Review of Computer Engineering Research

2028 Vol. 10, No. 4, pp. 199-213

ISSN(e): 2410-9142
ISSN(p): 2412-4281

DOI: 10.18488/76.v10i4.8562

© 2023 Conscientia Beam. All Rights Reserved.

check for
updates

Automated Alzheimer's disease diagnosis using radiomics feature extraction on magnetic

resonance images

T. Manochandar'*

P. Kumaraguru
Diderot®

Article History
Received: 1 August 2023
Revised: 7 November 2023
Accepted: 20 November 2023
Published: 22 December 2023

Keywords
ADNI dataset
Alzheimer's disease
Deep learning

MRI images
Neuroimaging data.

“Department of ECE, Hindustan Institute of Technology and Sciences,
Padur, Chennai, India.

'Email: manochandarresearchscholar@gmail.com

*Email: pkguru@hindustanuniv.ac.in

‘—’
= &

d>h

(+ Corresponding author)

ABSTRACT

The current study investigates automated Alzheimer disease diagnosis using radiomic
feature extraction on magnetic resonance images. Alzheimer’s disease (AD) is a
progressive, incurable neurological brain disorder. Early diagnosis of AD might
prevent brain tissue damage and assist with proper treatment. Researchers examine
numerous statistical and machine learning (ML) techniques for the detection of AD.
Analyzing magnetic resonance imaging (MRI) is a traditional way of analyzing for AD
in clinical examination. Diagnosis of AD is challenging because of the similarity in MRI
statistics and standard healthy MRI information for elderly people. The application of
DL to earlier diagnosis and automatic classification of AD is gaining immense
popularity in recent times, as rapid development in neuroimaging techniques has
generated large-scale multimodal neuroimaging datasets. This study develops a new
Automated Alzheimer's Disease Diagnosis using Deep Learning Model (AADD-DLM)
on MRI images. The presented AADD-DLM technique examines the MRI images to
assist in the AD diagnostic process. In the presented AADD-DLM technique, three
major processes are involved, namely skull stripping, segmentation, and feature
extraction. Initially, the AADD-DLM technique uses the U-Net model for the skull
stripping process, which enables the removal of the skull regions in the brain MRI.
Next, the QuickNAT model is utilized for an effective brain MRI segmentation process.
Moreover, the radiomics feature extraction approach is used to generate a useful set of
feature vectors. For exhibiting the promising performance of the AADD-DLM
technique, widespread experimentation analysis is made on the ADNI database. The
optimized model achieves 99.6% accuracy in the ADNI database. The simulation
outcomes revealed the improved effectiveness of the AADD-DLM technique over other
recent approaches.

Contribution/Originality: The primary contribution of this study is using DL models to create a reliable MRI

image analysis model for diagnosing AD. Present a U-Net-based skull stripping approach to remove the skull area

from a brain MRI. Then a QuickNAT model was proposed for efficient MRI brain segmentation. To generate

feature vectors, we introduce radiomics features and verify them using the ADNI benchmark dataset.

1. INTRODUCTION

MRI can be exploited to evaluate the anatomical structure of the brain owing to its ability to contrast soft

tissues and its high spatial resolution [17]. Generally, MRI was linked with more health hazards than other

modalities like PET and CT [27]. Understanding brain structure with an MRI and assessing strokes have both

made tremendous strides in recent years. Brain-related disorders like multiple sclerosis and Alzheimer's disease
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(AD) can be diagnosed with MRI [387]. The segmenting process of brain MRI captured at distinct times can also be
utilized for measuring structural variations in the brain. When trying to diagnose something like Alzheimer's
disease, it becomes increasingly important to correctly categorize and distinguish harmful tissues and the
surrounding healthy architecture [47].

An enormous volume of data is needed for more precise diagnoses. However it becomes a challenge for doctors
who evaluate complex and large MRI datasets and abstract imperative data manually [57. In addition, there are
other issues with intra- or inter-operator heterogeneity that make manual reading of a brain MRI tedious and
error-prone [6]. Therefore, it can be essential to formulate an automatic segmentation technique to offer precise
outcomes with great confidence. Computerized methods for registration, MRI segmentation, and visualization were
utilized on large-scale datasets to assist medical practitioners in making qualitative diagnoses [7]. Deep learning
(DL) is an advanced method; techniques like convolutional neural networks (CNNs), stacked AE auto-encoders
(SAE), and deep belief networks (DBNs) can mechanically construct further abstract high-level representations of
learning mechanisms by compiling lower-level features embedded under the dataset. The CNN technique is being
commonly exploited for object detection, classification, and segmentation, having many advantages [87: CNN is
able to receive images directly as input, use spatial data embedding from neighboring pixels, and efficiently lessen
the model parameter count with the use of subsampling, local receptive domains, and weight sharing [97. If a CNN
technique can be trained with MRI scanner, image features can be mechanically retrieved, eradicating the necessity
of selecting the features manually for learning [107. In the meantime, ensemble learning benefited from its
robustness and performance by compiling many learning systems, which were implemented in MRI.

This study develops a new AADD-DLM on MRI images. There are primarily three steps in the described
AADD-DLM method: skull stripping, segmentation, and feature extraction. Initially, the AADD-DLM technique
uses the U-Net model for the skull stripping process, which enables the removal of the skull regions in the brain
MRI. Next, the QuickNAT model is utilized for an effective brain MRI segmentation process. Moreover, radiomics
feature extraction approach is used. Obtain a relevant collection of feature vectors of information. For exhibiting the
promising performance of the AADD-DLM technique, widespread experimentation analysis is made on the ADNI
dataset. In a nutshell, the paper's main achievements are outlined below:

¢ Employ an effective MRI image analysis model for AD diagnosis using DL models.

e  Present a U-Net-based skull stripping process to remove the skull region from the brain MRI

e Propose a QuickNAT model for an accurate brain MRI segmentation process.

e Introduce radiomics features for the generation of feature vectors.

e  Validate the results on the benchmark ADNI dataset.

2. RELATED WORKS

Kong, et al. [117] modelled an image fusion technique to merge PET images and MRIs from AD patients.
Moreover, the author uses 3D-CNN to assess the efficacy of this image fusion technique in both multi-classification
and dichotomous errands. The 3-D convolutions of the fused images are employed for extracting the data from the
teatures, leading to richer multi-modal feature data. At last, the derived multi-modal traits were predicted and
classified through a fully connected NN.In Alhassan [127, the authors presented an EFEHO for OTSU
segmentation, called EFEHO-OTSU. Firstly, exploiting EFEHO in the suggested approach to seek the optimum
segmentation threshold for the OTSU approach. Secondly, DA-MIDL was suggested for prompt analysis of AD
and its prodromic stage, MCI.

Ajagbe, et al. [187] are meant for advancing AD image classifications with DCNN involving CNN and TL
utilizing MRI and extended estimation metrics, as the capacity and limitations of methods cannot be exposed by
some metrics. The purpose of this study was to use numerous assessment indicators to assess neurologists' ability

to categorize AD images into four established categories. This study utilized computer methods, primarily TL and
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DCNN, for classifying AD. Marwa, et al. [147] developed a DL-related pipeline for precise stratification and
diagnosis of AD phases. The presented analysis pipeline uses 2D T1-weighted MRI brain images and shallow CNN
structures. The presented pipeline presents an accurate and fast AD diagnosis module as well as local and global
classifiers.

Fang, et al. [157 devised a new structure that ensembles 8 existing DCNNs with multi-modality imageries for
an AD classifier. Moreover, to reject low discrimination slices of category probability, a ‘dropout’ system was
presented. Then average reserved slices of all subjects were needed as new features. Liu, et al. [167] modelled a
multi-model DL structure related to CNN for AD classification through structural MRI data and joint automatic
hippocampal segmentation. Primarily, a multi-task DCNN technique was built for disease classifiers and jointly
learning hippocampal segmentation. Afterward, the author framed 3D Dense Net to study of features of 3-D

patches derived on the basis of the hippocampal segmentation outcomes for the classifier task.

3. THE PROPOSED MODEL
In this study, we have presented a novel AADD-DLM technique for automated AD diagnosis using brain
MRIs. In the presented AADD-DLM technique, three major processes are involved, namely:
e  U-Net-based skull stripping.
e QuickNAT-based segmentation.

e  Radiomics feature extraction.

3.1. Skull Stripping Process

The areas of the skull are masked in MRIs of the brain by the U-Net method. The U-Net method comprises an
encoder-decoder architecture with skip connections [177]. In all the encoding and decoding blocks, two replications
of convolution layers are used with the same kernel size K = (3,3,3). Every convolution layer is then non-linear
activation and BN with ReLLU. The primary count of feature maps, following the initial convolution layer, was set to
F = 32 for each model, and the feature map count is doubled (halved) after every encoding (decoder) block. The
dropout layer is used afterward in the encoding and decoding layers to implement dropout sampling for uncertainty
quantification and to avoid over-fitting. Max-pooling afterward, every encoding block halves the feature map
dimension. Similarly, up-sampling with transpose convolution afterward doubles the feature mapping size, and
lastly, restores the primary dimension to the outcome. The number of max-pooling functions determines the depth
D of U-Net framework that is set forD = 4 for each trained model. The bottleneck blocks restrict data flow from
the encoding to decoding block and comprise 2 convolution layers, each afterward rectified by linear activation and
batch normalization. Unlike the encoding and decoding blocks, we don’t apply a dropout layer to the bottleneck
block. Due to memory limitations, the input brain volume is typically 2 million voxels in size, evenly dispersed
across the imaging dimension. Then, train the network with the help of the Adam optimization using primary
learning rates of 0.001. In the process of training, a set of random transformations is applied, for example, rotations
and translations, to the volume for data augmentation.

The mixture of Dice scores is summed over each class label, and the categorical cross-entropy function:

L= _Z 2%, Qr (0T (%)
res Yx Qr (x) + T (x)

Now, @,(x) indicates the softmax outcome of networks at voxel location X and T,(x) denotes the ground

- D T (9 log (- | &

truth at a similar location. Theoretically, the impact of Dice loss and cross-entropy is further weighted, however, it

is found small impact on performance and thereby neglect further weighting.
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3.2. Image Segmentation Process

In this work, the Quick NAT model is exploited for the active brain MRI segmentation process, which
recognizes various regions. Quick NAT [187 includes three 2D FCNN architectures, which segment the input
image slice-wise alongside axial, sagittal, and coronal axes. After that, the view aggregation phase takes place,
where the three segmentations generated are integrated to provide a concluding segmentation.

Every 2D F-CNN models have an encoding-decoding-based structure, with four encoding and decoding blocks
detached by the bottleneck blocks. The dense connection was added within all the encoding and decoding blocks to
promote learning of better representations and promote feature re-usability. A skip connection exists between all
the encoding and decoding blocks, just as in U Net. Dice degradation and gravity nonlinear losses were optimized
during model training. Quick NAT is trained by simultaneously augmenting 2 loss functions: (1) the multi-class
Dice loss and (2) the weighted logistic loss. The logistic loss gives the pixel-wise probabilistic estimation of
resemblance between the manually annotated and estimated labels.

The Dice loss has been stimulated by the Dice overlap ratio, which evaluates resemblance between the
manually annotated and estimated labels. Initially, it was presented for two-class classification and extended to

multi-class classification. Assuming the expected probability Q (k) of k pixel belongs to class [ and the actual class
9,(k),

2% Q; (k) g, (k)
Tk QFk) + X g7 (k)

DiceLoss

£== kg (k)log Q) - @
k

LogisticLoss
Multiclass logistic loss and Dice loss are two types of loss functions. Then, present a weight w(k) that
balances the relative significance of the pixels from the loss.

Next, apply weight to resolve 2 problems: (i) errors in segmentation at the anatomical boundary and (ii) class
imbalance. Assuming the frequency fl of classes [ from the trained dataset, viz., the 2D gradient operatorV/, the

class prior probability, the trained segmentation S, and the indicator function I, the weighted are determined by

ian(f)

d
w(x)=ZI(S(x)=l)me Tt 7SI >0 @)
l

With the vector of each frequencyf = [f, ..., fn]-
The first term simulates median frequent balancing and compensates for class disparity issues by increasing the
weight of rare classes in an image. The next term put high weights on anatomical boundary area for encouraging
2-median(f)

accurate segmentation of contour. Wy is fixed as ————— for providing high priority to boundaries.
min

3.3. Radiomics Feature Extraction Process

For the generation of feature vectors, radiomics features are utilized in this work. We have extracted a set of 93
radiomics features. Every single feature class, excluding shape, can be computed either on the derived image or the
original image, attained by using multiple filters. The shape descriptor is extracted from the label mask and is
independent of gray value. It can be computed separately from the enabled input image varieties and computed on

the original image. The radiomics feature is categorized as follows:

3.8.1. First Order Statistics
It describes the distribution of voxel intensity in the image region described by the mask with basic and widely

utilized metrics.
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3.8.2. Shape-Based (3D)

The attribute was unrelated to the gray-level brightness shipping from the ROI and estimated only on non-
derived pictures and masks. The feature was built using an approximation of the shape calculated using a triangle
mesh. Initial triangles for mesh construction are found by finding the midpoints of edges connecting voxels between
and within the region of interest (ROI). A mesh of linked triangles is acquired by linking the vertices, with every
triangle determined by 3 adjacent vertices that share all the sides accurately with other triangles. This mesh was
generated with the marching cubes method. The procedure involves stimulating a 2x2 cube with a mask in the
region. In every position, the corner of cubes is later marked ‘segmentation’ (1) or not segmentation’ (0). By
representing each corner with a distinct bit of a binary value, an individual cube index could be calculated (0-255).
This index is then utilized for determining whether triangles can be present in the cube that is determined in the
lookup table. These triangles can be determined as follows: the normal is continuously oriented in a similar way. It

can be essential to attain the accurate signed volume utilized in the computation of MeshVolume.

3.8.8. Shape-Based (2D)

This attribute may only be calculated on masks and images that were not used to create the ROI, as it doesn't
rely on the gray-level pattern of intensity within the ROI. The feature was developed in the estimated shape
determined by the circumference mesh. First, the vertex edges are found by finding the midpoint of an edge
between a pixel that has been added to the ROI and a pixel that has not. A mesh of connected lines is attained by
interconnecting the vertices, with all the lines determined by 2 adjacent vertices that share points exactly with
other lines.

This mesh was created utilizing a modified version of the marching cubes technique. During this process, a 2x2
square has been stimulated with the mask space (2d). To every position, the corner of squares is next marked not
segmented’ (0) or ‘segmented’ (1). To give the corners as certain bits in binary numbers, a single square index has
been acquired (0-15). This index is then employed for determining whether lines can exist from the square that
determines the lookup table. These lines are determined so that the normal triangle described by this point and
origin is kept consistent. This outcome has signed value for the surface region of all the triangles; thereby, if
summed, the superfluous (positive) region contained by triangles partly inside and outside the ROI has been

correctly cancelled out by the (negative) area of triangles completely outside the ROI.

3.8.4. Gray Level Co-Occurrence Matrix

It calculates gray-level zone from the image. A gray-level zone can be determined as a count of interconnected
voxels that share similar gray-level intensity. If the distance is 1, a voxel is considered connected based on the
infinity norm. It is matrix in that the texture feature is extraction for texture investigation. The GLRLM scheme is
a process of extracting higher-order statistical texture features. A gray-level run is determined as a pixel line from a

specific direction with a similar intensity value.

3.8.5. Gray Level Run Length Matrix

It calculates gray-level zone from the image. A gray-level zone can be determined as a count of interconnected
voxels that sharesimilar gray-level intensity. If the distance is 1, a voxel is considered connected based on the
infinity norm. It is matrix in that the texture feature is extraction for texture investigation. The GLRLM scheme is
a process of extracting higher-order statistical texture features. A gray-level run is determined as a pixel line from a

specific direction with a similar intensity value.

203
© 2023 Conscientia Beam. All Rights Reserved.



Review of Computer Engineering Research, 2023, 10(4): 199-213

3.3.6. Gray Level Size Zone Matrix
It is the beginning of Thibault matrices. For texture images f with N gray-levels, it can be represented by GSf
(s, g) and provides a statistical demonstration by the estimate of the bivariate conditional probability density

function of an image distribution value.

3.8.7. Neighbouring Gray Tone Difference Matrix
It measures the differences between the average gray value and gray value of their neighbors in the distance.

The amount of entire differences for gray-level was kept from the matrix.

3.8.8. Gray Level Dependence Matrix

It enumerates gray-level dependency from the image. It can be determined as the quantity of interconnected
voxels in the distance is based on center voxels. The main properties of this scheme are as follows: (i) texture
feature is simply calculated; (ii) it can be fundamentally invariant in spatial rotation; (iii) it can be invariant in linear

gray-level transformation and is insensitive to monotonic gray-level transformations.

3.4. Classification

Previous research has shown that the CNN architecture can be enhanced by increasing the precision of the
methods used for training and enhancing the standard of the input information; furthermore, it is known that the
degree to which a model can be optimized depends on the kind of model employed. In the case of multi-layered deep
learning models, for instance, it is possible to fine-tune the training parameters. The convolution layer of a
convolutional neural network is responsible for obtaining features, and the quality of removing features is
proportional to the fourier kernel width. From a compositional standpoint, lines created by adjacent pixels
frequently from the borders of a picture. The image's texture is made up of a collection of edge lines, and these lines
are used to create various local patterns. The picture is composed mostly of its local pattern. The network model's
convolution layer allows for feature extraction and local picture pattern formation in various forms. Although the
convolution layer will extract more information with a smaller convolution kernel, overfitting issues may arise.
However, if the convolution kernel too large, the convolution layer maybe unable to retrieve as many features,
which will reduce the impact of picture classification. As a result, the precision of picture classification may be
enhanced by optimizing the convolution kernel. Since the CNN model predominantly gathers the image
characteristics layer by layer via multiple convolution layers, the number of convolution layers impacts the degree
of accuracy of the model's extraction of characteristics. The features obtained by the model classifier become
increasingly fine-grained with increasing numbers of convolution layers, which can result in over fitting, while the
features become increasingly coarse-grained with decreasing numbers of convolution layers, which can result in a
decline in image classification accuracy. Therefore, convolution layer modification may improve the model's

precision for classification.

(oY
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Input image Fully connected Softmax

Figure 1. Shows the CNN architecture for the proposed model.
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The depth learning model suggested in this research has to be refined to increase the accuracy of picture
categorization and identification. A smaller convolutional kernel is selected in the first convolution layer so as to
derive further details about the features of the picture. Second, the overfitting issue is dealt with by adopting the
maximum pool sampling procedure into the model. Figure 1 shows the updated photo classification model, which
has three convolution layers with diminishing convolution kernels in each. Following each convolution layer, the
output features are supplied into the optimum pooling layer. After processing the input picture data through three
full connection layers, the model produces the categorization result using a Softmax classifier.

The convolution layer's parameters for modeling are the dimension and the number of convolution kernels.
Because the first layer of convolution is close to the image layer that contains the input and is mainly used for
obtaining the fundamental elements of the image, its parameters significantly affect the feature set. To facilitate the
computation of characteristics in the next convolution layer, attribute information such as shadow, boundary, and
lighting of the image must be extracted using a smaller convolution kernel.

In the convolution layer, the activation function is used to create a map of the characteristics that were
gathered. As a result, the enhanced CNN model’s the ReLU activation function looks like the following
mathematical function:

2(y) = Max(0,y)(4)

When the activation function of ReLU is used for learning characteristics in a typical convolutional neural
network model, it may result in the loss of significant characteristic data during picture categorization. Based on the
current ReLU activation function, it may be enhanced to prevent the loss of relevant features during picture
categorization. An expression for the optimal activation function is,

z(yk)={z_i‘ <9
Yir Y20

The novel activation function calculation formula not only preserves the negative data within the feature map
whenever the feature being processed is less than zero, but it also enhances effective distinctive reinforcement
learning.

The Softmax function, which uses a supervised learning method to regress the characteristics, is utilized by the
optimised CNN to determine the photographs. The picture target category C can take on any one of K possible
values throughout the categorization process. The cost function of Softmax regression may be written as, for a
given image training set {al, az...... an} where @; is a sample of the training set, b; is a category for classifying

the picture, and b; € {1,2, ..... K} is the cost function.

L M

epieta) ) ©

1
s@ =5 Z U{b, = n}log (Z%:l exp(ana;)

=1 m=1

Provided M markers are added to the cost function, we can write the likelihood of classifying training sample
an as group M as
exp(amay)
Yoty exp(amay)

Alby = nllag; a) = ()
4. EXPERIMENTAL VALIDATION

During this study, the experimental outcomes of the presented method can be tested utilizing the benchmark
ADNI database. A primary purpose of ADNI is to examine when the serial MRI, another biological marker, PET,
and medicinal and neuropsychological investigation were integrated to measure the progress of MCI and main AD.
A particular and sensitive marker of very soon AD progress has been assumed for helping scientists and researchers

working to advance innovative remedies, and observing their performance, and minimalizing medicinal trial time
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and cost. The ADNI uses the findings of numerous co-investigators from large academic institutions and
commercial enterprises, and its subjects can be used at more than 50 locations across the US and Canada. One of the
main goals of ADNT is to enroll 800 adults between the ages of 55 and 90. Of them, about 200 are older, cognitively
regular people who have been involved for three years, 400 are MCI patients who have been involved for three

years, and 200 are primary AD patients who have been involved for two years.

Region: All
Opacity : 0.7
Show brain : v
White_matter: .
Grey_matter:

Hippocampus:

Amygdala:
Ventricles:

Axial view Coronal view Sagittal view

Figure 2. Sample MRI segmentation results.

Figure 2 shows the sample segmentation results obtained by the proposed model. The features extractions by

the proposed technique are given below.
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17 |Data/segmentec 75 158.1 28397333 2.55872 41 4.729503 254 27.39412 116.09% 116 1 253 17.19666 121.9332 0.241984 28397333 0.215843 1388.747 26.83366 83.15549 1.531312 4.395635 3.080125 0.175602 1.23491 2.040962 1.55272 0.574
18 |Data/segmentec 89 180 39249176 2.654827 45.5 4.114399 255 29.02479 133.4506 133 0 255 19.05002 138.8779 -0.20355 39249176 0.195398 1477998 34.75913 90.00505 -0.77549 4.803269 3.608081 0.14153 1.390527 2.164741 1.67108%9 0.542
19 |Data/segmentec 91 179.1 38640530 2.62376 44 4125385 255 28.41675 133.4587 133 o 255 18.62714 138.6512 -0.19441 38640530 0.199124 1412.918 34.78213 83.54216 -1.10809 4.679114 3.477863 0.146445 1367567 2142196 1.60417 0.54%
20 |Data/segmentec 74 159 34352511 2.603874 42 4.554127 255 27.68261 117.1052 116.5 o 255 17.50722 122.9632 0.204528 34352511 0.208045 1406.317 27.37607 91.12024 1.472459 4.660217 3.043539 0.20893 1.215214 2.032822 1.564392 0.580
21 |Data/segmentec 76 159 34361560 2.56854 41 4.544628 255 26.9726 117.861% 117 i} 255 17.2405 123.3327 0.242142 34361560 0.211746 1319.536 27.55345 B83.21653 1.372968 4.496203 2.83769 0.225094 117361 1.993498 1.446385 0.5
22 |Data/segmentec 50 123 20637410 2.359504 36 7.818917 255 23.95795 88.20857 87 o 255 15.24153 94.49909 1.270552 20637410 0.244367 1149.326 16.32068 B83.67969 5.518249 3.763346 2.670023 0.169832 1.090395 1.905438 1.479467 0.60
23 |Data/segmentec 38 142.3 19943364 2.7753%4 51 4.52584 255 33.43345 89.21804 86 0 255 22.28081 99.41196 0.86721 19943364 0.173309 1922.879 16.46053 182.987 10.91524 6.327134 4.731823 0.143729 1.607417 2.323206 2.144772 0.50
24 |Data/segmentec 28.7 113 10212302 2.530023 41 7.769277 255 31.20267 72.98233 65 i} 255 17.18648 86.71854 1.969338 10212302 0.215411 2193.685 11.45182 350.7186 28.50815 6.267368 5.058873 0.10445 1458202 2.208673 2.930416 0.55
25 |Data/segmentec 75 155 29047595 2.502195 40 4.758528 253 26.22869 114.3865 114 o 253 17.011159 119.7389 0.250155 29047595 0.22119 1253.145 25.9167 70.52416 0.143037 4.052498 2.846992 0.174038 1.202139 2.010852 1.400038 0.578
26 |Data/segmentec 12 75 9613702 2.062433 28.75 9.294357 255 32.36443 45.79501% 36 1] 255 12.22734 74.03388 2.65118 9613702 0.309986 3001.953 5.904641 731.5188 61.5598 8.511719 6.48143 0.13271 1.244373 1.852679 4.928621 0.672
27 |Data/segmentec 142 185 51091099 1.619943 21 4.460376 215 13.48031 163.2322 164 81 134 9.055547 164.1981 -0.57622 51091099 0.399932 316.2543 16.41917 6.198744 -0.38062 1.243007 0.810356 0.209727 0.606204 1.350497 0.441021 0.726
28 |Data/segmentec 29 94 12214720 2.197674 31 13.03705 255 23.91054 62.46491 56 0 255 13.32099 73.19381 2.696154 12214720 0.273217 1455468 B8.859797 224.3843 19.38636 4.401601 3.0549 0.176636 1.008571 1.781575 2.036503 0.64
29 |Data/segmentec 99 232 66983322 2.898503 58 4.69628 255 41.4953 172.2143 183 i} 255 24.69582 181.4267 -1.34369 66983322 0.160212 3257.885 56.28824 473.2231 -31.984 10.27067 8.36488 0.10132 196779 2.576079 4.481556 0.4%5
30 |Data/segmentec 120.6 225 65442397 2.726913 46 5.941771 255 34.1405 173.60%92 182 o 255 19.72999 180.2602 -1.49798 65442397 0.192188 2353.576 57.41446 307.2961 -22.3921 7.361507 5.857733 0.113368 1.598726 2.344824 3.29459 0.539
31 |Data/segmentec 28 223.9 31528790 3.347073 114 2.031051 255 59.49115 115.0889 104.5 0 255 45.74987 134,921 0.363799 31528790 0.103273 4958.231 25.97013 723.6844 21.4385 16.96788 14.72042 0.070862 2.940833 3.061921 6.062298 0.38
32 |Data/segmentec 26 225.2 22430030 3.384588 119 1.890595 255 61.84656 119.9217 112 o 255 48.88389 1359.8745 0.180426 22480030 0.09811% 5183.658 28.6795 737.0838 10.95781 17.44279 16.34082 0.032641 3.219492 3.135039 5.968027 0.356
33 |Data/segmentec 137 170 53323151 1.443603 17 7.097332 195 11.0843 153.0142 154 a6 149 7.099471 153.7746  -1.0816 53323151 0.44472 233.2876 32.1972 6.728785 -0.91934 1.084097 0.528704 0.343303 0464051 1.141653 0.312599 0.77
34 |Data/segmentec 160 203 72044377 1.693354 21 6.642658 243 14.09281 180.7641 182 72 171 8.815358 181.8325 -1.14669 72044377 0.393802 387.3817 33.52636 14.71618 -1.65822 1.637586 0.695514 0.402463 0.549407 1.273046 0.391978 0.74
35 |Data/segmentec 134 170.4 37945040 1.46272 17 7.867835 199 11.99097 153.1%1 155 48 151 7.233478 154.1434 -1.52209 37945040 0.465389 292.7231 32.52748 7.776129 -1.38181 1.057425 0.646656 0.240978 0491654 1.243649 0.403157 0.7
36 |Data/segmentec 140 176 46209263 1.491736 18 4.613516 211 11.7455 157.5051 158 77 134 7.88313 158.2582 -0.50653 46209263 0.43599 237.799 14.83873 3.975109 -0.22957 1.039374 0.609447 0.259122 0.504357 1.217616 0.352574 0.764
37 |Data/segmentec 140 177 47060189 1.482383 18 4.416135 205 11.57629 157.821 158 77 128 8.045119 158.5528 -0.42287 47060189 0.434634 231.507 14.89727 3.778188 -0.21186 1.031333 0.589648 0.271308 0.497212 1.1938669 0.340587 0.76
AMYGDALA ® . 3
Ready H B - 1 +
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Figure 3. Shows the illustrates Sample feature extraction results.
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Figure 8 demonstrates the sample results obtained at the time of feature extraction.
original_gldm_GrayLevelNonUniformity, original_gldm_GrayLevelVariance,
original_gldm_HighGrayLevelEmphasis, original_gldm_LargeDependenceEmphasis,
original_gldm_LargeDependenceHighGrayLevelEmphasis,
original_gldm_LargeDependenceLowGrayLevelEmpbhasis,
original_gldm_LowGrayLevelEmphasis, original_gldm_SmallDependenceEmphasis,
original_gldm_SmallDependenceHighGrayLevelEmphasis,
original_gldm_SmallDependenceLowGrayLevelEmphasis,
original_glrlm_GrayLevelNonUniformity,
original_glrlm_GrayLevelNonUniformityNormalized,
original_glrlm_GrayLevelVariance, original_glrlm_HighGrayLevelRunEmphasis,
original_glrlm_LongRunEmphasis,
original_glrlm_LongRunHighGrayLevelEmphasis,
original_glrlm_LongRunLowGrayLevelEmphasis,
original_glrlm_LowGrayLevelRunEmphasis, original_glrlm_RunEntropy,
original_glrlm_RunLengthNonUniformity,
original_glrlm_RunLengthNonUniformityNormalized,
original_glrlm_RunPercentage, original_glrlm_RunVariance,
original_glrlm_ShortRunEmphasis,
original_glrlm_ShortRunHighGrayLevelEmphasis,
original_glrlm_ShortRunLowGrayLevelEmphasis,
original_glszm_GrayLevelNonUniformity,
original_glszm_GrayLevelNonUniformityNormalized,
original_glszm_GrayLevelVariance,
original_glszm_HighGrayLevelZoneEmphasis,
original_glszm_LargeAreaEmphasis,
original_glszm_LargeAreaHighGrayLevelEmpbhasis,
original_glszm_LargeArealLowGrayLevelEmphasis,
original_glszm_LowGrayLevelZoneEmphasis,
original_glszm_SizeZoneNonUniformity,
original_glszm_SizeZoneNonUniformityNormalized,
original_glszm_SmallAreaEmphasis,
original_glszm_SmallAreaHighGrayLevelEmphasis,
original_glszm_SmallAreaL.owGrayLevelEmphasis, original_glszm_ZoneEntropy,
original_glszm_ZonePercentage, original_glszm_ZoneVariance,
original_ngtdm_Busyness,original_ngtdm_Coarseness,original_ngtdm_Complexity, original_ngtdm_Contrast,

original_ngtdm_Strength

5. RESULT AND DISCUSSION
The results of the classification of the 5 stages of Alzheimer's disease using an optimized CNN algorithm are
discussed in this section.
Several metrics are frequently used to assess the optimized CNN algorithm's efficiency: Reliability calculates
the overall percentage of correctly classified cases across all classes.
Tyt + Tt )
Tyt + Tpe + Fpe + Fye

Accuracy =
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The precision function determines the percentage of accurately predicted examples in a given class relative to
all examples anticipated to belong to that class.
. Tpt
Precision = ———— €))
Tyt + Fpe
The percentage of correctly anticipated occurrences in a given class out of all occurrences of that category in

the dataset is known as recall (sensitivity).
Tyt
Recall = — 2 (10)
Tpt + Fpt

The F1 Score is a consistent indicator of the model's efficiency that is calculated as the harmonic average of
precision and recall.
T2 X Precision X Recall

F1S = 11
core Precision + Recall 1)

Confusion Matrix allows for the evaluation of certain misunderstandings by offering a thorough analysis of the
model's projections over several classes. The confusion matrix values provided in Figure 3 indicate the performance
of a classification model for Alzheimer's disease, specifically for the five stages: EMCI, LMCI, MCI, AD, and CN.
The values presented, such as 'EMCI=0.98', 'LMCI=0.98', 'MCI=0.99', 'AD=0.99', and 'CN=0.99', represent the
classification accuracy for each stage. The value 'EMCI=0.98' suggests that the model attained an accuracy of 98%
in correctly classifying instances belonging to the EMCI stage. Similarly, 'LMCI=0.98" indicates that the model

accomplished an accuracy of 98% in accurately classifying instances belonging to the LMCI stage.

EMCI
0.8
LMClI
0.6
K]
=
L Ml
[}
e
= - 0.4
AD
- 0.2
CN 0.01 0
T T T T - 0.0
o o o] 2 3
= = = < ©
w

Predicted label
Figure 4. Confusion matrix.

The value 'MCI=0.99' suggests that the model realized an accuracy of 99% in correctly classifying instances
belonging to the MCI stage. Similarly, '"AD=0.99" indicates that the model reached an accuracy of 99% in accurately
classifying instances belonging to the AD stage. Lastly, 'CN=0.99' suggests that the model completed an accuracy
of 99% in correctly classifying instances belonging to the CN stage.

These high accuracy values across all stages (ranging from 98% to 99%) indicate that the optimized CNN

model performed very well in classifying Alzheimer's disease stages based on the provided confusion matrix. The
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model showed strong discriminatory power in distinguishing between different stages, providing accurate

predictions for each stage, as shown in Figure 4.

—— Testing accuracy

100 4 .
—e— Training accuracy
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80 4

Accuracy (%)

75 4

70 4

65

KI) 1‘0 2‘0 30 4:0 5’0 6‘0 ?:9 8’0 90 1(‘)0
Epoch
Figure 5. Accuracy of the classification of Alzheimer's disease.

Figure 5 illustrates the categorization of Alzheimer's disease. If the accuracy attained on training data is 100%
and on testing data is 99.5%, this suggests that the model has done a very good job of differentiating between the
illness's stages. A training accuracy of 100% indicates that the model has learned the training data patterns
extremely well. It can perfectly classify the Alzheimer's disease stages in the training set. This high accuracy
indicates that the model has captured the intricacies and features specific to each stage during the training process.
The testing accuracy of 99.5% suggests that the model's presentation is excellent on unnoticed data, which is a
positive outcome. It implies that the model has generalized well and can accurately classify Alzheimer's disease
stages in new, unseen instances. The slight decrease in accuracy compared to the training set could be due to the
presence of more challenging or diverse examples in the testing set.

Figure 6 illustrates the loss of classification for Alzheimer's disease.

For the categorization of Alzheimer's disease, the loss values attained on the training and testing data are 0.08
and 0.10, respectively. A popular artificial intelligence metric called loss measures the discrepancy between a
model's expected outputs and its actual labels. It measures how well the model is fitting the training data and can
provide insights into its performance. In this instance, training losses of 0.08 means that the mathematical model’s
average estimates for the initial data set are extremely close to the actual labels. A lower training loss suggests that
the model has successfully learned the patterns and features necessary to classify Alzheimer's disease accurately
within the training dataset.

Conversely, the testing loss of 0.10 represents the mean variance among the true labels on the hidden testing
results and the predictions made by the model. It is slightly higher than the training loss, which is expected as the
model is evaluated on data that it has not been directly trained on. However, a testing loss of 0.10 is still relatively
low, indicating that the model is generalizing well and performing reasonably accurately on new, unseen data. It's
worth noting that the loss values should be interpreted in the context of the specific problem and dataset. Even
though these loss figures indicate that the model is operating effectively, in order to fully comprehend how it

performs, one must also take into account additional assessment metrics.
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Figure 6. Loss of the classification of Alzheimer's disease.

The AUC-ROC achieved by the optimized CNN algorithm, as shown in Figure 7, for EMCI classification is
0.98. This suggests that the model has a good ability to discriminate between cases of EMCI and other phases of
Alzheimer's disease. The AUC-ROC obtained for the LMCI classification using the optimized CNN algorithm is
0.98. This suggests that the model performs effectively in identifying cases of LMCI and differentiating them from

other stages of Alzheimer's disease.

ROC curve
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Figure 7. ROC-AUC for classification of Alzheimer's disease.

The optimized CNN algorithm achieves an AUC-ROC of 0.99 for MCI classification. This indicates a high level
of accuracy in distinguishing MCI cases from other stages of Alzheimer's disease. The AUC-ROC obtained for the
classification of AD using the optimized CNN algorithm is 0.99. This suggests that the model demonstrates
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excellent performance in identifying AD cases and distinguishing them from other stages. The optimized CNN
algorithm achieves an AUC-ROC of 0.99 for CN classification. This indicates that the model performs exceptionally
well in identifying individuals with normal cognitive function and distinguishing them from different stages of

zheimer's disease.
Alzh 's diseas

6. CONCLUSION

In this study, we have presented a novel AADD-DLM system for automated AD diagnosis using brain MRIs.
Three main procedures are included in the AADD-DLM approach that is being discussed, namely skull stripping,
segmentation, and feature extraction. Initially, the AADD-DLM technique uses the U-Net model for the skull
stripping process, which enables the removal of the skull regions in the brain MRI. Next, the QuickNAT model is
utilized for an effective brain MRI segmentation process. Moreover, the radiomics feature extraction approach is
used to produce a set of feature vectors that are important. For exhibiting the promising performance of the
AADD-DLM technique, widespread experimentation analysis is made on the ADNI database. The simulation
results demonstrated the AADD-DLM technique's greater effectiveness than other contemporary methods. The
optimized CNN classifiers are used for the accurate classification of AD on brain MRIs. The accuracy achieved on
the training data of 100% and the testing data of 99.5% for the classification of Alzheimer's disease indicates that the

optimized CNN algorithm has performed exceptionally well in accurately predicting the disease's stages.
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