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Image-based MRI detection of brain tumours using convolutional neural networks   
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Rapid and uncontrolled cellular proliferation is what distinguishes a brain tumor. 
Unfortunately, brain tumors cannot be prevented other than via surgery. As predicted, 
deep learning may help diagnose and cure brain cancers. The segmentation approach has 
been widely studied for brain tumor removal. This uses the segmentation approach, one 
of the most advanced methods for object detection and categorization. To efficiently 
assess the tumor's size, an accurate and automated brain tumor segmentation approach 
is needed. We present a fully automated brain tumor separation method for imaging 
investigations. The approach has been developed with convolutional neural networks.  
The Multimodal Brain Tumor Image Segmentation (BRATS) datasets tested our 
strategy. This result suggests that DL should investigate heterogeneous MRI image  
segmentation to improve brain tumor segmentation accuracy and efficacy. This study 
may lead to more accurate medical diagnoses and treatments. Researchers in this study 
also found a way to automatically find cancerous tumours by using the Grey Level Co-
Occurrence Matrix (GLCM) and discrete wavelet transform (DWT) to find features in 
MRI images. They then used a CNN to guess the final prognosis. The preceding section 
details this technique. When compared to the other algorithm, the CNN method uses 
computer resources better.  
 

Contribution/Originality: The results of this study suggest that DL should look into heterogeneous MRI image 

segmentation to fix the problems with brain tumor segmentation not working well or accurately enough. In the 

current investigation, the neural network is trained using the MRI image dataset, and then segmentation losses are 

detected using soft dice loss. The model is then trained to correct these losses and return a segmented version of the 

input image. The initial step in the segmentation process involves slicing the 3D MRI model into smaller 3D sub-

models. 
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1. INTRODUCTION 

The uncontrolled and abnormal multiplication of bodily cells is one of the defining characteristics of cancer.  A 

brain tumor is a collection of abnormal brain tissue that results from unchecked cell development and division . 

Although they are not particularly frequent, brain tumors are almost always fatal. 

The ultimate purpose of analyzing brain tumor images is to extract crucial clinical data and diagnostic features 

unique to each individual patient. Once the disease has indeed been detected and localized, the information contained 

in the multi-dimensional image data can be used to guide and monitor interventions, providing invaluable insight  

into diagnosis of diseases, staging, and therapeutic interventions [1]. To visually depict these steps, a pyramid shape 

works well. Different methods of data processing, extraction, labelling, and representation are needed at each tier of 

the pyramid. As an additional step towards obtaining useful medical experience or datasets for diagnosing diseases 

and making decisions, a good standard of abstraction in the representation of the information is required. High-

performance computing infrastructure, including fast processing units, collection, connection, image digital display, 

and software, is required for effective management, processing, visualization, and assessment of the obtained datasets. 

It is crucial to segment relevant anatomical regions for diagnosis in MRI images. The segmentation of anatomical  

regions and structures is of primary interest here. Although we understand that the  MRI image of human tissue has 

a homogeneous intensity and that the structure of each tissue is interconnected, we also understand that the small 

intensity adjustments and straightened boundaries between both tissues make it difficult to distinguish between 

adjacent tissues. Due to the non-uniform essence of MRI, density segmentation utilising global thresholding fails to 

accurately segment MRI images. 

Automatically segmenting brain tumours is difficult due to two factors: (1) Gliomas are distinguishab le from 

other tumours because of their growing rate, lack of contrast, and antenna-like form. Additionally, their ill-defined 

borders make it tough to isolate gliomas from the normal tissue around them. (2) Brain tumours can develop in 

virtually any area of the brain and can be of varying sizes. Numerous investigators have suggested solutions to address 

the issues posed by the systemic heterogeneity of brain tumours [2], as mentioned above. To reliably identify and 

section brain lesions using Fluid Attenuated Inversion Recovery (FLAIR) MRI data, Zeineldin, et al. [3] 

implemented an innovative deep learning approach called DeepSeg. Given the complexity of the problem, the study 

of how best to implement automated segmentation technology has attracted the interest of many academics and 

grown into a significant area of study. Therefore, large-scale segmentation can proceed more quickly with the help 

of automatic brain tumour segmentation. With the above diversity in brain tumour architecture in mind, it is 

imperative that a mechanism for the automatic segmentation of brain tumours be proposed.  

Sangeethaa [4] uses a learning technique to represent meaningful features gleaned from data col lected using a 

variety of modalities as part of the knowledge transfer process. A generative adversarial network (GAN) learning 

scheme was used to look for patterns in the data from each modality. This helped with the transfer of knowledge . The 

problem of skewed data in medical brain volume was addressed by Zhou, et al. [5], who developed the One-pass 

Multi-Task Network (OM-Net). Learned discriminative and joint characteristics depend on OM-shared Net's and 

task-specific parameters. The OM-Net optimization procedure makes use of both teaching and online learning data 

transfer strategies. Additionally, the results of predictions are shared between tasks using a cross-task guided 

attention (CGA) module. 

Convolutional neural networks have been developed to address many difficult tasks as machine learning and 

pattern matching have progressed. There have been significant advancements in areas such as classification and target 

identification. Medical image processing is also an exciting frontier for deep learning technology. Numerous academic 

and commercial studies on the segmentation of medical images have been created so far. Although VNet Milletari, et 

al. [6] perform well at segmenting single-modal images, it still has some problems when it comes to segmenting 

multi-modal images. 
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To segment brain tumour images, for example, deep convolutional neural networks (DCNN) have demonstrated 

satisfactory performance in recent years [7-10]. However, it can be difficult to gather a significant quantity of training 

images with professional captions; this is a need for several DCNN techniques. This requirement can make it 

particularly difficult to acquire data from multiple organizations at once. In order to give researchers a chance to 

evaluate and compare various background subtraction algorithms for brain tumors, we've compiled this dataset. 

The rest of this piece of writing is organized as follows: We address the relevant projects in Chapter 2. In Section 

3, a suggested architecture for a convolutional neural network is provided for the readers' consideration. The results 

are evaluated in great detail and are given below. Section 5 presents a comprehensive overview of the study's findings 

and recommendations. 

 

2. RELATED WORK 

Particularly challenging for DCNN algorithms is the requirement for a great number of training instances for  

specialist annotations. This is especially true when attempting to combine data from a variety of different sources.  

Utilizing non-linear and non-MRI scans for the separation of inherently diversified brain cancer sub-regions [11, 

12], the Multi-modal Brain Tumor Segmentation Challenge (BraTS) was arranged in order to provide a variety of 

information to the scientific formation and a structure to start comparing and comparing different based segmentation 

methodologies for tumours. This was done as part of the Multi - modal Brain Tumor Segmentation Challenge 

(BraTS). For the 2018 competition, participants were given access to 191 test cases, 285 training instances, and 66 

validation cases. It should not be surprising that DCNN-based models have established themselves as the gold in 

BraTS competitions [2, 13]. The review by Balafar, et al. [13] discusses magnetic resonance imaging, imaging 

modalities, and techniques for segmentation, inhomogeneity correction, and noise reduction. We wrap off by talking 

about the direction of upcoming research in brain segmentation. 

3D U-Net Ciçek, et al. [14], a three-dimensional variant of U-Net Ronneberger and Fischer [15], which uses 

sophisticated convolutional neural networks to segment three-dimensional data and makes great segmentation 

results through the use of an encoder-decoder architecture, was the first method to be proposed. In the end, V-Net 

[6, 16] was the first to propose the error function known as Dice Loss, and the team building was adjusted in line 

with Dice coefficients to arrive at a level that is able to handle the presence of a considerable imbalance between the 

background and foreground voxels. 

According to a recently published article [17], making improvements to the various instructional and evaluation 

details that are based on the original U-Net can produce results that are resilient and intended to sustain pressure.  

Despite the fact that many new methods, such as the densely networked connect (Dense -Net), have been suggested 

that perform better than the U-Net at object segmentation, this is still the case [18, 19]. For example, the densely 

connected network. The work in Ranjbarzadeh, et al. [20] offers a thorough analysis of current Artificial Intelligence 

(AI) techniques for MRI image-based brain tumor diagnosis. There are three categories of AI methods: Deep Learning 

(DL), Supervised, and Unsupervised. 

Ranjbarzadeh, et al. [20] built a multi-level neural CNN to acquire visual multi-level data in order to accomplish 

image segmentation. This was accomplished by adding an auxiliary classifier to the Multi-Level Deep Medical  

(MLDM) and U-Net networks. The results obtained by DSC, Positive Predictive Value (PPV), and True Positive  

Rate (TPR) were all very similar: 83%, 73%, and 85%. Zhou, et al. [21] and Zhou and Siddiquee [22]  presented a 

variety of nested, closely packed connection approaches as a means of linking the encoder as well as the decoder 

networks in an effort to close the semantic gap that exists between the feature mapping of the two sets of networks.  

Chen, et al. [23] came up with two different iterations of recursive neural networks that were based on the U-Net. 

The results of the experiments demonstrate that the efficiency of U-Net is significantly improved when coupled with 

one of the two different methods of network segmentation. This is in contrast to the effectiv eness of U-Net when 

used on its own. 
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Xu, et al. [24] were able to greatly broaden the scope of the accessible context by merging the U-Net with Long-  

and short-term components. This allowed them to significantly improve accuracy. The up-sampling layer and the 

down-sampling layer are both essential components of FCN [22, 25]. The map of the U-feature Net is derived from 

the architecture of the network by down sampling its layers [26, 27]. 

A three-dimensional CNN architecture was proposed by Urban, et al. [28] as a means of achieving multi-modal 

MRI glioma segmentation. A CNN Zhou, et al. [5] are given multimodality 3D patches that have been generated 

from the various types of brain MRI in order to make a prediction about the tissue label of the centre voxel of the 

cube. The input contains information on the spatial intensity in three dimensions, in addition to an additional 

dimension for MRI modalities [29]. 

The study by Kurian and Juliet [30] suggests a unique method for quickly and accurately identifying brain 

cancers termed Lee sigma filtered histogram segmentation (LSFHS). Preprocessing, segmentation, feature extraction, 

and classification are the foundations of the LSFHS approach.  

The proposed network uses unpaired adversarial training [31] to tackle the problem of labelling massive 

datasets. The total tumour, the tumor's core, and its growth into surrounding tissue all have dice values of 0.94, while 

the core's value is 0.85 and the growing portion's value is 0.93. Total tumour sensitivity is 0.91, core tumour 

sensitivity is 0.86, and enhancing tumour sensitivity is 0.95, as reported by a recent  study [30]. 

Using results from BraTS 2018 and ISLES 2018, the proposed model was shown to generate useful results  [32]. 

 

3. PROPOSED METHODOLOGY 

3.1. Dataset Collection 

The BraTS2019, BraTS2020, and BraTS2021 multimodal brain tumour datasets were extensively used in the 

experiments. Using 3D MRI datasets annotated by medical professionals as Ground Truth, the BraTS challenge 

seeks to evaluate state-of-the-art methods for conceptual brain tumour segmentation. The challenge supplies all three 

data sets. BraTS 2019 contains 335 brain image samples, each of which is derived from four separate MRI scans. T1, 

T1-ce, T2, and T2 liquid inversion recovery (FLAIR) are all types of magnetic resonance imaging (MRI) scans (Flair).  

All of the modes share the same 155 inches of volume, which is fairly evenly distributed across a 240 by 240 grid.  

Background, necrotic and non-enhancing cancers, peritumoral edoema and GB-enhancing cancers are the four types 

of labels used for segmenting tumour region. There are 1251 training cases and 219 validation cases in the BraTS 

2021 dataset, while there are 369 training cases and 125 verification cases (both of which are unlabeled) in the BraTS 

2020 dataset. These two figures are related to the process of verifying an individual's identity on t he internet 

(unlabeled, for online validation). Each year's report from BraTS 2020, 2021, and 2019 contains the same basic data, 

with the exception of the total number of incidents recorded. Pictures like the one shown in Figure 1 can be found 

throughout the BraTS archive. 

 

 
                                                                                            Figure 1. MRI FLAIR scan. 
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3.2. Data Pre-Processing and Augmentation  

The role of the individual being digitised, the scanning process, and many other unknown factors can all 

contribute to fluctuations in the MR image's brightness. What this means is that a range of intensities may coexist  

within a single tissue. A common term for this is "offset field." The MR image will be completely ruined by such a 

low-frequency, smoothed, poor signal. There is some inconsistency in the magnetic field generated by the MRI 

machine due to the presence of the bias field. Every photo-processing algorithm will return inaccurate results if the 

alleviate field is not modified. Pre-processing is required prior to segmentation or classification in order to remove 

the impact of the offset field. 

Figure 2 illustrates the pre-processing steps for the MR image. 

 

 
Figure 2. Preprocessing steps for the MR image. 

 

In order to increase contrast, clean up data, and improve image quality, MR images undergo pre-processing. 

Using the median filter helps to eliminate irrelevant information while also reducing noise. To effectively remove 

noise from Magnetic Resonance (MR) images while keeping fine details intact, a non-linear filtering method known 

as median filtering is recommended. Image preprocessing steps for an MR scan are shown in Figure 3. 
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                                                                         Figure 3. Preprocessing steps of MRI image. 

 

In order to improve the quality of an MR image, the image must be preprocessed by I converting it to a lighter 

than concrete grayscale, and (ii) applying a median filter to remove noise using Equation 1. 

𝑓(𝑖, 𝑗) = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑠,𝑡)∈𝑆𝑥𝑦 {g(r,s)}    (1) 

The sharp edges of an MR image are brought out by applying a high pass filter to it. The high-pass filter's mask 

can be calculated with Equation 2. To create the final enhanced MR image, we simply overlay the one with the 

identified edges on top of the original. 

[
−1 2 −1
0 0 0
1 −2 1

]    (2) 

3.3. Convolutional Neural Network 

Deep learning (DL) models have the ability to learn sophisticated depictions of input images thanks to their 

hierarchical structure. To explain, convolutional neural networks (CNNs) have been shown to be the most efficient 

DL method for analyzing medical images, and widely-used explanatory sets of data are readily available. A similar 

annotated dataset is lacking, however, in the medical field of imaging. 

 

3.4. Layer of Convolution 

The primary processing stage is the convolutional layer, and it is responsible for figuring out what distinguishes 

one word from another. In this step, the feature map is generated by adding a filter to the input neuron that is specific 

to the data and the task at hand. It employs a neuron's activation function to introduce nonlinearity. It has the ability 

to decode visual data and is sensitive to very small input regions. Key components of the convolutional layer include 

the number of neurons, stride, dilation, and padding. Where n is the total number of filters, F is the temporal size of 

the filter, P is the extra space, and S is the step forwards, we have a formula for describing the size of the output image 

given an input image of size. 

𝑔(𝑜𝑢𝑡) =
𝑔−𝐸 +2𝑄

𝑇
+ 1           (3) 

𝑢(𝑜𝑢𝑡) =
𝑢−𝐸+2𝑄

𝑇
+ 1      (4) 

𝑓(𝑜𝑢𝑡) = 𝑛      (5) 

 

3.5. Batch Normalization (BN) Layer 

It allows the architecture's layers to learn more autonomously. This layer's primary responsibility is to normalize  

the results of the previous layer. Because of its usefulness in regularization, it's possible to employ it to circumvent  

the over fitting problem. The layer's responsibility is to maintain uniformity between the sequence model's inputs 

and outputs. This layer can be included in the model after the sequential model has been created, between the previous 

and next layers, or after the pooling and convolution layers. Consider the following in order to make the mathematics 

underpinning individual layers of BN more straightforward: In the beginning of each training phase, the input is  

initially normalized by reducing the mean and splitting it by the mean difference. These two values are both based on 
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the data from the most recent mini batch. After that, a scaling offset and a scaling coefficient are applied to the data. 

Because of this, we are capable of adding the given formula to the batch regularization process: 

𝑥 =  𝛼 ⊙ 𝑥 − 𝜇 + 𝑦       (6) 

The learning parameters α and 𝜇 are computed as follows: 

𝜇 = 1 ∑ 𝑥𝑥∈𝛽         (7) 

𝛼 =  1 ∑ (𝑥 −  𝜇)2 + 𝐶𝑥 ∈𝛽      (8) 

Where the estimates of the variance are multiplied by a constant greater than zero in order to avoid division by 

zero. 

There are a total of six layers in a convolutional neural network (CNN) model, including four convolution layers, 

one fully connected layer, and one output layer. There are also six Batch Normalization layers, six ReLU activation 

layers, three dropout layers, a flattening layer, and a max-pooling layer. The model is taught in a series of hidden 

layers how to instantly obtain such hierarchy features. When applied to the outputs of the suggested model's output 

layer, a softmax function generates a four-dimensional vector that corresponds to four distinct types of brain tumours,  

which can then be classified. To preserve the detection performance of existing pretrained networks, a primary goal 

of developing such a highly specialised system is to reduce the learning rate and the number of variables.  

All convolution layers share the same padding, so if you feed in a 224 224 x 3 image, for example, the f irst 

convolution will convolve it with 64 3 x 3 kernels to produce a 224 x 224 x 64 volume. Next, the throughput of the 

initial convolutional layer undergoes batch normalisation, followed by ReLU activation. To achieve 222 x 222 64 

volume, max pooling, the same Batch Normalization (BN) layer, and a dropout layer with a loss of 0.35, the output of 

the previous layer is fed into a convolutional layer and convolved with 64 kernels of size 3 x 3, then activated in the 

same way. To use a max-pooling layer with a filter size of 2 x 2 and a stride of 2, a lower-dimensional output volume 

of size 111 x 111 x 64 is generated. The output volume is 54 x 54 64, and it is reached by repeating the first process 

twice, then the second, and finally the first again. Finally, activation and batch normalization are carried out after a 

dropout of 0.3. The final layer's output is directly connected to four neural connections, with the accuracy and 

completeness of the final class label being the deciding factors. In Table 1, we summaries the proposed model's layer 

descriptions and tunable parameters. Graphs of training precision and loss are presented in Figures 4 and 5, 

respectively. 

A typical neural network would struggle to scale the image properly. Convolution in a neural network, on the 

other hand, can be used to resize images. Input layers, convolution layers, and rectified linear units are the components 

that make up convolutional neural networks, sometimes known as CNNs (ReLu). An image is first segmented into a 

number of convolution sheet areas before being used as input. In the event that it is required, a pooling layer can take 

the place of the ReLu layer, which is in charge of activating the component features. As one can infer from the name 

of the layer, the primary purpose of the max pooling is to collect samples. In the final layer, scores or points are shown 

as a randomized number between 0 and 1, with 0 being the highest possible score.  Input layers, convolution layers, 

and rectified linear units are the components that make up convolutional neural networks, sometimes known as CNNs 

(ReLu). An image is first segmented into a number of convolution sheet areas before being used as input. In the event 

that it is required, a pooling layer can take the place of the ReLu layer, which is in charge of activating the component  

features. As one can infer from the name of the layer, the primary purpose of the max pooling is to collect samples. In 

the final layer, scores or points are shown as a randomized number between 0 and 1, with 0 being the highest possible 

score. 

The classification of brain tumours is depicted in a network diagram (Figure 3). To organise the vast collection 

of pictures, we use labels (tumour, normal-appearing images, etc.). Pre-processing, feature extraction, and 

classification are performed during training, after which a prediction model is created. Images are resized and labelled 

for the training phase in the pre-processing phase. As a final step, a neural convolution network is used for cancers of 

the brain to be detected automatically. 
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Every part of the model, down to the final layer, has been trained with the untrained data set. This is not only a 

waste of time but could also lower the quality of the end results. This issue is circumvented by employing a model-

pertained brain dataset. When putting the conceptual method into practice, only the very last layer is trained. Because 

of this, the proposed framework is faster and more efficient in its calculations. 

For calculating a loss function, the algorithm with the steepest descent is used . Classification results can be 

obtained by adding a scoring feature to the original, unprocessed pixel image. The loss function is applied to a certain 

collection of parameters in order to arrive at a quality estimate. It is essential that the regression coefficients used in 

the training data be accepted as valid. Improving precision relies heavily on attempts to compute the loss function. 

Accuracy decreases as the loss function grows in size. Similar to how accuracy increases when the error function 

decreases, this holds true whenever the error function is small. A descending gradient algorithm is used to estimate 

the loss function's value, and then the steepest descent value is used repeatedly to compute the loss function's gradient.  

 

 
Figure 4. Proposed CNN model with self-activated activation function (SWISH) activation function. 

 

4. EXPERIMENTAL RESULTS 

We present the completed classification model here. Like the architecture, the loss function plays a significant  

role in deep learning. Mild dice loss is frequently used as a loss detection function in segmentation models. When 

given skewed data, it fares very well. Consequently, it is most useful for a specific kind of cancer research: Segmenting 

brain tumors. 

𝐷𝑖𝑐𝑒(𝑝 , 𝑞) = 1 −  
2 ∑ 𝑋𝑖𝑗 𝑌𝑖𝑗+ ∈𝑖,𝑗

(∑ 𝑋𝑖𝑗
2

𝑖,𝑗 )+(∑ 𝑌𝑖𝑗
2

𝑖,𝑗 )+∈
    (9) 

If p is the prediction and q is the actual data, then the forecast is accurate. We use the small number to avoid a 

division by zero. 
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Loss is determined by subtracting 1, so a greater overlap results in a smaller loss, and a smaller overlap results 

in a greater loss. DSC is a metric used to compare the accuracy of the proposed fully automated process to that of 

manually defined areas of brain tumours. The "dice score" (DSC) is the fraction of incorrect predictions mad e out of 

the total number of predictions made. 

𝐷𝑆𝐶 = 
2𝑇𝑃

𝐹𝑃+𝑇𝑃+𝐹𝑁
   (10) 

𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 =  
2|𝑝1∩𝑞1 |

|𝑝1|+|𝑞1|
    (11) 

 
Figure 5. Accuracy for 50 epochs. 

 

Figure 5 shows the accuracy for 50 epochs. Dice coefficients are plotted in Figure 6. The loss function plot is 

displayed in Figure 7 for the training datasets and validation datasets. The different measures of  effectiveness are 

listed below. The results show that a precision of roughly 99.06% was attained. The results of eight different 

segmentations are displayed in Figure 8. 

 

 
Figure 6. Dice coefficient for 50 epochs. 
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Figure 7. Loss calculation for 50 epochs. 

 

The full data set is shown in Table 1, and dice co-efficient, Loss precision, sensitivity, accuracy, and specificity  

are all above average (0.17%, 99.06%, 1.28, 088, 0.97, and 0.99) for the model as implemented.  

 

                                                                                        Table 1. Performance measures. 

Performance measures Values 

Precision 0.90 
Sensitivity 0.98 

Specificity 0.99 
Dice coefficient 1.24 
Accuracy 99.52% 

Loss 0.14 
 

 

The following measures show the classification model's findings. 

To what extent is a model classified correctly? Is there one way to judge its effectiveness? To quickly and easily 

calculate precision using the uncertainty matrix, we can apply the following theorem: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
     (12) 

By utilising the labelled and measurable model outputs, loss functions are used to improve the weight vector. 

The methods of "Gradient Downward" and "Middle-Square-Error" are employed in this paper because of their 

widespread use and reliability. According to the literature on mathematical optimization and decision theory , an error 

function or target value can convert a scenario, including one or even more factors, to an actual figure that intuitively 

represents some cost connected with that scenario. This mapping can take place in either direction.  

Precision is defined as the ratio of the number of correct diagnoses to the sum of the numbers of diagnoses that 

were incorrect. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (13) 

Recall: Sensitivity is the term for remembering something. It is expressed as a fraction of the total found relative 

instances. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (14) 

F1 Score: In the following equation, it is determined by computing the mean of the weights assigned to the 

parameters: 
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𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
  (15) 

When dealing with an imbalanced dataset, the F1 score is recommended over precision as it accounts for both 

false positives and false negatives. This is because the F1 score considers both types of errors. By utilising a weighting 

parameter, F-measures are used in order to bring the percentage of false - negative into a more even distribution. 

𝐹 = 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙  
(1+𝛽)2

(𝑋+𝑌)𝛽2   (16) 

Figure 8 shows the precision versus error function plot for the segmentation phase. As the figure shows, the 

decline is greatly reduced along with the precision, which peaks at 94.42% with a loss of 0.1691. By reducing the 

validation loss to 0.5434, the validation accuracy was improved from 87.21% to 87.21%. In Figure 8, we see a plot of 

the classification model's loss and accuracy across training and validation phases. 

 

 
Figure 8. Graph for accuracy and loss. 

 

Following the classification process, the findings of these performance measure assessments are presented in 

Table 2 for each of the four groups. In the evaluation, there are several categories, such as glioma, that perform badly 

because of poor precious and remember ratings. This might happen if there aren't enough instances that adequately 

portray a particular group. A comprehensive model evaluation requires averaging the outcomes. Results from all four 

classes indicate that the system is operating as intended, with a mean performance of 0.25 in precision, 0.2775 in 

recall, and 0.23 in F1 score. 

 

Table 2. Metrics for evaluating the effectiveness of the proposed 
classification scheme. 

Metrics  Precision Recall F1-score 

Glioma 0.26 0.06 0.09 
Meningioma 0.26 0.36 0.30 
No tumour 0.32 0.48 0.38 

Pituitary 0.28 0.21 0.23 
Average 0.28 0.2775 0.25 

 

 

The comparisons of test accuracy and test loss for the specific methods are summarized in Table 3. The proposed 

classification model has been shown to be more effective than state-of-the-art methods, with better performance and 

lower loss function values. It has been demonstrated that CNNs and other forms of neural networks have enormous 
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potential for detecting brain tumors. With the help of a user-friendly website or service, patients can now upload their 

scans and get an estimate of the tumor's severity. As a result, not only will disease outcomes be better, but so will the 

availability of these services around the world. These applications may find future use in telemedicine, where patients' 

scan histories will be stored digitally and made available to their doctors via a website or mobile app, allowing for 

automated monitoring of tumor growth. As a result, AI will be more useful to more people around the world.  

 

                                                               Table 3. Measures of classification performance are compared. 

Model Test accuracy (%) Test loss 

Tensor flow [9] 71 4.5 

DNN [3] 67 4.3 
Proposed CNN model 99 0.68 

 

 

5. CONCLUSIONS AND FUTURE ENHANCEMENT 

In this research, deep neural networks were used for both brain tumour segmentation and detection. In the 

current investigation, the neural network is trained using the MRI image dataset, and then segmentation losses are 

detected using soft dice loss. The model is then trained to correct these losses and return a segmented version of the 

input image. The initial step in the segmentation process involves slicing the 3D MRI model into smaller 3D sub-

models. The CNN models draw on three distinct data sets. To solve the generalisation issue, data is collected from a 

wide variety of patients all over the world. Second, the CNN algorithm is used specifically for the three most frequent 

kinds of tumors in the brain—glioma, meningioma, and pituitary—in order to enable rapid classification without the 

requirement for area-based pre-processing techniques. gliomas are the most common type of brain tumour. The fact 

that the acquired results are superior to those of other models found in the existing body of research is evidence of 

the utility of the work that has been proposed. 

Despite the exorbitant computing costs, three-dimensional neural networks with deep learning (DNNs) have a 

significant number of possibilities in a broad range of health applications. These medical image volumes can be 

significantly shrunk by employing interpolation methods. Accurate tumour localization and early detection can be of 

great assistance to clinical experts. There may be less room for error and less variation in results as a result of human 

judgments if this is implemented. 
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