPC5 57532 0.64 
SVKCP51 19615 0.14 SVKCPD1 99270 0.95 

SVKCP52 25113 0.16 SVKCPD2 96204 0.66 
SVKCP53 16488 0.14 SVKCPD3 97091 0.94 
SVKCP54 15731 0.13 SVKCPD4 96351 1.84 
SVKCP55 16488 0.09 SVKCPD5 95537 0.42 
SVKCP56 14720 0.11 SVKCPNRE1 175154 1.02 
SVKCP57 22186 0.13 SVKCPNRE2 174079 1.14 
SVKCP58 18163 0.20 SVKCPNRE3 166165 1.56 
SVKCP59 16318 0.08 SVKCPNRE4 161895 1.41 
SVKCP510 22296 0.05 SVKCPNRE5 162255 1.14 
SVKCP61 13185 0.22 SVKCPNRF1 178893 1.70 
SVKCP62 11868 0.41 SVKCPNRF2 189989 1.59 
SVKCP63 15527 0.67 SVKCPNRF3 189785 1.83 
SVKCP64 15040 0.27 SVKCPNRF4 188813 1.13 
SVKCP65 15847 0.36 SVKCPNRF5 196674 1.61 
SVKCPA1 39046 0.44 SVKCPNRG1 217562 227.14 
SVKCPA2 36828 0.34 SVKCPNRG2 215316 2.61 
SVKCPA3 37781 0.16 SVKCPNRG3 219089 52.31 
SVKCPA4 41455 0.22 SVKCPNRG4 221559 184.17 
SVKCPA5 34844 0.39 SVKCPNRG5 227274 281.81 

   SVKCPNRH1 317145 3.00 
   SVKCPNRH2 320148 3.64 
   SVKCPNRH3 319924 3.53 
   SVKCPNRH4 315907 3.33 
   SVKCPNRH5 320799 3.50 

 

Although all SSIT solutions for the 65 SVKCPs were guaranteed within 0.1% of the optimum, how did these 

solutions compare to the solutions that were found when CPLEX was executed at the default T=0.0001 tolerance?  

As a simple comparison, the average objective function value for the 65 SVKCPs executed at T=0.0001 was 94042.6 

and the average execution time was 1054.9 seconds compared to the SSIT average objective function value of 

94084.0 and an average execution time of 12.2 seconds.  Hence, after the fact, the SSIT solutions were off from the 

solutions obtained by CPLEX with T = 0.0001 by 0.04%, but the SSIT execution time was only 1.2% of the CPLEX 

execution time.  Note that, even ―before the fact‖, the SSIT solutions were guaranteed within 0.1% of the optimum. 

 

6. SUMMARY AND FUTURE WORK     

In this article the simple sequential increasing tolerance (SSIT) matheuristic is used to solve generalizations of 

the classic set covering problem such that bounded solutions are efficiently generated.  This multi-pass matheuristic 

is used in conjunction with integer programming software (in this case both Gurobi and CPLEX) and employs a 

sequence of increasing tolerances that are used with the integer programming software.  Best solutions found at one 

tolerance are then input as starting solutions for the next looser tolerance.  In addition to SSIT finding bounded 

solutions quickly, its use of general-purpose integer programming software (such as CPLEX or Gurobi) is a 
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significant benefit to OR practitioners.  Specifically, it allows OR practitioners to quickly develop SSIT models 

using default software parameter values and templates with no need for problem-specific algorithms and 

corresponding computer code.  Based on the particular application, the user has the flexibility to set the number of 

tolerances as well as their values.  Additionally, the user determines the maximum execution time for each 

tolerance.  Furthermore, for industrial systems that use SSIT, the performance of these systems is ―automatically‖ 

improved when new versions of the optimization software are installed.     

Specifically, the SSIT matheheurstic was shown to be highly effective and efficient at solving 135 set K-

covering problems (SKCP) that appear in the literature.  Three SSIT scenarios were tested and average deviation 

from the optimum or best-known solution was 0.03% for all three scenarios over all 135 SKCPs with average 

execution times of 84, 75, and 67 seconds for SSIT1, SSIT2, and SSIT3 respectively.  Only one of the five published 

algorithms had a smaller average deviation and that was Wang, et al. [9] with an average deviation of 0.01%.  

However, for the 135 problems, statistical analyses demonstrated that the difference between SSIT3 and Wang, et 

al. [9] was statistically insignificant.  Also, SSIT1 and SSIT2 results were statistically as good as Wang, et al. [9] 

for the KMIN and KMAX problems.  SSIT3 and Wang, et al. [9] were slightly better than SSIT1 and SSIT2 for 

the KMED problems.  What is much more important is that SSIT generated solutions that were guaranteed to be 

within a small percentage of the optimum while there are no solution quality guarantees for any of the other SKCP 

solution methods that appear in the literature.  Specifically, over all 135 SKCPs, SSIT found solutions guaranteed to 

be at most 0.136%, 0.137%, and 0.131% from the optimum for scenarios SSIT1, SSIT2, and SSIT3 respectively.   

This article introduced the set variable K-covering problem to be a SKCP in which the K value varies by row 

constraints.  Based on set covering problems from Beasley’s OR-Library, 65 SVKCPs were defined and effectively 

and efficiently solved using the SSIT matheuristic.  For these 65 SVKCPs, SSIT found solutions guaranteed within 

0.1% of the optimum for all 65 problems in an average time of 12 seconds. 

Finally, since the SSIT matheuristic is a general-purpose strategy for solving combinatorial optimization 

problems, the authors plan to test the performance of SSIT on solving other difficult-to-solve combinatorial 

optimization problems using several different commercial integer programming software packages.   
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