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The proliferation of Internet of Things (IoT) devices in terrestrial environments 
necessitates efficient data transmission and management protocols to optimize network 
performance. This research paper presents a comprehensive study on the 
implementation of IoT networks in a terrestrial setting, focusing on the integration of 
LZW (Lempel-Ziv-Welch) compression with three prominent IoT protocols: CoAP 
(Constrained Application Protocol), M2M (machine-to-machine), and MQTT (Message 
Queuing Telemetry Transport). We did a thorough test of these protocols using the 
NetSim simulator. We looked at how well they worked in terms of throughput, en-to-
end delay, and routing overhead, all of which are important for loT network efficiency. 
The point of our study is to find out what the pros and cons of these protocols are when 
they are combined with LZW compression in a terrestrial loT setting. The results of 
our analysis reveal significant variations in the performance of CoAP, M2M, and 
MQTT when subjected to data compression. Throughput efficiency, which directly 
impacts data transmission rates, is scrutinized alongside end-to-end delay, a critical 
factor in ensuring timely data delivery. Additionally, we explore the implications of 
protocol choice on routing overhead, a crucial metric for network resource utilization. 
This research contributes to the ongoing efforts to optimize IoT networks in terrestrial 
settings, offering valuable guidance to network architects and developers seeking to 
strike the right balance between protocol selection and data compression for improved 
IoT performance. 
 

Contribution/Originality: By implementing LZW compression in an IoT network, we can enhance its 

performance. This IoT network model has been deployed in a terrestrial environment, incorporating data 

compression techniques. The model has been implemented and simulated using a range of protocols. Consequently, 

it is suitable for deployment in various IoT-related applications. 

 

1. INTRODUCTION 

The IoT (Internet of Things) is intelligently connecting the world. It is described as a wireless connection of 

sensing and actuation internet-connected devices prepared to gather and transfer data backed by embedded systems 

or sensor systems. Sensors, processors, memory, transceivers, and batteries are the five essential components of IoT 

devices [1]. All of these devices are linked via gateway functionality, which may communicate with the sensor as 

well as provide computation and storage capability. This gateway might be situated on the internet or at the 

network edge. 
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One of the most significant difficulties with the IoT is the massive amount of data production. To overcome 

this drawback and hence avoid the transmission and retention of vast volumes of data, on-board prompt analysis 

and reduction methods would be used. In general, radio communication consumes the most power. As a result, 

lossless compression can dramatically reduce transmission electricity expense by decreasing the quantity to be 

transmitted and, as a result, extend device lifetime [2].  

As a result, the energy usage and battery life of the equipment, as well as the memory space of the sent  data, are 

immediately affected, allowing for significantly less data to be maintained.  LZW (Lempel-Ziv-Welch) is a 

prominent and commonly used reduction technique with easy implementation, an increased compression ratio, and 

efficiency. LZW is utilized in a wide range of applications (including GIF image formats and UNIX operating 

system files) [3].  

Because it is a lossless data compression algorithm, LZW is frequently employed both in image and text 

reduction. As a result, the ability to do template-matching searches on LZW-compressed information seems to be 

something worth investigating. A code phrase is a citation to a dynamic vocabulary in the LZW compression 

method. Because of the adaptability of LZW compression, various code words are assigned to a similar set of 

characters based on their position inside the inlet sequence [4]. 

In 1977, the initial Lempel-Ziv data compression method was developed, supplemented by an alternative path 

in 1978. In 1984, Terry Welch presented his enhancements to the 1978 algorithm. The technique is very 

straightforward, and it is widely used. LZW compression, in a sense, substitutes sequences of characters with single 

codes [5]. Arrays, concatenated lists, and trees can all be used to achieve LZW. The method will search  for codes 

utilizing consecutive traversing while being performed by chained lists while generating the vocabulary tables. As a 

result, the reduction in time increases as it consumes lots of time to only search the codes [6]. To tackle this 

difficulty, the authors utilise chained lists to create LZW, and they add the new variables to each node to maintain 

track of how many times the codes have been used. In addition to saving time, the frequency codes are shifted and 

put at the front end of a linked list while creating a table. Moreover, the optimisation will also have a better impact 

by optimising the front-insert site and using appropriate statistical numbers. 

In this research, the authors propose and execute Multi-PLZW, a ground-breaking multiple correlation-based 

approach that will find every occurrence of a design in LZW-compressed data. Principally, the technique works in 

the same way as the Aho-Corasick algorithms (AC) [7], also with the added benefit of being able to use LZW 

compressed data immediately. Multi-PLZW uses a design from the previous step to construct two data structures. 

First is a limited automaton that has been on the set's generalized suffix tree  [6].  

In the current state, several proposed reduction algorithms for IoT focus on higher compression, distortions, or 

energy usage at the first level and disregard classifier effectiveness at the third level. The present study examines 

the effects of downsizing on the process of categorization within the context of the loT. It concentrates on time-

series data compression and categorization [8].  

This work's stated problem can be stated as follows: What effect does the deployment of graph data lossy 

compressors on IoT have on deep instructional approach classification performance? 

Due to the severe resource limits of IoT nodes, a reduction strategy addressing IoT application features must 

consider metrics: i) the total energy saved during transmission must be greater than the amount of energy 

consumed during processing. (ii) Embedded processors on IoT networks use limited on-chip memories. (iii) Any 

application, sensor, or activity can benefit from the compression algorithm. (iv) suitable for applications that require 

near-real-time processing. (v) simple to set up and adapt to different nodes. (vi) capable of high compression ratios 

while maintaining the quality of the data. (vii) The capability of a single device to handle many sensor readings [9]. 
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Figure 1. IoT architecture. 

 

Following the pre-processing stage, there is a scanning stage that employs a series of functions to make use of 

the results that used in earlier phases. The scanning step employs two critical database systems: a linkage database 

and a graph of historical data [3]. Multi-PLZW could be used instantly on LZW-compressed information and is 

capable of reporting all incidents of features in a single cycle and in a constant period.  

Time series move through many steps in an IoT Big Information infrastructure. Four levels can be found in an 

example of IoT Big Information infrastructure [10]. Time series data is generated through a multitude of loT 

resources and thereafter collected and condensed prior to transmission at the initial stage. The second layer 

facilitates connectivity between devices and gateways by utilizing various communications technologies, as shown 

in Figure 1[5]. 

Many data compression methods in the IoT, with the newer technologies, concentrate on higher reduction, 

distortion level, and electricity usage at the first level while neglecting categorization findings inside the third step  

[11]. This article concentrates on series data reduction and categorization strategies in IoT networks, as well as 

the impact of reducing tasks on classifiers. 

To address resource constraints, many dimension reduction strategies are offered in the research. An effective 

high-ratio LZW data reduction algorithm for univariate integrated time series data with much reduced delay and 

storage than provincial methods. In previous studies, the effect of dimension reduction on classification results was 

explored in relation to the topic presented in this article.  

The duration was proportional to the combined size of the lossless compression and the specified patterns. The 

suggested technique outperforms all existing analogues in terms of time and computational power. It has an overall 

temporal complication of (𝑛 + 𝑘 + 𝑟) , where n denotes the running time of a compact term, k denotes the 

frequency of a sequence, and r is the standardisation of a tendency in condensed text. It also has a computational 

cost of𝜃 (𝑘2 + 𝑙 + 𝑟), wherein l is indeed the form of the term dictionaries. One more advantage of our process is the 

ability to examine compressed data while unpacking it. Some rival algorithms decompress and then search to use 

the AC technique, which is particularly undesirable in internet contexts where file size is costly . We also present 

specifics and practical considerations for our method in this section. We also do theoretical and experimental 

evaluations of the proposed approach. The suggested algorithm surpasses previous strategies in terms of capacity 

and effectiveness, according to the results [12, 13].  
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The remainder of a task is structured as below: Section 1 also includes a list of related works. Section 2 depicts 

and analyses the suggested algorithm's efficiency. Section 3 conducts an experimental evaluation of the method ’s 

implementation. Finally, Section 4 brings the process to a conclusion. 

 

2. PROPOSED SYSTEM 

Compression sense is a digital signal processor approach that can successfully acquire and reconstruct a signal 

from fewer readings. Compression sense can collect and reflect fragmented signals at a frequency significantly 

lower than that used in the sampling theorem. Equation 1 outlines the fundamental measuring paradigm for 

spectrum sensing: 

[𝐵]
𝑀1 = [𝜌]

𝑋,𝑌
[𝐴]

𝑌,1                                                      (1) 

Wherein A is the initial patchy data with fixed length, B is indeed the compacted signal with duration X 

(X<<Y), and 𝜌 ∈ 𝑅𝑋 × 𝑌 seems to be a sensor matrix that allows signal restoration. Many signals have such low 

sparsity in time-domain representation, for instance. As a consequence, representation of these signals is scarce 

within the bandwidth response beneath a particular foundation. In such a case, A could be expressed as a singularly 

positioned integer, which is shown in Equation 2:       

[𝐴 ]𝑋,1  = [𝜌]
𝑌,𝑌

[𝐶]
𝑌,1                                                     (2) 

Wherein C is a bandwidth field description of an input signal A as well as the vectors, which translate directly 

from the spectral to the time domain. By combining Equations 1 and 2, the signal restitution enables C to be 

approximated utilizing, B as shown in Equation 3: 

[𝐵 ]𝑋,1  = [𝜌]
𝑋,𝑌

[𝜌]
𝑌,𝑌

[𝐶]
𝑌,1                                          (3) 

In this study, we compute𝜌 by performing the inverse Discrete Cosine Transform only on a column of the 

solution. For restoring the signal A, we have implemented an 11-norm minimization method, which is properly 

known as Basis Pursuit.  

Because the data obtained in this work is assumed to be a time-series data of floating points, condensed B 

vector includes float point cloud data. In that situation, an additional efficient entropy coder is necessary to 

compress the resulting vector B. 

 

2.1. Principles and Features of LZW 

All singular values and associated values are included in the vocabulary at first. Then start compaction, take a 

format string, and compare that against the phrases in the dictionaries until it can't match anymore. Return the 

value for the correctly matched string. Then, as just a new string, combine that string with characters that led the 

matching to fail, and save this in the string databases with the appropriate code. The LZW phrase database is 

classified as a suffix database, as it encompasses all string prefixes inside its structure. Real-time dictionaries have 

been developed which means that it contains every string prefix. Real-time dictionaries are created. Decoders can 

rebuild a similar vocabulary based on the coding during the extraction phase and then return the stored 

information. 

LZW's fundamental implementation of the original bridge vibration data is in denary decimal format, with a 

considerable length. Furthermore, the data lacks consistency and repeatability. As a result, the initial vibration data 

must first be processed. That is, before being compressed, the data must be converted to binary digits. The LZW 

compression algorithm and output are then integrated using the C language, based on unidirectional chained lists. 

The first dictionary is divided into three sections. '0','1', and'.' are the numbers. Reduction  is a method that 

dynamically builds meaning while compressing raw data. When additional entries to the dictionary are needed, they 

should be added towards the end of the list. 

Both the compression and recovery dictionaries have a fixed length of 256 characters. Sequential traversal is 

used to look for code in the vocabulary. The designed algorithm is capable of meeting the requirements for bridge 
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vibration data and has good reduction efficiency. However, because of the search's sequential traversal, each time 

spent on it is considerable, resulting in a long compression time. 

By using the Constrained Application Protocol, we may link gadgets to the platform. CoAP can be deployed for 

both minimal and asset items, such as NB-IoT machinery. It also demonstrates how and where to authenticate a 

machine without the use of the Datagram Transport Layer Security (DTLS) or encryption algorithm.  

Split, forecast, and modify are the three processes that make up the ambitious reforms for forward transformation. 

The beam is divided into even and unusual samples using the split method. The slow wavelet analysis is another 

name for this phase. Evenly balanced odd samples are substantially associated due to the signal's locally correlated 

nature. Odd samples are predicted from even ones in the forecast step  [14]. Finally, the updating step ensures that 

smooth approximation signal and the starting signal have the same average. To obtain a more comprehensive 

understanding of the lifting procedure. There are major benefits to using the lifting method on IoT devices:  

(i) It leads to a faster wavelet transform solution and is ideal for low-energy practical uses. 

(ii) It saves memory and allows for full in-place calculations.  

(iii) Extremely simple to comprehend, build, deploy, and adjust to a variety of nodes.  

 

 
Figure 2. The IoT module is interfaced to an IoT network. 

 

Figure 2 shows serial numbers 1-5, describing how and where to: 

1. Consolidate an IoT application SDK (Software Development Kit) through into IoT modules of a product 

certification in the IoT Application dashboards then transmit the device license to the devices. 

2. Attach an IoT system to the mobile phone network of a provider. Check with the local provider to verify that 

the IoT connection is accessible close to where the equipment is placed.  

3. To manage internet activity and tariffs, the carrier's machine-to-machine (M2M) platform. The operator 

provides the M2M network functions. 

4. Gather information in real time, and then distribute this to an IoT platform utilizing CoAP or UDP (User 

Datagram Protocol). IoT Platform allows you to protect the network from hundreds of consumer devices and 

handle large volumes of data. IoT technology also allows users to send data to a range of AliBaba cloud computing 

services for further processing. Massive data technologies, database servers, and data storage are instances of these 

facilities. 
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5. Be using the IoT Platform's information access-related API (Application Programming Interface) operations 

and messages pushing services to transfer data to company servers and connect devices.  

 

 
Figure 3. Wavelet and LZW encoding are being used to compress data. 

 

As Figure 3 illustrates, data extraction is accomplished by the use of WT (Wavelet Transform), thresholding, 

and LZW. A noise-free signal was employed in this scenario, and the information is divided into six signals utilizing 

WT. The decomposed signal components are concatenated into a single feature vector (i.e., vector "v"), which is 

then subjected to thresholding. The vector components are then encoded using LZW. The initial stage in data 

reconstruction is to apply LZW decoding to the compacted signal. Following this, bands are generated using a 

coefficient distribution. Finally, inverse WT is used to recover the data. Decoding LZW includes extracting values 

from encoded data and then generating a coherent string from vocabulary that has been established. To reconstruct 

this same vocabulary in the same manner because it was constructed all through embedding, it also uncovers a next 

significance as from i/p and keep adding to the vocabulary, the sequence of a prevalent comment stream and the 

first main character of the comment stream procured by decrypting the next data input, or first main character of a 

thread, simply extracting if the next assessment can also be decoded. 

 

2.1.1. Proposed Compression Scheme 

Sensor information obtained in IoT applications is often a multimodal time-series. 𝑋[𝑋1, 𝑋2 … , 𝑋𝑀
] is an M-

dimensional multivariate time-series data made up of M separate time series data. The lifting approach is used to 

turn each univariate moving average into approximations and detail sets in our compression scheme. This process is 

known as column lifting. The ideas are then deleted, leaving just an M-dimensional collection of 

approximation𝑠 𝐴 = [𝐴1 ,𝐴2 , … … , 𝐴𝑀
]. Because of its simplicity, the hoisting method was employed using the Haar 

wavelet. By reapplying the wavelet operator to the likelihood function, various layers of modification can be 

achieved. The number of channels can be set by the user based on usage as well as data collection. The estimated 

array is then processed by the SZ method.  

Based on the assumption that SZ is a specified concept and how irregular or ragged raw time-series data affects 

its outputs, it was coupled with the hoist strategy. The hoist technique conversion yields a tighter form of the initial 

start period, enabling the SZ's best-fit bending to help predict data coming within the user error. When data hits 

the edge or sink, the set of data adopts new tactics and uses the SZ method to decode its condensed approximation 

variables [1]. An inverted wavelet isn't necessary in order to extract all factual information because the wavelet 

transform data is loaded into a learning algorithm, as shown in Figure 4. 

In this enhanced version of the technique, a novel mechanism called forward-moving on frequently-used 

elements is employed to improve the data architecture of chained lists. It may be inferred that the utilization of the 

afore-mentioned technique enhances search efficiency and decreases compression duration. In addition, achieving 

placement of often occurring forward entries through the selection of appropriate statistical frequencies leads to 

enhanced optimization outcome. 
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Figure 4. Compression technique for IoT time series classification. 

 

2.1.2. LZW Encoding  

LZW (Lempel-Ziv-Welch) is a lossless process. This technique is indeed a multipurpose method with various 

benefits over other programming methodologies, including simplicity and flexibility. In general, this technique 

compresses data via coding, resulting in a file that is half the size of the original. In various applications, su ch as 

tabular numbers, computer code editors, and signaling, the LZW approach delivers excellent compressor results 

[15]. The LZW-encrypted data in this case is entirely made up of 12-bit code, each of which relates to one of the 

code entries. Decompression is achieved by determining which characters and letters each symbol in the zip format 

represents using the coding table. Individual bytes from the input data are always assigned to the code table's codes 

0-255. If only the first 256 codes had been used, every pixel in the source would have been converted to 12 bits 

within the LZW encoded file, which resulted in a file that was actually 2.5 times larger. During deflation, each 12 -

bit signal would be transformed back into single bytes using the code table.  

The Figure 5 describes the Flow chart of LZW Algorithm: 

 

 
Figure 5. Flow-chart for the procedure followed in LZW. 
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The LZW encoding process consists of the following steps: 

Step I: Initialization 

• Begin with the initialization of the dictionary. 

Step II: Identifying the Longest Phrase 

• Search the current input for the longest matching phrase in the database.  

Step III: Vocabulary Reduction 

• Reduce the vocabulary by producing 'W' and removing 'W' from the input. 

Step IV: Adding the Next Correlation 

• Incorporate the next correlation into the input, following the addition of 'W'. 

Step V: Completing the Cycle 

• Return to Step II to complete the next iteration of the process. 

The single-character sequences that correlate to all potential i/p letters are compiled into a vocabulary. A 

format string entrance is discovered by looking for larger substrings in the incoming packet until it is located. An 

appropriate phrase is found, and the database code for the phrase without preceding elements is discovered and led 

to output, and new entries are made to the dictionaries with the next character.  

The last i/p letter is then used as the next starting point for searching for substrings. The same approach will 

be used; successively longer strings will be stored in the dictionary and made available, with the goal of encoding as 

single o/p numbers in the end, as shown in Figure 5. This strategy is most effective on data with repeating 

configurations; as a result, the first bits of any data are compressed very little. However, as t he size of the data 

grows, the CR tends to reach its maximum approximation. 

LZW coding is used to reduce energy usage while increasing network lifetime. Files compressed using LZW 

are 1/3 the size of their original size. LZW achieves the maximum compression ratio in comparison to RLE for a 

variety of file types, such as text, speech, and images. In mobile ad-hoc networks, it's very popular. S-LEC is an 

LEC variant that employs a sequence coding strategy. To evaluate S-performance, LEC's actual statistics from 

sensor range or volcano tracking are contrasted with those of LEC and S-LZW. The CR and energy usage of 

sensor data were used as performance indicators to analyse the outcomes. When compared to LEC, S-LEC 

consumes less energy for dynamic volcano datasets. 

 

2.1.3. Decoding 

The LZW decoding procedure involves two steps: decoding the encoded data value and improving a cohesive 

phrase from the loaded vocabulary. In addition, it uncovers the next significance from i/p and continues to add the 

same sequence of the existing data and the first character in the sequence obtained by translating the next input 

data, which will be sufficiently simple to determine whether the next appraisal can be decrypted, to reconstruct the 

definitions in the same way that they were constructed all through encoding, and to reconstruct the same 

definitions through encryption. 

The LZW decoding technique reverses the encoding process. The procedure is as follows: 

Step I: Dictionary Creation 

• Begin by creating a dictionary that initially holds all single characters from the data stream. 

Step II: Finding the First Codeword (CoW) 

• In the encoded data stream, locate the first codeword, denoted as CoW. 

Step III: Providing the Decoded Data 

• Decode the CoW and append its corresponding string to the decoded data stream. 

Step IV: Reading the Following Codeword 

• Read the next codeword, CoW, and assign it as PaW (Previous Word) = CoW. 

Step V: Checking the Dictionary for CoW 
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• Check if the dictionary contains an entry for CoW. 

Step VI: Continuing the Decoding Process 

• If CoW is found in the dictionary, return to Step II to continue decoding. 

Step VII: Ending Decoding 

• If CoW is not in the dictionary, terminate the decoding process. 

PaW= plain word, CoW = codeword, STR = string, CHAR = character 

In response, the decoder continues to work until there is no more data and then interprets the final input vector 

without any additional vocabulary. As a consequence, decode builds a vocabulary that is a copy of th e encoder's 

dictionary and uses it to decode the following i/p coefficients. This method does not require the entire vocabulary 

to be targeted with encrypted values. It is sufficient to use only the initial dictionary  that contains solitary strings 

or Coefficients.  

Algorithm 1: LZW compression algorithm 

String j, char cc; 

load character j 

while(load character) 

cc- move string to cc. 

if(cc in dictionary) 

Make code term; 

else 

cc should be updated, new characters added to cc. 

Check the data in a dictionary 

If (it isn’t found in the dictionary), then 

that string should be added to the dictionary; 

end if; 

The LZW algorithm uses a dictionary to generate a code for each character. In the dictionary , each character 

has a code and an index number. We read data from a file that we want to compress. Data is first entered into a 

buffer before being searched in a dictionary to generate a code. If the dictionary does not contain a matching 

character, then this character is entered into the dictionary, a new code is also assigned. If a character is found in a 

dictionary, a code will be generated for it. The number of bits in output codes is smaller than the number of bits in 

input data.  

 

2.2. NetSim Simulator  

A network simulation Tool called NetSim Simulator is used to examine the dynamics of communication 

networks using discrete event simulation. The NetSim Simulator is a powerful tool for simulating various protocols 

over IoT networks. In addition to supporting a variety of network elements, protocols, traffic types, and routing 

methods, it provides a highly modular platform for simulating IoT networks. NetSim is network simulation 

software that supports a variety of network protocols, such as machine-to-machine communication, CoAP, and 

MQTT. 

 

2.2.1. Machine to Machine Communication Protocol 

The protocol is open to all industries, and it's designed to support remote application management functionality 

for IoT devices. This protocol utilizes public networks and is cost-effective. A communication and data exchange 

environment is created between two machines. It allows machines to self -monitor and is able to adapt to changes in 

the environment. 
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2.2.2. Message Queue Telemetry Transmission  

Message Queue Telemetry Transmission (MQTT) is a message protocol that is optimised for devices with 

limited processing capabilities. Based on the publish-subscribe paradigm, the protocol uses a flexible routing 

mechanism and asynchronous communication. MQTT works on the principle of TCP (Transmission Control 

Protocol); it contains three QoS levels: 

• At level 0, messages are sent without any confirmation. 

• At level 1, messages are sent to the sender, and it is guaranteed that they will be delivered, but there may be 

some duplicates. 

• At level 2, there is also a guarantee of delivery, but only one message is delivered without duplicates. 

Subscriber, publisher, and broker are the three primary components of MQTT. 

  

 
Figure 6. MQTT Architecture protocol. 

 

A publisher can send and receive messages to subscribers. A publisher works with a broker to provide messages 

to subscribers about a given topic. Finally, the broker gets messages from publishers and sends them to interested 

subscribers, as shown in Figure 6. 

 

2.2.3. Constrained Application Protocol (CoAP) 

A resource-constrained application layer protocol is CoAP (Constrained Application Protocol) , as shown in 

Figure 7. Because UDP is intrinsically unreliable, CoAP uses Provable (PRO) and Unprovable (UNP) messages to 

create its own dependability mechanism. 

 

 
Figure 7. COAP a). Unprovable  b). Hoist response c). Disparate response. 

Note: NON= Non confirmation, CON= Confirmation. 
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A message that is Unprovable does not need to be confirmed. A server may respond with a reset message if it is 

unable to process an Unprovable message (RST). A confirmable message is used when an acknowledgement is 

requested. Furthermore, CoAP can deliver two different types of responses: hoisted and disparate. In hoisting,  the 

response is returned in the request's acknowledgement (ACK) packet. Because the client would retransmit the 

request if the ACK packet with the hoisted data was lost, there is no need to acknowledge the hoisted response 

individually. The acknowledgement and response messages are sent in distinct packets in a disparate response. A 

response packet is sent by a server after it has processed the request. Following that, the client sends an 

acknowledgement message after getting the server answer. A separate response is useful when the server cannot 

answer a request in a confirmation message right away. The server will respond with a standard acknowledgment 

message, eliminating the need for the client to resend the request. 

 

2.3. Performance Measures  

Within this section, we explore and compare these three messaging protocols: M2M, CoAP, and MQTT. 

These messaging protocols are quite extensive and distinct from one another due to the variety of procedures and 

demands they've evolved through. The exact and relative comparisons of these systems depend on the many types 

of IoT devices, resources, apps, and the conditions and requirements assigned to each system. We compared routing 

overhead, average end-to-end delays and throughput in order to arrive at an appropriate routing protocol scheme 

for the IoT. 

  

2.3.1. Routing Overhead 

The routing overhead is the average number of route packets required for each data packet. This parameter 

reflects both network congestion and node power efficiency. Routing overhead is calculated with Equation 4: 

     
𝑁1

𝑁2
(4)    

It is N1 packets that are sent and forwarded; it is N2 packets that are received. The routing overhead is 

measured in bits per second (bits per second, or bps). 

 

2.3.2. Average End to End Delay 

The average end-to-end delay is affected by certain factors, like storage at the time of route discovery, lining at 

the interface queue storage, delays occurring during MAC (Media Access Control) retransmission, and transmission 

time. This figure is crucial for estimating the length of time it takes to find a path. For evaluating end-to-end delay, 

Equation 5 is used.  

∑ (𝑇1−𝑇2)

𝑁
(5) 

Where, 𝑇1 is the arrival time of first data packet at destination time, 𝑇2 is the time when the first packet is 

transmitted by source and N is the number of packets sent. 

 

2.3.3. Throughput 

As a percentage, throughput represents how many packets are received by the destination as compared to all 

packets sent by the source. The throughput is calculated with the help of Equation 6. 

     
𝑚1

𝑚2
× 100%(6) 

Where 𝑚1 is the packets received by the destination and 𝑚2 is the packets sent by the source. In bits per 

second (bits/s) the throughput is measured. 
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3. EXPERIMENTAL SETUP & FINDINGS 

In this section, we define both the simulation setup and hardware implementation of our system in Figures 8 

and 9, respectively. For the simulation setup, we have chosen the NetSim simulator and applied our IoT network 

with and without LZW compressions as shown in Figure 8. For hardware implementation, we have used sensors, 

an Arduino board, and programmed it with and without LZW compression, as shown in Figure 9. 

First of all, we have designed our IoT network for simulation, which is described in the form of table given 

below in Table 1. In this setup, we have designed a network with a size of 1000*1000, 50 to 300 nodes, and a 

bandwidth of 2 mbps. For transferring the data, we have chosen the M2M, MQTT, and CoAP protocol and a packet 

size of 1024 bytes with rate of 5 packets per second.  The simulation time is approximately 250-750 seconds, with a 

pause time of 15 seconds. The placement of nodes is random. Setup is shown in Figure 8. 

 

 
Figure 8. Simulation of IoT network with 50 nodes random placement. 

 

Table 1. IoT network Simulation parameters. 

Parameter Value 
Network size 1000*1000m 
Number of nodes 50 to 300 
Bandwidth 2 Mbps 
Routing protocols M2M, MQTT, CoAP 
Packet size 1024 bytes 
Packet rates 5 Packets/sec 
Simulation time 250-750 sec 
Pause time 15 sec 
Node placement Random 

 

For hardware implementation, we have used sensors, an Arduino board, and programmed it with and without 

LZW compression, as shown in Figure 9. 
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Figure 9. IoT model. 

 

 
Figure 10. Routing overhead without compression with respect to variable number of nodes. 

 

 
Figure 11. Routing overhead with compression with respect to variable number of nodes. 
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3.1. Results 

3.1.1. IoT network with and without Compression 

3.1.1.1. Routing overhead 

In this, the performance of all three IoT routing protocols, M2M, CoAP, and MQTT, is shown in Figure 10 

and 11, for the performance parameter, i.e., routing overhead. In my overall view, routing overhead increases with 

the number of nodes, in both with and without data compression. This is because we have to send more control 

packets to manage large amounts of nodes. If we compare the routing overhead individually for each protocol with 

and without data compression, it states that the routing overhead is greater without data compression for each 

protocol in comparison to with data compression. For example, with 50 nodes in M2M Routing Overhead without 

data compression, it is 1 and with data compression, it is 0.8; similarly, with 150 nodes in CoAP Routing Overhead 

without data compression, it is 8 and with data compression, it is 7.5, and also with 300 nodes in MQTT Routing 

Overhead without data compression, it is 16 and with data compression, it is 14. The main reason behind this is 

that, with the help of data compression, we are able to somehow reduce the size of data packets.  From the above 

results, we can also see that MQTT has the biggest routing overhead compared to the other two protocols.  

  

 
Figure 12. End to end delay without compression with respect to variable number of nodes. 

 

 
Figure 13. End to end delay with compression with respect to variable number of nodes. 
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3.1.1.2. End to End Delay 

The average end-to-end delay is a very crucial performance parameter for any network , as it tells the overall 

time duration of any packet. As the number of packets increases from 50 nodes to 300, there is an increase in end-to-

end delay. But with the implication of data compression end-to-end delay decreases in comparison to without data 

compression as the size of the data packet decreases because of the data compression. With the help of Figures 12 

and 13, we can easily interpret that with 200 nodes in M2M, the end-to-end delay without data compression is 0.7 

and with data compression is 0.4; similarly, with 250 nodes in the CoAP end-to-end delay without data compression 

is 1.15 and with data compression is 1.1; and also with 300 nodes in MQTT, the end-to-end delay without data 

compression is 1.3 and with data compression is 1.1. Based on the results of the comparison, we can conclude that if 

the primary goal is to develop speedy communication in future IoT applications, the M2M protocol mechanism is 

the best option. 

 

 
Figure 14. Throughput without compression with respect to variable number of nodes. 

 

 
Figure 15. Throughput with compression with respect to variable number of nodes. 
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3.1.1.3. Throughput 

Throughput is the specific number of data packets received by the receiver and sent by the sender at  a 

particular time. The efficiency of the network can be evaluated with the help of throughput. In the overall analysis 

from Figures 14 and 15, we can see that as the number of nodes increases with and without data compression, the 

protocol throughput decreases. For 50 nodes in M2M throughput without data compression, it is 3.125 and with 

data compression, it is 3.515625; similarly, for 150 nodes in CoAP throughput without data compression, it is 1.875 

and with data compression, it is 2.34375 and also for 300 nodes in MQTT throughput without data compression, it 

is 0.9375 and with data compression, it is 1.5625. In comparison with the other two routing systems, MQTT has 

the lowest throughput. 

 

4. CONCLUSION 

This paper presents transform-based compression algorithms for an LZW signal. The presented data 

compression techniques help in improving the efficiency of the network , as we measured with the help of different 

performance parameters as shown above. On the basis of the trials carried out in this study, many conclusions can 

be drawn. Remember that the main purpose is to provide a reduction method that will help optimize the lifetime of 

an IoT device. It is adaptable to every application, sensor, or activity and is appropriate for relatively close 

applications. Here, we overcome these limitations by incorporating LZW data compression into it. The data 

compression technique would be beneficial in reducing the size of data packets, and increasing it will increase the 

throughput, and decreasing the delay and routing overhead. Furthermore, this is an area that is rapidly growing 

and evolving, so it is possible that future developments may change the scenario described. A real -world IoT 

system could be an interesting platform for testing these protocols in the future. 
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