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In recent years, the utilization of deep learning techniques has been employed in the field 
of image recognition with the aim of improving performance. However, deep learning 
demands a substantial amount of labeled data for model training, a process that is both 
expensive and time-consuming. In order to tackle this particular difficulty, the approach 
of few-shot learning (FSL) has emerged as a viable alternative. FSL, or Few-Shot 
Learning, is a computational approach that aims to replicate the cognitive processes 
observed in humans. By using a small set of examples and experiences, FSL enables the 
acquisition of new concepts. Research in the field of FSL has investigated many 
approaches to extracting the highest amount of information from limited data or making 
use of affordable and easily accessible sources of information. Researchers have been 
incorporating outside data into FSL techniques more frequently. This paper conducts an 
in-depth exploration of leveraging semantic information to enhance few-shot learning. 
By reviewing papers from the last five years in WOS, IEEE, and Science Direct (some 
papers in arXiv are also used), this study delves into the strategies employed to bridge 
the gap between visual and semantic information. The review extends to encompass zero-
shot learning, which is considered a subcategory of FSL, enriching the analysis. 
Moreover, this paper identifies the potential of employing semantic information to 
enhance fine-grained few-shot (FGFS) learning. Techniques such as direct projection and 
the application of generative adversarial networks (GANs) emerge as promising avenues 
to accomplish this enhancement. 
 

Contribution/Originality: This work aims to address the existing research gap by conducting a comprehensive 

assessment of several methodologies that leverage semantic information in order to improve the performance of few-

shot learning. In contrast to conventional few-shot learning approaches, semantic-based methodologies priorities the 

establishment of connections between semantic information and visual representations. 

 

1. INTRODUCTION 

The field of computer vision has experienced significant advancements as a result of the use of deep learning 

techniques, leading to enhanced precision and accuracy in the obtained outcomes [1]. As a part of computer vision, 

image recognition (IR) can apply recent technology to obtain robust feature representations and increase accuracy 

[2]. However, deep learning methods require large numbers of labelled examples to train the Convolutional Neural 

Network (CNN) model. Without sufficient data, it is difficult to train a good classifier and implement accurate IR. 

Obtaining a large amount of labelled data is not feasible in many cases because doing so is labor-intensive and costly. 
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For example, it is a challenge to collect enough medical images under time constraints. Therefore, the few-shot 

learning (FSL) approach was introduced to effectively use a limited number of images to obtain sufficient information 

and achieve high performance in recognition tasks. There are three methods for FSL: metric learning, meta-learning, 

and generative (or augmentation)-based methods [3]. 

This research concentrates its attention on a distinct kind of FSL known as semantic-based FSL. It is a specific 

augmentation-based technique that uses zero-shot learning (ZSL), which necessitates the classification of new and 

undiscovered classes. There are no images available for the unseen classes during training; semantic information is 

the only information that can be used to encode semantic relationships between seen and unseen classes [4]. For 

ZSL, semantic information is essential. For few-shot learning, this semantic information can be used to improve 

recognition performance. 

The key challenge is to determine how images can be recognized based on a few examples and semantic 

information. It is difficult to build authentic relationships between images and semantic information using a limited 

number of samples. In recent years, there have been tremendous developments in research on FSL, especially using 

semantic information. Our main objective is to summarize researchers' efforts in semantic-based few-shot image 

recognition, develop a coherent taxonomy to overcome the challenges, understand the characteristics of the new 

research trends in recent years, and propose some directions for future study. 

The present paper is structured in the following manner: Section 2 of this research presents a comprehensive 

examination of Few-Shot Learning (FSL) with a specific emphasis on semantic information. This section encompasses 

the definitions and issues associated with FSL. Moving forward, Section 3 conducts a thorough literature analysis 

that specifically investigates the methodologies employed in FSL that leverage semantic information. Finally, Section 

4 serves as the concluding section of this paper. 

 

2. FEW-SHOT LEARNING AND SEMANTIC INFORMATION 

FSL, which stands for Few-Shot Learning, falls under the category of machine learning techniques. Generally, 

machine learning involves a computer program that learns from prior experiences (E) within a specific set of tasks 

(T), guided by a performance measure (P). The objective is to enhance performance in task T through learning from 

experience E, as quantified by measure P [5]. FSL is a distinct class of machine learning problems, sharing common 

elements of experience E, task T, and performance measure P. However, the differentiating factor between FSL and 

standard machine learning is experience E, which integrates supervised information tailored to the target task T [6]. 

FSL relies on limited, supervised information. FSL encompasses sub-categories based on the volume of training data 

employed. For instance, when N*K samples are utilized for training (N classes, each with K samples), this is termed 

N-way-K-shot learning. Alternatively, when only a single sample per class is available, it's known as one-shot learning 

(OSL). In scenarios where at least one sample is unavailable for specific classes, it's referred to as zero-shot learning 

(ZSL). 

The primary limitation lies in traditional deep learning's difficulty in rapidly categorizing with a restricted sample 

pool [2]. This challenge arises due to the time-intensive process of fine-tuning model parameters for improved 

performance. Multiple approaches have been proposed to tackle this issue, including metric learning, meta-learning, 

augmenting sample generation, and utilizing alternative data types [3]. In metric learning, a nonlinear embedding 

is projected onto a metric space, facilitating the measurement of data similarity or distance. Consequently, image 

points from the same class cluster closely, while those from different classes remain distant in this metric space, 

enhancing the manageability of FSL. Meta-learning, or "learning to learn," draws from a diverse array of learning 

tasks to accelerate the model's capacity to learn effectively, so the algorithm can adapt effectively to new tasks. These 

tasks are regarded as experiential in nature, and the acquisition of new tasks is expedited. Meta-learning involves the 

acquisition of knowledge and skills across multiple learning challenges, whereas traditional machine learning 
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methods often rely on the analysis and modelling of a single task. When faced with a lack of suitable data, the use of 

external data can be advantageous for FSL acquisition. 

Semantic information is a type of external data that is the key to ZSL [7]. It is also useful for other types of FSL 

[3, 8]. According to Wang, et al. [9], there are four types of semantic information: attributes, lexical items, labels, 

and text. Attribute and text are the most widely used types. One essential problem emerged with the use of semantic 

information: how to bridge semantic information and visual images. The most popular method is to learn the 

embedding or mapping function between visual features and semantic vectors [7]. As a result, there are two types of 

information (visual and semantic) that can be used to improve learning performance. This paper focuses on how 

semantic information can be used for FSL. 

 

3. LITERATURE REVIEW 

 

 
Figure 1. Taxonomy of research literature on few shot learning. 

 

FSL was proposed so machines could mimic the human ability to learn new concepts from a few examples. There 

was no specific definition of FSL until 2020, when Wang, et al. [6] provided the most widely recognized definition. 

The most challenging problem for FSL is data sparsity. There are two ways to address this problem. On the one 

hand, there are ways to use limited data more effectively and extract helpful information. On the other hand, external 

data can be used to improve FSL performance.  

The terms single-modal learning and multimodal learning  [10] are used to distinguish these two approaches. 

In single-modal learning, limited data are used to solve few-shot learning problems with methods such as data 

augmentation, metric learning, and meta-learning. In contrast, multimodal learning relies on other types of data. For 

example, image classification using multimodal learning can be based not only on image data but also on text data, 

attribute data, or some website data.  

There are three subtopics in the literature review: meta-learning, metric learning, and multimodal learning. 

Figure 1 illustrates the taxonomy of few-shot learning, especially for multimodal learning. This includes attribute-

based methods, label-based methods, text-based methods, and lexically-based methods. 
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3.1. Meta-Learning 

 

 
a) Traditional deep learning                                                                                      b) Meta learning 

Figure 2. The difference between traditional deep learning and meta-learning. 

 

Meta-learning is a learning strategy that enables learners to learn new tasks faster. A wide range of learning 

tasks are used, and the trained model can quickly adapt to new tasks. Figure 2 illustrates the distinction between 

traditional deep learning and meta-learning: While traditional deep learning views a dataset as a single task, meta-

learning treats it as multiple tasks. The increased number of tasks enables meta-learning to rapidly adapt and learn. 

Suppose there are two datasets: Dtrain and Dval [11]. Meta-learning uses Dtrain to train and obtain prior knowledge and 

then uses Dval to modify the meta-learner. For task T(k), the labelled supporting image is set as S(K), and the query image 

is set by Q(k). S(k) and Q(k) are from the same set of classes, C(k), which is a subset of Ctrain, Cval or CtrainUCval  . Supporting data 

is used for learning, and a query set is used for testing for each task.  

A simple meta-learning model is model-agnostic meta-learning (MAML) [12]. MAML is used to find the model 

parameters with good generalization for new tasks. However, random initialization of the model parameter leads to 

local optima problems during the gradient descent and affects fast learning. A batch has several tasks in MAML 

training, each with a different gradient descent direction. The model uses the batch's gradient of all task gradients 

(second-order derivatives) to update the model parameters. The Reptile model [13] is an improved form of  MAML. 

It can ignore second-order derivatives and does not need to update as many parameters as MAML. There are other 

methods based on MAML, such as MAML++ [14], Imaml [15], and iTAML [16], which were introduced to address 

some of the drawbacks of MAML: gradient instability, high computational overhead, low generalization performance, 

and others. Another important method is LSTM (Long Short-Term Memory)-based meta-learning. The process 

gradient-based update is similar to the cell-state update in LSTM [17]; therefore, the state update formula of LSTM 

can be used to update the parameters of the meta-learner. Based on the characteristics of LSTM, this meta-learner 

can capture short-term (for each task) and long-term knowledge (for all tasks), which helps solve the problem of 

gradient-based optimization failure in FSL. Memory-augmented neural networks (MANN) [18] can quickly learn 

new information by storing already-seen class information in external memory. This lets them make accurate 

predictions in FSL. 

 

3.2. Metric Learning 

Metric learning involves learning the similarity or distance between labelled and unlabeled samples. The 

recognition task can be completed by comparing the distance to labelled samples. This method can effectively avoid 

the problem of over fitting because it does not require additional parameters for new classes [19]. Different distance 

metrics can be used: Manhattan distance, Euclidean distance, cosine similarity, and others. Siamese neural networks 

[20] were the first to apply metric learning to one-shot recognition. In this method, there are twin networks that 

have the same structures and share parameters. Two images are input into the twin networks, and image features or 

representations are extracted. Then, the L1 distance, or Manhattan distance, between the twin features is calculated 
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to rank their similarity. The Siamese neural network is applicable for verification tasks, but it is not suitable for 

recognition tasks because it only computes the similarities between the twin images. A matching network [21] can 

be used to address this problem. A label distribution is outputted by calculating the cosine similarities between 

unlabeled and labelled images. The matching network computes the distance between the support and query samples. 

However, the number of support samples is limited, so they cannot adequately represent the novel class  [19]. 

Prototypical networks [22] were proposed to address this issue. It is based on the fundamental assumption that all 

the image representations from the same classes cluster around a prototype representation. The prototype 

representation can be calculated as the mean of the support example representations for each class [22]. Prototypical 

networks use Euclidean distance to categorize prototypes and characterize their commonalities. The prototype 

representation is superior because it is derived from the average of all picture representations for each class. 

 

3.3. Multimodal Learning 

In multimodal learning, multiple signals pertaining to the data are used for model building. These modes include 

pictures, illustrations, audio, speech, writing, print, etc. However, semantic information (attributes, labels, text, and 

lexicality) is more useful for FSL. According to different types of data, this multimodal learning for FSL can be 

categorized into four methods: attribute-based, label-based, text-based, and lexicality-based. 

 

3.3.1. Attribute-Based Methods 

An attribute is a type of manually defined data that can describe the features of a class, such as shape and color. 

The same attribute can be shared among different classes. For example, a bird or horse can have the same attribute: 

black in color. This characteristic makes it easy to bridge between seen and unseen classes. Because of this, in many 

recent studies, attributes have been used for FSL, especially for ZSL. Images and attributes are different types of data. 

Bridging the gap between the two data modes is the most critical issue for this method. Then, a mapping function 

from the visual space to the attribute space is found to transform visual features into semantic features, a process 

referred to as semantic embedding. Another approach is visual embedding, which involves a mapping function from 

the attribute space to the visual space. Latent space embedding refers to the mapping from the visual space or attribute 

space to a new space. Attribute space is a kind of semantic space that consists of many attributes. 

 

3.3.1.1. Semantic Embedding 

The semantic embedding approach projects image features onto the semantic space. It learns an embedding 

function that maps from the visual space to the semantic space. It uses visual features (𝑥𝑖
𝑠) and semantics of seen 

classes (𝑎𝑖
𝑠) to train the model and minimize the loss function. A Visual feature 𝑥𝑖

𝑠 ∈ ℝ𝐷 is a D-dimensional vector 

extracted by some related networks, such as VGG-19 (Visual Geometry Group) or ResNet. 𝑎𝑖
𝑠 ∈ ℝ𝐾  is a K-

dimensional vector of semantic information. It can be obtained by Word2vec or Glove, which inputs the semantic 

information. A linear regression projection can be described as follows: 

min
𝑤

∑ ||𝑊𝑇𝑥𝑖
𝑠 − 𝑎𝑖

𝑠||2
2 +

𝑁𝑠
𝑖=1 𝜆||𝑊||𝐹

2                         (1) 

Here, λ represents the regularization parameter and 𝑊denotes the mapping function from the visual to semantic 

space. This process of learning entails the discovery of the projection function 𝑊 that transforms 𝑥𝑖 to 𝑎𝑖 , aiming to 

minimize the Euclidean distance between them. The concept of Class Adapting Principal Direction (CAPD) [23] 

refers to a linear regression model responsible for projecting visual features onto the semantic space. Following this 

embedding, CAPD utilizes Mahalanobis-derived distances to quantify similarity and facilitate the classification 

process. 

Numerous investigations have been conducted to enhance the efficacy of semantic embedding. One strategy 

involves refining the discriminative nature of the semantic embedding itself. For instance, a model known as Channel-
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wise Mix-Fusion ZSL (CMFZ) [24] exploits the interplay between objects and their environments to emphasize the 

most distinctive channels. This emphasis on distinctiveness aids in cultivating robust and discriminative semantic 

embedding tailored for Zero-Shot Learning (ZSL) scenarios. Given that the global feature may lack the requisite 

discriminative power for achieving optimal performance in ZSL, an attention mechanism is employed to extract local 

region features. These features are subsequently projected onto the semantic space [25]. Furthermore, a method 

termed Prototype Adjustment [26] has been proposed to enhance the accuracy and discriminative quality of the 

semantic representation. This method effectively addresses the challenge of domain shift, which commonly arises in 

ZSL scenarios. 

An alternative strategy involves the utilization of semantic embedding in conjunction with self-reconstruction 

techniques. Certain researchers have pursued the projection of visual features onto the semantic space, followed by 

the subsequent reconstruction of these visual features [27-30]. This approach of self-reconstruction serves to bolster 

the model's generalization capabilities and effectively mitigates the domain shift problem that can arise from such 

projection. Several studies have detailed methodologies for synthesis. These methodologies focus on the generation 

of novel samples, leveraging the generated samples in the recognition process. In one such model, a semantic 

embedding module is employed to extract semantic information from images. Subsequently, a Generative Adversarial 

Network (GAN) is harnessed to craft an image endowed with specific attributes. This interplay forms a bidirectional 

mapping that ensures the alignment of the generated images with the intended semantic space [28]. In a distinct 

study, semantic information is combined with a conditional GAN to produce images that serve to ameliorate 

challenges related to data scarcity and imbalance [29]. 

 

3.3.1.2. Visual Embedding 

Visual embedding projects semantic information into the visual space. Visual features have higher dimensions 

than semantic features, so they are more distinctive. Its ridge regression model can be described as follows: 

min
𝑤

∑ ||𝑥𝑖
𝑠 − 𝑊𝑎𝑖

𝑠||2
2 +

𝑁𝑠
𝑖=1 𝜆||𝑊||𝐹

2                       (2) 

Equation 2 illustrates the process of projecting semantic features onto visual features. Here, 𝑊 represents the 

projection function from the semantic space to the visual space. 𝑥𝑖  Corresponds to the visual features, while  𝑎𝑖 

corresponds to the semantic features. The symbol λ denotes the regularization parameter. This represents the process 

of iteratively determining optimal parameters for 𝑊 in order to minimize the discrepancy between 𝑥𝑖  and 𝑎𝑖 . 

Nevertheless, the utilization of visual embedding gives rise to a hubness problem. This means that a small number 

of objects become neighbors of most objects in high-dimensional space. A reverse feature projection from semantic to 

visual space and a cosine distance loss function are used to address the hubness problem in ZSL [31]. Because the 

prototype is not likely to be affected by some novel or abnormal data, the visual prototype has a better generalization 

ability than the single visual feature. A prototype is leveraged in multimodal learning to obtain better recognition 

performance [32]. In this method, the semantic space is projected onto the visual space, and discriminative visual 

prototypes are calculated. To avoid information loss and alleviate the domain shift problem, attributes are projected 

onto the visual space and then reconstructed into semantic vectors [33]. 

 

3.3.1.3. Latent Space Embedding 

Learning an explicit projection between visual features and semantic representations is difficult because they are 

from two different spaces and have distinct properties. Latent space embedding is used to find a common space in 

which there are some common properties across different modalities. This method can effectively overcome the 

domain shift problem of one-way mapping. Figure 3 illustrates how latent space embedding works: visual and 

semantic features are projected into a new space (latent space), which can be beneficial for the target task. 
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Figure 3. A schematic view of latent space embedding. 

 

Match kernel embedding (MKE) [34] was proposed to bridge the gap between the visual space and the semantic 

space. Both types of information are projected onto the MKE space to infer similarities between seen and unseen 

classes. A zero-shot image classification method based on a learnable deep metric (ZIC-LDM) [35] was proposed to 

learn a common space so that image and semantic features can be mapped onto this space to help with the semantic 

gap problem. In several papers [36-41], auto-encoders were used to map visual and semantic information onto the 

latent space. Figure 4 illustrates the process by which an auto-encoder compresses data and reduces its dimensions 

by filtering out noise from the data. 

 

 
Figure 4. A schematic view of auto encoder. 

 

The difference between direct mapping and using an auto encoder is that the auto encoder has a reconstructed 

process that can test the effectiveness of the compressed data. The goal of the discriminative dual semantic auto 

encoder (DDSA) [36] is to build an aligned space with two bidirectional mappings for the visual and semantic spaces. 

The features in the aligned space are semantic-preserving and discriminative. Figure 5 depicts the processes of DDSA. 

 

 
Figure 5. A schematic view of DDSA framework. 

 

The latent or common space learned by the auto-encoder is more discriminative for ZSL [37, 41]. The 

compressed representations learned from attributes and images are easy to align and mitigate the domain shift 

problem [38, 41]. Residual attribute extractor generative adversarial networks (ResAttr-GAN) use the encoder-

decoder generator and attributes to generate images and achieve better performance for face recognition [40]. We 
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can conclude that the auto encoder and latent space are always used to address domain shift problems and make the 

features more discriminative. 

Some studies aim to find other latent information to improve the accuracy of ZSL [42]. The traditional attribute 

is not discriminative enough. As a result, combining the various attributes led to the proposal of a latent attribute 

[42]. 

Finally, there are several unique papers that describe how to use attributes in different ways. A self-attention 

mechanism is used to obtain more discriminative visual features. Then, the discriminative visual features are projected 

into semantic space and achieve superior performance. Visual features Image features are decomposed into several 

parts by leveraging attributes [43]. FSL, which uses these different parts, can achieve higher accuracy. Another paper 

used a salient object detector to obtain a salient map, and the object position helped obtain local features. Global and 

local image features are extracted and fused to form better visual features. Then, these features are projected into 

semantic space to predict their labels [44]. The domain of the last paper was structural damage identification [45], 

and damage attributes were treated as interclass knowledge. This knowledge is transferred from the seen class space 

to the unseen class space. This paper was also based on meta-learning, so its data were divided into task levels based 

on the sample levels. 

 

3.3.2. Label-Based Methods 

This approach involves finding similarities between class names or labels. The similarity is then used to bridge 

the relationship between seen and unseen classes. There are two general categories of methods for using labels, 

depending on how the labels are used. Many of them use graph convolution networks (GCNs) [46-50] to deal with 

the labels. Some use a tree or hierarchical structure [51, 52] to relate labels. 

Graph Convolutional Networks (GCNs) are a computational framework that enables the extraction of 

relationships between nodes within a graph structure. These extracted relationships have been found to be beneficial 

in the context of image recognition tasks. The distinction between steamed dumplings and fried dumplings can be 

challenging, yet it becomes more manageable when we establish a connection between steamed dumplings, fried 

dumplings, and fried steak. 

Food images do not have a distinctive appearance or prominent layout structure. To obtain a more discriminative 

and robust classifier, a GCN was introduced to capture interclass relations [49]. A two-head model was proposed to 

learn a CNN-based classifier and a GCN-based classifier, and then the two results are fused into one result to improve 

accuracy [48]. GCN was used to map semantic embedding into interdependent classifiers so that global label 

correlation could be taken into account and the performance of multi-label ZSL could be improved [47]. A labelled 

graph was inputted into a GCN-based network to learn the embedding vector, which was inputted into a metric 

learning network to learn similarities in low-dimensional space between each node [46]. This approach can be used 

to address the limited labelled data problem for document and image classification. Semantic label embedding and 

knowledge graphs were exploited to augment the visual features [50]. They used a GCN as the semantic-visual 

mapping network. 

A tree or hierarchical structure may be the simplest way to connect different types of labels. A Meta-Concept 

method [52] was designed involving a concept graph, and Figure 6 illustrates the structure of the concept graph, 

which takes the form of a tree structure. This model trains not only the image classifier but also the concept classifier. 

It can adapt quickly and exhibit high performance by inferring the abstract concept and dealing with a few labelled 

samples. 
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Figure 6. A schematic view of meta concept method with concept graph. 

 

Chinese character recognition requires studying the relations between the characters and their radicals and 

obtaining a tree layout for primitives [51]. The hierarchical decomposition of the Chinese character is depicted in 

Figure 7, illustrating the character's breakdown. The character is comprised of five primitives, showcased in the 

nodes. With the help of these radicals and structures, the Chinese character can be recognized without a labelled 

sample from the training data. 

 

 

Figure 7. A schematic view of tree layout of the Chinese character. 

 

In conclusion, it is crucial to find label correlations for label-based methods. There are two main approaches to 

obtaining their relationship: one uses their hierarchical structure, and the other uses a GCN. The correlations among 

labels are captured, and classification is performed with the help of label relationships. 
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3.3.3. Text-Based Methods 

There are techniques for using a text corpus to mine the relationships between classes or categories. For 

processing text in FSL, there are primarily two categories: One involves utilizing existing models such as word2vec, 

BERT (Bidirectional Encoder Representations from Transformers), Text RCNN, Glove, and Reverb [53-58]. The 

other is an encoder-based method [59-61]. The processed text data is then fused with visual features or mapped onto 

the visual space (or vice versa) to enhance the single-modal visual features. 

The use of the existing model will be discussed first. A multimodal diagnosis predictive model of Alzheimer’s 

disease used reports of the disease and obtained a word vector by leveraging word2vec to address the FSL problem 

[53]. A sentence was pre-trained by BERT and CNN to obtain a low-dimensional vector for few-shot relation 

classification  [54]. Few-shot vegetable disease recognition used Text RCNN to extract features from disease 

description texts [55]. Annotations were input into word2vec with a bag of words to build a text vector for image 

classification [56]. Any-shot sketch-based image retrieval problem was solved by using three different types of text-

based side information: Word2Vec, GloVe, and FastText. This information was then used to judge if the generated 

information was real or fake [57]. English Wikipedia text was embedded into semantic vectors through word2vec, 

and the GAN was used to solve the ZSL problem [58]. 

A pre-trained text encoder processed textual descriptions to generate new data for FSL [59]. The knowledge 

Encoder processes textual descriptions and knowledge graphs to obtain global and local information for fine-grained 

classification for FSL [60]. Multimodal data-enhanced representation learning uses sentences from WN9-IMG-TXT 

(WordNet9-Image-Text ), and image and text are input into a multimodal auto-encoder to learn entity 

representations or joint representations [61]. 

Text information cannot be leveraged directly. Therefore, it needs to be converted into word vectors by 

word2vec, BERT, TextRCNN, GloVe, FastText, or an encoder-based model. The extracted text features can be fused 

with visual features to generate new data, which is vital for FSL. 

 

3.3.4. Lexicality-Based Methods 

This method is based on WordNet and creates a taxonomy of classes. In one paper, hierarchy-based semantic 

embeddings were created based on the WordNet ontology and tree structure, and then a joint space of image and 

class embeddings was constructed to retrieve images [62]. Two other papers were based on a knowledge graph that 

was extracted from WordNet. A knowledge transfer module was introduced to address the data scarcity problem in 

FSL [63]. Knowledge-augmented networks (KANs) combine visual and semantic features and can obtain some 

discriminative features for FSL tasks [64]. 

 

3.4. Fine-Grained, Few-Shot Learning 

Using the FSL model and semantic information to make fine-grained classifications is also challenging. The key 

challenge is capturing the subtle differences between fine-grained images [65]. The main approaches to this problem 

are divided into three categories: metric-based, meta-based, and data augmentation. Using semantic information is a 

type of data augmentation method. 

The spatial attentive comparison network (SACN) is used to get multi-scale features to improve the performance 

of fine-grained few-shot (FGFS) recognition [66]. This method uses a powerful network that is based on meta-

learning to obtain more discriminative features. Compared with traditional meta-learning, it extracts three scale 

features to capture the small differences between different classes. However, the author stated that the performance 

of this method was almost twice that of data augmentation. A teacher network extracts cross-modal information (text) 

and transfers it to a student network (only extracting visual features) to make predictions [65]. The teacher network 

and student work model can mitigate the semantic gap problem. The other algorithm for more discriminative features 

uses external cross-modal knowledge (text or graph) from global and local levels [60]. A mirror mapping network 



Review of Computer Engineering Research, 2023, 10(2): 55-69 

 

 
65 

© 2023 Conscientia Beam. All Rights Reserved. 

(MMN) was introduced to map multimodal knowledge and visual features into a common space to bridge the semantic 

gap. It is obvious from the results presented in the studies above that a strong network can enhance FGFS recognition 

performance. However, this raises the calculation cost; for instance, SACN must handle three scale features. The 

enhancement is hardly noticeable. The alternative strategy relies on multimodal knowledge, which can solve the issue 

of data scarcity. It raises another issue, though, namely the semantic gap. 

 

4. RECOMMENDATIONS 

The present study focused on semantic-based few-shot image recognition, so the following recommendations for 

researchers are mainly on this topic. The most critical issue for semantic-based FSL is the domain shift problem [26, 

35]. Visual and semantic features have different properties and cannot be combined directly. Therefore, 

transformation is required before their use. Simple semantic embedding or visual embedding causes serious domain 

shift problems.  

Even though latent space embedding [37] can mitigate this problem, addressing this problem in the visual or 

semantic space remains a challenge. Because semantic-based FSL can always extract more discriminative features 

[37, 41, 42], it is suitable for FGFS learning. The features are in a lower-dimensional discriminative space [37] and 

are easily classified. Therefore, using semantic information for FGFS image classification has a promising future. 

Previous attempts at FGFS classification were based on metrics and meta-learning. Using semantic information, 

especially a semantic-guided attention mechanism, is worthy of further study. GAN can be used in FGFS classification 

[40, 67].  

However, the models are extraordinarily complicated, and this method is time-consuming. The good news for 

the GAN process is that FSL does not require generating too many examples. How best to generate and use this data 

is the critical question. The distribution of the generated images is not similar to that of the original images [40]. 

Semantic-based generated methods can mitigate this problem using the semantic-guided method. Decomposing 

global features into parts through semantic information [43] is another direction for using GANs in FGFS image 

classification. This method can obtain more discriminative attributes for fine-grained classification. 

 

5. CONCLUSION 

A compelling subject within the field of deep learning is Few-Shot Learning (FSL). Nevertheless, semantic-based 

techniques lack definitive and structured forms or outlines. In this study, we have undertaken a comprehensive review 

of the methodologies that have been established in recent years in order to enhance our understanding of this 

particular topic.  

Additionally, we have conducted an analysis of the prevailing trajectory of few-shot image recognition, with a 

specific focus on its reliance on semantic information. Initially, we presented the precise delineation of FSL and 

underscored its significance. In our analysis, we elucidated the utilization of cost-effective information in order to get 

a notable level of precision through the emulation of human cognitive processes. Subsequently, an examination was 

conducted on the primary methodologies employed in the field of Few-Shot Learning (FSL), including meta-learning, 

metric learning, and multimodal learning. In this paper, we divided multimodal learning into four categories based 

on the types of semantic information: attribute, text, label, and lexicality. Attribute data is the most convenient type 

to use.  

We discussed the three types of attribute projection, semantic embedding, visual embedding, and latent space 

embedding, and their advantages and disadvantages. We explained that text, labels, and lexicality also require 

projection for visual features. Because they cannot be used directly, we mainly analyzed how to process this different 

information. Specifically, we examined the use of semantic information in fine-grained image classification. Finally, 

we introduced several promising directions for future research. 
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