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Design verification is the dominant stage that consumes the most resources in the 
digital integrated circuit (IC) design process. Design verification is important because 
human designers imperfectly convert high-level specifications to low-level circuit 
implementations using standard cell logic, which is nonlinear and complex to predict 
and characterize. The widening process variations in shrinking process technologies 
while digital designs grow in scale and complexity to the extent of being impossible to 
fully or intuitively identify all temporal interactions of a specific design. Deep neural 
networks (DNN) are being progressively integrated into the sophisticated software tool 
chain and design process flow of digital IC as artificial intelligence can learn 
relationships and correlations in complex, high-dimensional, and multi-factorial 
problems. In this work, we propose to apply DNN to implement digital IC to minimize 
the complexity of digital design verification. We posit that DNN can learn to 
implement circuit functions directly from high-level specifications without requiring 
detailed specifications from the designer. Trained neural networks can be implemented 
on neuromorphic hardware to achieve greater power and compute efficiencies than the 
conventional standard cell implementation. We demonstrate that over 150 randomly 
generated finite state machines (FSM) can be learned effectively with Recurrent Neural 
Network (RNN) comprising Gated Recurrent Units (GRU) with different complexity 
as indicated by the number of states and inputs to the FSM. Our proposed methodology 
of learning RNN GRU implementations of FSM demonstrates a way forward to reduce 
the cost and effort of design verification, ultimately leading towards faster digital IC 
design cycles.  
 

Contribution/Originality: This study proposes an innovative methodology to implement a digital integrated 

circuit with a deep neural network, which simplifies the design verification process. The converged deep neural 

network models for the same type of FSM are generalizable with 100% prediction accuracy and consistent 

performance, thus making the digital circuit design more flexible.  

 

1. INTRODUCTION 

Design verification is an essential step in the development of complex digital integrated circuits (ICs). The 

human designer may not be able to consider all possible temporal interactions between the complex logic circuitry 

and inputs of a circuit design, especially early in the design stage, and cannot guarantee full concordance of a design 

with user specifications. Functional and formal design verification are iterative processes that help the designer 

build confidence in the design [1, 2]. These processes include debugging to find logic errors and behaviours that 
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weren't meant to happen and redesigning the circuit to meet requirements. Verification contributes approximately 

70% of the overall project development effort [3] and has emerged as the dominant design step to avoid costly 

product recalls after high-volume production. Design errors are still challenging to identify. To simplify the debug 

process, circuit design has evolved to include dedicated IC resources at the architectural, logic, circuit, and layout 

levels [4] to assist in silicon debug in design-for-debug-and-diagnosis (DFD) [5] to reduce the reliance on physical 

probing devices, which are costly and inefficient for debug [6]. Higher intra-die process variation in process 

technologies from 65nm and below [7-9] further exacerbates the design verification challenge as additional design 

safeguards and complex design rules must be considered to avoid unintended circuit behavior.  

Functional verification is usually done with circuit simulator software to make sure the circuit works. However, 

this software alone can't catch all hard or subtle temporal logic errors; a human designer must list all the exact 

signalling conditions to find mistakes in the design. Formal verification [10] converts the circuit design to 

mathematical data structures such as BMDs (Binary Moment Diagrams) and utilize mathematical solvers such as 

Boolean SAT (Satisfiability) solvers to guarantee circuit behaviors within bounds of specified input patterns. 

However, formal verification suffers from exponentially increasing computation and memory demands as the 

complexity of the circuit scales up, i.e., in large data-path circuits like digital arithmetic blocks [11, 12]. Much of 

the verification effort arises because the translation from high-level specifications such as state machine diagrams 

and truth tables to a circuit implementation in standard cell logic is imperfect. Although sophisticated synthesis 

software aids in this complex and challenging process, register transfer logic (RTL) descriptions from the human 

designer are still necessary for increasingly detailed design input . We posit that if circuits could be designed 

accurately from high-level specifications, the verification effort could be reduced. The key idea of our research is to 

utilize deep neural networks via deep learning as a new methodology to design digital circu its. Deep neural 

networks are capable of modelling complex nonlinear systems efficiently. For instance, neural networks could 

model the circuit output behavior of a common emitter amplifier [13] with higher accuracy than conventional 

regression techniques and replace digital circuit blocks [14, 15]. We treat the neural network circuit as a black box 

that receives inputs and generates outputs, such that high-level specifications should suffice to train the deep neural 

network to learn the desired circuit function [16]. For example, in the standard cell IC design process, accurate 

physical models of standard cell logic are used to build a circuit realisation that gets more and more detailed over 

time. This is then thoroughly checked through a series of tests. The trained neural network should be put into a 

neuromorphic circuit instead of standard cell logic. This gives the circuit implementation another way to be 

resistant to changes in the process. In this paper, we demonstrate that a variety of random finite state machines can 

be implemented by Recurrent Neural Networks with only high-level specifications as input to the training.  

 

 
Figure 1. LSTM cell architecture and data flow. 
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Figure 2. GRU cell architecture and data flow. 

 

 
Figure 3. The architecture of a multilayer GRU. 

 

2. RELATED WORK 

The digital IC design flow is mature and standardized into five main stages:  high-level synthesis (HLS), logic 

synthesis, placement and routing (layout), and mask synthesis. This flow is highly dependent on Electronic Design 

Automation (EDA), a suite of sophisticated software to automate the conversion of design specifications to actual 

patterns, geometries, and connections of various layers on the semiconductor substrate, but it is still highly reliant 

on human inputs with domain knowledge [17]. Recent advances in artificial intelligence (AI) and deep learning 

have been applied to improve the efficacy and accuracy of EDA tools in a variety of prediction, optimization, and 

generation tasks [18, 19]. AI models have been developed to improve power estimation, to develop heuristics 

algorithms for optimizing logic synthesis, and to improve chip routing accounting for mask optical proximity 

correction [17, 20, 21]. In this paper, we propose that AI models replace the circuit design process so that only 

high-level design specifications are sufficient to design the circuit and circumvent the extensive verification process.  

 

2.1. Recurrent Neural Network 

Neural networks that implement digital ICs require memory of past computations and the ability to redirect 

signals temporally. Recurrent Neural Networks (RNN) can propagate past signals into future computations but 

suffer from vanishing gradients that limit the memory window. Improved variants of RNN, such as Long Short-

Term Memory (LSTM) [22],  attempt to extend the memory window of RNN. The LSTM RNN has more layers 

within the feedback module compared to the standard RNN, namely the forget layer, update gate layer, and output 

layer. These layers transfer the cell state, or memory of previous computation, to future computations, as shown in 
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Figure 1 [23]. Gated Recurrent Neural Unit (GRU) is a newer generation without the internal memory cell of 

LSTM [24]. GRU consisted of only two gates, namely the update gate to determine the disposable information and 

the latest information to be added, while the reset gate identified the amount of information to forget. The 

architecture of GRU is simpler with fewer network parameters than LSTM, as shown in Figure 2, and therefore it 

trains to convergence with fewer epochs [25]. Both LSTM and GRU layers can be stacked to grow the neural 

network in depth and achieve better learning performance. Figure 3 shows an example of this stack for a multilayer 

GRU [26]. 

 

2.2. Implementing Neural Network Circuits 

Neural networks can be implemented with standard cell logic, besides programmable processors and graphic 

processing units (GPU). Individual neurons are realized as distinct digital circuits [27] and replicated multiple 

times, then connected and cascaded. However, a digital implementation is not an efficient way because there are 

substantial challenges to implementing the large-scale connectivity at high speed and the many multiplications at 

each neuron [28, 29]. It is common to implement the output of a single neuron unit as a serial sum-of-product 

operation for all the neurons in the neural network. Some designs implement non-linear activation functions with 

look-up tables (LUT), range-addressable LUTs (RALUT), piecewise linear (PWL), or hybrids [30]. This type of 

digital implementation is also memory-intensive, as read and write are extensively used to apply neuron weight 

values to inputs and compute outputs [31]. For instance, AlexNet, a convolutional neural network with 8 layers, 

has 60 million network parameters, which require 240MB of memory for storage as 32-bit numbers [32]. These 

types of implementation are popularly realized in field programmable gate arrays (FPGA) [33, 34] because of the 

flexibility to change the neural weights for different applications. For small neural networks, FPGA 

implementations are faster [35] than executing software programs on microprocessors. However, FPGA 

implementations are restricted because gate resources are limited and the digital implementations require additional 

overhead logic, such as input digitization, output decoding, and clock generation [36]. 

 

Table 1. Comparison of various event-based neuromorphic chips. 

           Model 
Features 

Loihi2 Loihi TrueNorth Tianjic GraAIOne 
(NeuronFlow) 

Mythic Brain-
ScaleS 

Memristor 
(IBM) 

Signal Digital Digital Digital Digital Digital Analog Analog Analog 

nm 7 14 28 28 28 40 65 50 

In-memory 
computing  

Near-
memory 

Near-
memory 

Near-
memory 

Near-
memory 

Near-memory In-
memory 

Yes Yes 

On-device 
training 

Spike-
time 

dependent 
plasticity 
(STDP), 
surrogate 
backprop 

STDP No No No - Spike-
time 

dependent 
plasticity 
(STDP), 
surrogate 
gradient 

Yes 

Signal Real 
number, 
spikes 

Spikes Spikes Real 
number, 
spikes 

Real number, 
spikes 

Real 
number 

Real 
number, 
spikes 

Spike 

Number of 
cores 

128 128 4096 - - - - - 

Number of 
neurons 

1 million 128,000 1 million 40,000 200,000 - 512 512 

Number of 
synapses 

120 
million 

128 
million 

256 million 10 
million 

- 80 
million 

130,000 64,000 

Number of 
transistors 

2.3 billion 2.1 billion 5.4 billion - - - - - 

 Source: Ivanov, et al. [37]; Diehl, et al. [38] and Cheng, et al. [39]. 
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To circumvent the heavy resource requirements for all-digital implementations of neural networks, researchers 

are exploring new types of elementary circuit building blocks for more efficient neural network implementations. 

Neuromorphic circuits are novel neural circuit building blocks that address the challenges of power consumption, 

scalability, and computation complexity in neural networks through a variety of architectural and circuit strategies. 

For instance, instead of LUT, the tangent hyperbolic activation function could be realized with a bipolar transistor 

differential pair with a PNP current mirror [36]. To avoid extensive number-to-bits encoding and achieve high-

dimensional connectivity between neurons, signals are propagated as spikes [40] and integrated at the neuron. 

New communication elements permit highly interconnected circuits to receive and integrate  spikes from a scalable 

number of silicon neurons (SiNs) [41, 42]. It is easy to connect multiple inputs to neuron integrators with 

capacitive crossbar arrays because they only use dynamic power and a lot less static power than the more common 

resistive crossbar array [43]. Molybdenum disulfide (MoS2) transistors with a floating gate and two control gates 

can be used to make individual neurons [44] that have summation and threshold functions built in. This new 

neuron transistor achieves an operating frequency greater than the average firing rate of biological neurons. 

Neuromorphic circuits achieve lower power consumption through collocation of neurons and memory, highly 

parallel operation, and event-driven operation of neurons, which only consume power when processing spike inputs 

[45-48]. Spiking neurons activate sparsely and result in lower data bandwidth on communication buses [37].  

The Neural Engineering Framework (NEF) is a general methodology for the implementation of large-scale 

neural networks using spiking neuron [49, 50]. NEF is widely utilized in different neuromorphic systems, such as 

Neurogrid, Braindrop, SpiNNaker, BrainScaleS, Darwin, Tianjic, Neuronflow, and Dynap-SEL [51]. Spiking 

neuron systems can be implemented either in analog or digital form. IBM’s TrueNorth and Intel’s Loihi [52] are 

examples of pure digital neuromorphic systems; NeuroGrid is a hybrid of analog and digital, while OZ is a fully 

analog and programmable spiking neuron system. Analog implementations of Leaky Integrate-and-Fire neurons 

[53] require a smaller area and are more power-efficient than the digital versions. The in-memory property of 

analog synapses also allows analog spiking neurons to execute much faster than digital spiking neuron, as the latter 

relies on near-memory approaches, for example, SRAM memory, which is placed closer to the computing core to 

minimize the overheads of data transaction. However, the implementation of analog spiking neurons has its 

challenges and is more difficult to debug as compared to digital neurons [37]. There is no long-term temporal 

information storage in the neuromorphic system. Table 1 summarizes the various neuromorphic systems described 

in the literature. To process spatiotemporal signals like electromyography (EMG) signals [46], RNN can be set up 

as spiking neural networks in neuromorphic hardware. Spiking RNN has also been implemented for natural 

language processing tasks on the TrueNorth digital neuromorphic system [38]. A conventional RNN trained with 

standard gradient descent and backpropagation was converted into the spiking neural network format. The RNN 

time delay is implemented by the digital neuromorphic hardware through a synaptic delay. This means that the 

feedback hidden state in the RNN travels through a predefined synaptic delay to reach the neuron input at the same 

time as the next input is being added. Synapses can be implemented with memristors (resistive RAM), which allow 

resistances to be altered by voltage/ current pulses [54]. 

 

3. METHODOLOGY 

Recurrent neural network (RNN) behaves like a state machine; the current RNN output is dependent on the 

current input and the output from the previous time step. RNN is trained with multiple sets of state machine 

datasets until it can generate the correct outputs in response to the input. Randomly generated state machine 

datasets are used to simulate a variety of different state machines. The convergence of RNN model training with the 

randomly generated state machine dataset is measured with overall accuracy, which is the percentage of the total 

number of successful predicted next states and state outputs over the total number of states in the randomly 

generated state machine design. The accuracy of each state prediction is calculated with a 50% threshold, where any 
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output value predicted by the RNN that is higher than 0.5 will be rounded up to 1, before being compared with the 

expected binary output value to determine the individual accuracy at each state. 

To find out the impacts of hyperparameters in the deep neural network training process and to prove the 

feasibility of implementing neural network architecture in circuit realization, tasks are broken down and arranged 

in the following sequence:  

• Train a deep Gated Recurrent Unit (GRU) neural network to learn complex state machine digital circu it 

functionality until it achieves 100% prediction accuracy on the next state and state output based on the 

current state and state transition input. 

• Compare the difference between LSTM and GRU models in terms of architecture and performance through 

the training process with randomly generated state machine datasets. 

• Investigate the impacts of different neuron numbers during the training of a deep neural network for finite 

state machine modelling. 

• To study the impact of neuron numbers on deep neural network training for the same type of state machine, 

20 randomly generated state machines with the same type: 10 states with 5 inputs and 5 outputs, are used to 

train the deep LSTM model with the same predefined hyperparameters, except the neuron numbers. 

• To study the impact of neuron numbers on deep neural network training for different sizes of state machine, 

2 random state machines with different numbers of states: 16 states and 32 states, are being trained with 

different numbers of neurons.  

• Correlate the deep neural network validation process with the real-implemented circuit verification. 

• Train the converged deep GRU model with 150 randomly generated datasets for the same  type of state 

machine (8 states, 2 transition input bits, and 2 output bits) and fine-tune the hyperparameters. This way, the 

model's performance can be proven consistent and used for other state machine digital circuit designs with the 

same type of states, inputs, and outputs.  

Map the deep GRU architecture to the real digital circuit part to show that it is possible to make a real d igital 

circuit directly from the converged deep neural network architecture. 

Algorithm 1: Iterative GRU Model Training Algorithm with TensorFlow 1.15.0, Python 3.7.1 

Create the GRU cell in TensorFlow  

Initialize the hyperparameters  

Define loss function and optimizer  

Feed in the state machine training datasets to the GRU model  

For each epoch in total number of epochs, do  

For each sample in the dataset, do  

Get the output from RNN  

Calculate MSE (Mean Square Error) for the gap between output and target 

value  

End of sample for loop 

End of epoch for loop 

 

Table 2. Common hyperparameters used by LSTM and GRU Random State 
machines with 8 States, 2 inputs, 2 outputs. 

Hyperparameters Values 

Input bits 6 
Output bits  6 

Number of Neurons 100 
Number of time steps 8 
Batch size 1 

Learning rate 0.001 
Number of epochs 50 
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Figure 4. The accuracy of 10 distinct designs with 2-layer LSTM, which trained with hyperparameters in Table 2. 

 

 
Figure 5. The accuracy of 10 distinct designs with 2-layer GRU, which trained with hyperparameters in Table 2. 

 

Table 3. Fixed hyperparameters for the experiments to find out the relationship between neuron 
numbers and model training accuracy. 

Hyperparameters Values 

Number of inputs 9 
Number of outputs  9 
Number of time steps 320 

Batch size 1 
Number of LSTM layer 4 

Learning rate 0.001 
Number of epochs 1000 
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Figure 6. The trend of deep neural network convergence in response to different neuron numbers, while other 
hyperparameters are kept constant as shown in Table 3. 

 

Table 4. Hyperparameters for random state machine with 16 states (a) and 32 states (b) for the experiments to study the impacts 
of neuron number towards deep LSTM training. 

16 states 
Hyperparameters Values 

Number of inputs 10 
Number of outputs  10 
Number of time steps 512 

Batch size 1 
Number of LSTM layer 4 

Learning rate 0.001 
Number of epochs 1000 

(a)                                                                                              

32 states 
Hyperparameters Values 

Number of inputs 11 
Number of outputs  11 
Number of time steps 1024 

Batch size 1 
Number of LSTM layer 4 

Learning rate 0.001 
Number of epochs 1000 

(b) 

 

  
(a)                                                                                                              (b) 

Figure 7. Comparison of impacts of neuron number towards deep LSTM training results between random state machine with 16 states 
(a) and 32 states (b)  
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4. RESULTS & DISCUSSION 

4.1. LSTM and GRU RNN Successfully Implement Randomly Generated Finite State Machines 

The hyper parameters in Table 2 are used to compare how well LSTM and GRU models do when they are 

trained with random state machine datasets. GRU model performed slightly better than LSTM model, as all the 10 

random state machine designs trained with GRU can converge within 16 epochs, while LSTM took about 24 

epochs, as shown in Figure 4 and 5. This is due to the simpler architecture of GRU model, which has less gates 

compared to LSTM and a smaller dataset, which aligns with the LSTM and GRU comparison studies in Yang, et 

al. [25]. In terms of realizing deep neural networks into digital circuit implementations for state machines, GRU is 

preferred due to its simple architecture. 

 

4.2. Influencing Factors for Deep Neural Network Implementation of Finite State Machines 

4.2.1. Number of Neurons in a Deep Neural Network vs. Size of a Finite State Machine 

The relationship trend of the neuron number with the convergence rate of the neural network model is 

visualized in Figure 6. The speed at which deep neural network reaches convergence is proportional to the number 

of neuron. A deep LSTM neural network with 100 neurons and above can achieve convergence faster than one with 

50 neurons and below.  

Table 4 presents the hyperparameter settings that are used to train the more complex random state machines 

with 16 states and 32 states. The neuron numbers are being manipulated to study the impact of the neurons on the 

model convergence rate. The number of inputs consists of current state, previous state, and the state transition 

input, which are represented in binary form. For example, for the 16-state random state machine, the total number 

of inputs is 10, with 4 bits for current state, 4 bits for the previous state, and 2 bits for state transition inputs. While 

the output bits represent the output for the current state. Figure 7 summarizes the training results for the 2 

different random state machines, 16 states and 32 states, with different numbers of neurons. Like the trend of a 

random state machine with 10 states, as shown in Figure 6, 100 neurons are sufficient to train a random state 

machine with 16 states, but not for the random state machine with 32 states. For random-state machines with 32 

states, at least 200 neurons are required to ensure successful training of the model. This indicates that as the size of 

the state machine increases, more neurons are required to ensure the neural network can reach convergence. 

 

4.2.2. Deep Neural Network Validation 

Based on the hyperparameters in Table 5, the converged training result achieved during the training phase 

(Figure 8) can be achieved in the validation phase (Figure 9) for the 4-layer GRU model for a random state machine 

with 16 states. The validation approach in neural networks can validate the converged model in a much shorter 

time. This idea is applicable when realizing the neural network architecture into an actual digital hardware circuit, 

and the process of digital circuit design verification can be simplified. 

 

Table 5. Constant hyperparameters for 4-layer GRU model validation. 

Hyperparameters Values 

Number of inputs 7 

Number of outputs  13 
Number of time steps 16 

Batch size 1 
Number of GRU layer 4 
Learning rate 0.001 

Number of epochs 20 
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Figure 8. Training accuracy for 4-layer GRU model. 

 

 
Figure 9. Validation accuracy for 4-layer GRU model. 

 

Table 6. Fixed hyperparameters for 150 random designs with different epoch 
numbers for 2-layer GRU model. 

Hyperparameters Values 

Number of inputs 6 
Number of outputs  6 
Number of neurons 100 

Number of time steps 8 
Batch size 1 

Number of GRU layer 2 
Learning rate 0.001 

 

 

Table 7. Convergence rate summary for 150 random state machine 
designs with different epoch numbers. 

Experiments overview 
Design# Epoch number Convergence rate 

1st – 50th  10 36% 
51

st
 – 100

th
  20 98% 

101
st
 – 150

th
  50 100% 

 

 

 
Figure 10. Visualization of convergence rate summary for 150 random state  
machine designs with different epochs. 
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4.3. Generalization of the Deep GRU for Finite State Machines 

As shown in Table 6, the same hyperparameters are being used for the 150 designs training, except the epoch 

number, which is fine-tuned through experimentation to find the best epoch number for generalization of the deep 

GRU neural network for the same type of state machine designs. 

Table 7 summarizes the convergence rate for the 150 random state machine trainings. The first 50 random 

state machine designs, which use 10 epochs, are getting a low overall convergence rate of 36%. By increasing the 

epoch number to 20, the overall convergence rate of the second batch of another 50 random state machine designs is 

significantly improved to 98%. Finally, the last round of 50 random state machines, implementing 50 epochs, can 

achieve a 100% overall convergence rate. Figure 10 illustrates the overall convergence rate for the 150 random 

state machine designs. 

This generalization step is crucial to ensuring that the converged model is robust and able to adapt to different 

designs of the same type of digital circuit by finding reliable hyperparameters.  

 

5. CONCLUSION 

We have demonstrated evidence that Recurrent Deep Neural Networks are capable of implementing finite state 

machines and therefore provide a pathway to replace digital IC implemented with standard cell logic with a 

different, simpler methodology to be implemented on neuromorphic circu its. The RNN implementation only 

requires high-level design specification in the form of a finite-state machine state transition diagram and is able to 

implement the circuit function using a GRU RNN. We show that this methodology is generalizable by training 150 

randomly generated state machines. The same set of hyperparameters can be applied to different state machines  

with similar complexity in the number of states and inputs. Beyond improvements in Electronic Design Automation 

software, we anticipate that the advances in deep neural network artificial intelligence can go further to eliminate 

much of the tedious work of design verification, thus simplifying the process of digital IC design, which 

simultaneously lowers its cost and expands access. 
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