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Improvised explosive devices (IEDs) have recently become a considerable national 
security concern for governments due to their increased use. Since IEDs do not have a 
particular shape, detecting and classifying IEDs becomes a complex problem. Due to 
the irregularity of the wire shape, recent research focuses on detecting command wire, 
which is the triggering mechanism in IEDs. This study proposes a detection and 
clustering algorithm for wire detection. The synthetic data were generated using the 
gprMax software, an open-source Finite-Difference Time-Domain (FDTD) simulation 
environment. Different wire and clutter orientations were simulated while creating a 
2D GPR database. Three different prescreening algorithms are compared concerning 
computational time and signal-to-noise ratio. The Go Decomposition (GoDec) method 
was used at the preprocessing stage. Discriminating the buried wire from clutter was 
conducted using the k-means clustering method. The proposed algorithm results show 
promising outcomes over simulated GPR 2D C-scans.  
 

Contribution/Originality: This study focuses on detecting and discriminating the buried wire, which is the 

triggering mechanism of IEDs. Compared with the proven methods at the preprocessing stage, a better signal-to-

noise ratio is achieved using Go Decomposition, which makes this study novel, and the buried wires are 

discriminated with a higher accuracy using k-means clustering than the related methods. 

 

1. INTRODUCTION 

The problem of detecting improvised explosive devices is a critical concern for governments in the developing 

world [1]. Irregularity of shape and contents in the structure of IEDs makes them quite hard to detect with most 

sensors [2]. 

The most popular subsurface sensors used for the identification and localization of buried objects, e.g., pipes, 

landmines, and IEDs, are ground penetrating radars (GPRs) [3, 4]. A GPR probes the underground surface by 

emitting electromagnetic (EM) waves and analyzing the return signals caused by underground anomalies. The 

return signal's magnitude and character depend on the geometry, the contrast in the material properties of the 

objects, and their surroundings [5]. Sensors' gathered signals are processed using different signal and image 

processing techniques [6]. 

Only a few pieces of research focus on the buried wire detection problem. In Yılmaz [2], the buried wire 

detection and classification problem are studied in detail, and the detection and classification of wires was carried 
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out successfully. However, the proposed algorithms are based on 3D C-scan data, which requires more 

computational time than real-time applications.  

In Liu, et al. [7], the importance of antenna polarization for buried wire detection is studied by comparing the 

proposed antenna with two conventional GPR survey profiles. The results are based on hyperbolic signatures of 

buried wires. However, since the study focused on the hardware, the detection, clustering, or classification problem 

is not studied. In Heinzel, et al. [8], the unburied wire detection problem is studied with a multiple-input multiple-

output (MIMO) synthetic aperture radar (SAR), and detection of thin wire is carried out successfully. Nevertheless, 

the buried wire problem was still not studied because the authors expected that the buried wire problem would 

worsen the detection results. 

This study proposes a detection and clustering algorithm for buried wire detection, which has been developed 

based on a dataset obtained from gprMax electromagnetic modeling software [9]. The proposed algorithm has two 

stages. In the first stage, a prescreening algorithm was developed based on the Go Decomposition (GoDec) method. 

A clustering algorithm using the Gaussian mixture model was used in the second stage. 

The rest of the paper is organized as follows: Section 2 presents the GPR working principle with GPR range 

profiles; information about the simulation setup and dataset are given in Section 3; Section 4 describes the 

theoretical background of the prescreening and clustering methods; Section 5 presents the proposed method; 

Section 6 contains the simulation results; and the conclusion and discussion regarding the algorithm are given in 

Section 7. 

 

2. GPR PRINCIPLE 

A ground penetrating radar (GPR) is a short-range radar system well known for subsurface inhomogeneities 

such as buried objects or different layers. It transmits and receives signals based on electromagnetic (EM) wave 

scattering principles. The EM waves propagate into the ground at a speed determined mainly by the electrical 

properties of the medium. A portion of the EM wave energy is reflected and captured by the receiver antenna when 

a change occurs in the subsurface [10]. This wave propagation of GPR is illustrated in Figure 1. 

 

 
Figure 1. GPR electromagnetic wave propagation. 

 

2.1. GPR Range Profiles 

In this section, a brief definition of the GPR data outputs is given. A received reflected target signal, shown in 

Figure 1, is called an A-scan. Multiple A-scans that are recorded one after another in cross-track dimensions are 

called B-scans. A B-scan comprises two-dimensional (2D) data obtained using one transmitter and one receiver 

antenna moving along the track, or with an antenna array aligned with the cross-track position. A C-scan is 

comprises three-dimensional (3D) data that can be obtained with multiple B-scans recorded at along-track 

positions. Figure 2 shows the GPR range profiles and movement directions. 
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Figure 2. Definition of GPR data outputs: (a) GPR range profiles, (b) movement directions. 

 

3. DATASET AND SIMULATION SETUP 

The dataset, which contains 20 simulation scenarios, is generated using the gprMax program. Eight of these 

simulation scenarios are shown in Figure 3 to prevent confusion. Each scenario is scanned as shown in Figure 2b. A 

transmitter and receiver antenna pair is moved across along-track dimensions between 10–70 cm, which creates a 

B-scan. Each time the pair is finished scanning the along-track dimensions, it is moved 5 cm in the cross-track 

dimension and scanned again. This process is repeated 14 times in a cross-track position simulating an antenna 

array with 14 transmitter and receiver pairs. Thus, one C-scan consists of 14 B-scans for each scenario. In each 

simulation, some wires have different orientations and clutter modeled as spheres at different depths. 

3D data processing can be achieved with C-scans. However, the time required to process 3D data is greater 

than real-time scenarios. First, a prescreening algorithm is applied to the B-scans. After that, each B-scan is 

decreased to 1D data based on energy calculations. Then, the data from each 1D B-scan are combined, and a 2D C-

scan is achieved, as shown in Figure 2a. The features of these 2D C-scans are recorded and discriminated against 

using the Gaussian mixture model (GMM) clustering method. 

 

 
Figure 3. Simulation scenarios. 

 

4. THEORETICAL BACKGROUND AND THE PROPOSED METHOD 

A general block diagram of the proposed method for the buried wire detection problem is given in Figure 4. 
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Figure 4. Block diagram of data processing. 

 

4.1. Ground Reflection Removal 

The first reflection of the GPR signal occurs during the air-to-ground transition, as shown in Figure 1. A 

considerable amount of the signal is reflected from the ground. This reflection dominates the B-scan and prevents 

targets from appearing, as shown in Figure 5 (left). Therefore, a reflection removal algorithm must be applied to the 

raw data. 

Due to computational requirements, the removal algorithm of this reflection must be accessible and practical. 

The reflection time of this signal is equal to the one-way electromagnetic wave propagation, which depends on the 

distance between the transmitter (Tx)/receiver (Rx) antenna pair and the ground [2]. In case of a constant distance 

from antenna pairs to the ground, such as a ground vehicle mounted GPR, the time index of the reflection signal 

would always be near the same depth bins. This time index of reflection could be used as a constant gating index. 

However, the time index could change when the vehicle is in motion. In addition, the GPR signal reflected from the 

ground always has a higher value than the searched targets. Therefore, the peak of the reflection must be tracked, 

and the B-scan must be gated according to this peak. 

 

 
Figure 5. Ground reflection removal (raw B-scan data is on the left, and ground reflection removal is applied to the B-scan on the right). 

 

Since the distance from the antenna to the ground would not change dramatically, the time index of the first 

reflection could be tracked adaptively. This tracking can be done by looking the first 200 bins of the GPR image. 

The image could be gated when the peak is detected, as in Figure 5 (right). 
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4.2. Prescreening 

After the peak tracking algorithm, a prescreening algorithm is applied to the B-scans so that the background of 

the signal can be separated. Prescreening is also known as clutter reduction. Thus, image enhancement would be 

achieved, and targets would appear firmer. There are many prescreening algorithms studied with the GPR. In this 

study, three algorithms are studied and compared for the signal-to-noise ratio (SNR) and computational time. These 

algorithms are based on the statistical properties of the data and decomposition into subspaces. 

 

4.2.1. Singular Value Decomposition (SVD) 

SVD-based image enhancement is well studied in the literature. It is performed by decomposing B-scan image 

X (with dimensions M x N) into different spectral components using SVD, i.e., 

 
 

                      (1) 

   

where, U and V have dimensions M x M, N x N are unitary matrices, and S = diag(s1, s2, …., sM) with s1 ≥ s2 

≥….≥ sM ≥ 0 are singular values of X [11]. 

As singular values are arranged in descending order, the first few larger singular values generally correspond 

to effective signals with solid correlations, while the smaller values correspond to the noise with weak correlations 

[12]. 

 

4.2.2. Robust Principal Component Analysis (RPCA) 

Since the classical principle component analysis (PCA) is very sensitive to data outliers, the RPCA is used, 

which overcomes the drawbacks of the PCA for background removal. Each B-scan for the RPCA can be expressed 

as: 

 X = L + S + N                                 (2) 

where L is the low-rank component, S is the sparse component, and N denotes noise. It focuses on finding a 

low-rank structure in high-dimensional data by solving the following optimization problem [13]: 

 min ||L||* + λ ||S||1  subject to ||X - L – S||F ≤  δ 
               L,S                 

(3) 

where ||…||* denotes the nuclear norm of L (i.e., the sum of the singular values), ||…||1 is l-1 norm of S (i.e., 

the sum of the absolute values of matrix entries), ||…||F denotes the Frobenius norm, δ is a constant parameter for 

noise, and λ is a regularization parameter. The low-rank component represents the slowly varying background, and 

the sparse component contains the local variations, which can naturally include significant variations due to target 

anomalies [14]. 

Every time a GPR-carrying vehicle moves in the along-track direction, a 2D GPR data matrix (B-scan) is 

obtained, as shown in Figure 2. This B-scan data matrix (X) consists of target responses (S), clutter (L), and noise 

(N) variables, as modeled in Equation (2). Thus, we can separate the sparse component from the ground by solving 

the RPCA convex optimization problem. 

However, the solutions adopted in Candès, et al. [15] and Song, et al. [16] are time-consuming to some extent 

since they usually need more than 100 iterations to converge. To meet the speed and reliability requirements of 

prescreening, a more efficient and robust solution is needed [17]. 

 

4.2.3. Go Decomposition (GoDec) 

In [18], the development and implementation of GoDec are explained in detail. It is an RPCA-based and faster 

solution technique because it can be significantly accelerated by bilateral random projections [18]. GoDec 

decomposes X in (2) to minimize the error as: 

 
min   subject to rank (L) ≤ r,             card (S) ≤ k 

   L,S                 

        (4) 
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where (L) is the rank of matrix L, and card (S) denotes the cardinality of matrix S. This method is summarized 

and modified in [17]. To be able to use GoDec in GPR applications, it is necessary to make some adaptions [17]. 

One is to decompose the focused GPR image instead of the original B-scan to enhance sparsity and target responses 

[16]. Therefore, GoDec is applied to the B-scans after ground reflection removal. The other is to make initial 

estimations for the sparse (S) and low-rank (L) matrices. In Li, et al. [19], it is said that the initial values of the low-

rank and sparse matrices can accelerate the GoDec solving process. 

Making initial estimations as the average of the columns of the low-rank matrix (L0) and subtracting L0 from 

the original data matrix (X) for initial sparsity (S0) shortens the computational time of GoDec [17] (typically less 

than ten iterations). The formulas for the initial estimation of the low-rank matrix and sparsity are given in 

Equation 5 and Equation 6. 

 

 
 

(5) 

 S0 = X - L0 
 

(6) 

Detecting targets from B-scans is possible. However, extracting specific targets is not that easy from B-scans. 

To be able to find out which target it is, it is necessary to identify certain features that cannot be extracted from B-

scans for buried wire. Since wire reflections do not vary much from clutter responses, C-scan data must be studied 

to detect and classify the wire. 

 

4.2.4. Comparison of Prescreening Algorithms 

4.2.4.1. SNR Comparison 

The signal-to-noise ratio (SNR) is a conventional method used in image processing. The SNR of an image can 

be measured as the ratio of the average signal (M) to the standard deviation of the noise (N) [20]. Using the 

image's standard deviation, the image's background and foreground do not need to be detected and processed. 

 

 

 

(7) 

Where X is the B-scan data, and  and  are the average and the standard deviations of X, respectively. 

The SNR is compared over a predefined scenario, as shown in Figure 6. This scenario is scanned as described in 

Section 3. 

 

 
Figure 6. SNR comparison scenario. 
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The SNR is calculated for every B-scan that creates a C-scan and is recorded. Figure 7 illustrates that the 

GoDec method showed promising results compared to the other methods. 

 

 
Figure 7. SNR results. 

 

4.2.4.2. Computational Time Comparison 

A time comparison is made with the same scenario used in the SNR comparison. The RPCA method is much 

slower than the singular value decomposition (SVD) and GoDec methods. The SVD is the fastest algorithm to work 

with for this study. However, the time difference between the SVD and GoDec could be ignored since the SNR of 

GoDec is better than the SNR of SVD. The comparison results are shown in Figure 8. 

 

 
Figure 1. Computational time comparison of prescreening methods. 

 

4.3. Feature Extraction 

Ground reflection is removed, as described in Section 4.1. The Go Decomposition (GoDec) method is utilized 

for prescreening and is applied to all B-scan data, then the energy values of each A-scan are calculated, as shown in 

Figure 9. 

 

 

 

 
(8) 
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Figure 2. Creating a 1D energy vector. 

 

This process is repeated for every B-scan, creating a 2D C-scan energy map. This work is shown in Figure 3 for 

one scenario. 

 

 
Figure 3. (a) Scenario with wire and clutter; (b) Energy map of ground reflection removal; (c) GoDec energy map. 

 

After creating an energy map of the GoDec, a connected component analysis is utilized for image segmentation 

and feature extraction. Objects detected in the C-scan image are connected, and each is characterized as a single 

element using a connected component analysis. 

The clustering method is studied for detecting an object and deciding whether it is a wire. For the clustering, 

there should be some features to utilize. Yılmaz [2] explains in detail which features might be used for wires. We 

use energy and the total number of binary detections. Based on these features, raw data of the simulation scenarios 

are shown in Figure 11. Feature datasets are normalized to avoid confusion. 
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Figure 4. Raw features after GoDec. 

4.4. Clustering 

Clustering is an unsupervised machine learning technique that groups data for features. Since detecting IEDs is 

a dangerous but essential task, the target detection algorithm either must have 100% accuracy or should sound an 

alarm for objects that might be a target. In supervised learning, a training dataset is critical to discriminate and 

classify the anomaly. Since a wire can be in many different free forms, it is impossible to collect all the training data 

for buried wire in real life. Therefore, training in selected dataset features and classifying algorithms plays a critical 

role. 

In this paper, the training dataset is created with different forms of wires and clutter. Features are extracted 

from the C-scan energy map and investigated with clustering algorithms. Features are grouped as clutter or target 

anomaly, and clutter is removed from the C-scan energy map. After these algorithms, the user should see the 

anomaly on a display unit and decide whether it is a target or not. 

 

4.4.1. K-Means 

The k-means algorithm is one of the most used clustering methods. This method groups the features by 

minimizing the total variance concerning cluster centroids. Clustering is performed by minimizing distances 

between m centroids and their corresponding assigned data points.  

The distances between m centroids Di (i=1,2,…..,m) and the n feature samples xj (j=1,2,…..,n) are minimized as 

follows [21]: 

 

 

(8) 

The k-means clustering is a recursive algorithm that uses the iterative expectation maximization algorithm to 

determine the cluster membership that minimizes the sum of squared errors (SSE), as given in Equation (8). Firstly, 

given m, the number of clusters, the data points in the feature space are grouped into clusters with randomly 

initialized m centroids. In the next step, which is also called the expectation step (E-step), for each data point, the 

distance to each centroid is recomputed and each point is assigned to the cluster with the nearest centroid. Lastly, in 

the maximization step (M-step), the mean for each cluster is recompleted and the cluster centroids are updated. The 

k-means algorithm repeats the E-step and M-step until a convergence is reached. The convergence criteria can be 

defined as predetermined threshold values for distortions, maximum number of iterations, or when there is no 

change in cluster assignments [22]. 
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4.4.2. Gaussian Mixture Model (GMM) 

The GMM is used when the data distribution is unknown [23]. The GMM is an unsupervised clustering 

technique which is based on probability density estimations. It creates ellipsoidal-shaped clusters using 

expectation–maximization. The clusters are of a Gaussian distribution, always described by the mean and standard 

deviations. Using the mean and the covariance instead of only using the mean, as in the k-means, gives the GMM 

the ability to provide a better quantitative measure of fitness per number of clusters [22]. 

 The GMM is a linear combination of Gaussian distributions and can be modeled as: 

 

 

 
(9) 

Where, K is the number of clusters in the model and  is the mixing coefficient, which is a density estimation 

for each Gaussian component also called clusters.  is the Gaussian density expressed as: 

 

 

 
(10) 

where,  is an L-dimensional mean vector,  is an L x L covariance matrix, and  is the determinant of . 

The distance between data points and cluster centroids is calculated using Mahalanobis distance. The 

Mahalanobis distance is used widely in multivariate statistics applications. Euclidean distance differs because it 

considers the correlations between variables [24]. 

 

4.4.3. Comparison of Clustering Methods 

Unsupervised algorithms perform based on the clusters they create. The performance of any unsupervised 

algorithms can change dramatically due to the wrong cluster number. Therefore, the first step is to decide the 

optimal number of clusters. 

The elbow method, a famous visual cluster optimization method, is utilized to optimize the number of clusters. 

This method compares the difference in the sum of squared errors (SSE) of each cluster. The elbow angle's most 

extreme difference shows the best cluster number [25]. Evaluation of the best cluster number for the k-means is 

illustrated in Figure 12. 

 
Figure 5. Evaluation of the best cluster number using the elbow method. 
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Table 1. Comparison of SSE differences with cluster numbers. 

Number of Clusters SSE Difference of SSE 

1 11.6410 - 
2 1.7971 9.8439 
3 0.7203 1.0768 
4 0.6232 0.0971 
5 0.5492 0.0740 
6 0.1960 0.3531 

 

It can be seen from Figure 12 and Table 1 that the most significant change occurs when there are two clusters. 

The difference between cluster 1 and cluster 2 is 9.8439. After that, all differences decrease slower from cluster 2. 

The clustering performance of the k-means algorithm with two clusters is illustrated in Figure 13. 

 

 
Figure 6. K-means clustering results. 

 

Based on Figure 13, the k-means only clustered two data points wrongly out of 79, corresponding to a 97.47% 

accuracy. Information criterion tests are utilized to choose the best number of clusters for the GMM. The Akaike 

Information Criterion (AIC) and the Bayesian Information Criterion (BIC) are used to determine the clusters. The 

lower the AIC and BIC values, the more accurate the chosen clusters will be. 

As described in the explanation of the GMM above, each Gaussian component uses the mean and the 

covariance matrices. The covariance matrix decides the shape and the orientation of the confidence ellipsoids. We 

can choose the covariance matrices of each component to be complete or diagonal and whether they share the same 

covariance matrix. Therefore, different covariance structures are evaluated with the AIC and BIC. The evaluation 

results are illustrated in Figure 14. 

From Figure 14, it is clear that the AIC and BIC values decrease slower after two clusters. The full and 

unshared covariance matrix structures performed the best among other combinations. Figure 15 shows the visual 

results of the different covariance matrices on the feature dataset when the cluster number is two. 
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Figure 7. Evaluation of best cluster number: (a) AIC results with respect to different covariance structures; (b) BIC results with respect 
to different covariance structures. 

 

 
Figure 8. 95% confidence ellipsoids based on different covariance structures. 

 

Confidence ellipsoids are drawn with 95% confidence. The GMM could not detect four wires and mis-detected 

three clutter points. If we increase the confidence level, then an increase would be seen in the volume of confidence 

ellipsoids, and the volume will decrease if the confidence level decreases. The clustering performance results of the 

GMM based on the confidence thresholds are compared for accuracy value, which is the ratio of the total number of 

accurate clustering to the total number of detections. The evaluation results are shown in Table 2. 

 

Table 2. Accuracy results of the GMM with different thresholds. 

Clustering with GMM, cluster number = 2 

 Threshold = 90% Threshold = 95% Threshold = 99% 
Accuracy 92.41% 91.14% 87.34% 
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It is observed that increasing the threshold led to worse accuracy results. The increasing threshold of 

confidence ellipsoids led the GMM to detect the wires. However, it also detected clutter as wires. Decreasing the 

threshold overcomes the problem of detecting clutter as wires, but it also starts to miss wires. 

The k-means clustering algorithm reached 97.47% accuracy. Therefore, in this study, we use the k-means 

clustering algorithm. 

After comparing the prescreening and clustering algorithms, the flow of the proposed algorithms we used for 

cluster wire and clutter is shown in Figure 16. 

 

 
Figure 9. Block diagram of the proposed method. 

 

5. SIMULATION RESULTS 

Based on the algorithm flow in Figure 16, simulation results will be given in two different ways: raw simulation 

scenario and k-means clustering results. We decide whether the detected target is a wire or not based on k-means 

clustering. Thus, targets clustered as clutter will be deleted after the k-means algorithm, and only wires should be 

seen in the detection image. The simulation results are given in Figure 17 and Figure 18. 

In the simulations, the GPR radar antenna polarization is defined as the X direction, which is identical to the 

cross-track direction. Thus, signals coming from other directions will be weakened drastically. This fact can be 

easily seen in scenarios 3, 6, 9, and 10. The two wrongly clustered data points circled in Figure 13 can be seen in 

the 15th and 18th scenarios. 

Since the k-means calculates the distance based on Euclidean distance, the distance from these two data points 

is closer to the wire cluster centroid. 
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Figure 10. Scenarios from 1–10, and algorithm results. 
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Figure 11. Scenarios from 10–20, and algorithm results. 

 

6. CONCLUSION 

In this study, we developed an algorithm for buried wire detection that is used to trigger IEDs. After ground 

bounce removal, the prescreening methods were studied and compared. The GoDec produced promising results 

both in computational time and SNR values. The k-means and GMM clustering techniques were also studied. 

Furthermore, the number of clusters is determined using the elbow method and the AIC and BIC methods. We 

compared different covariance structures for the GMM components, which determine the shape and the orientation 
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of the confidence ellipsoids. Also, different threshold values for confidence ellipsoids are compared. Since the 

distance of data points to the cluster centroids and the confidence ellipsoids are calculated with Mahalanobis 

distance, the data points out of these ellipsoids could not be detected. The k-means performed better than the 

GMM, with a 97.47% accuracy. Since the k-means uses Euclidean distance for distance calculation between data 

points and cluster centroids, its assignments were better for the featured dataset. 
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