

1

© 2024 Conscientia Beam. All Rights Reserved.

Software reliability prediction using ensemble learning with random hyperparameter
optimization

 Getachew Mekuria
Habtemariam1

 Sudhir Kumar
Mohapatra2+

 Hussien Worku
Seid3

1,3Department of Software Engineering, Addis Ababa Science and Technology
University, Addis Ababa, Ethiopia.
1Email: getachewmekuria19@gmail.com
3Email: hussien.seid@aastu.edu.et
2Faculty of Emerging Technologies, Sri Sri University, Cuttack, India.
2Email: sudhir.mohapatra@srisriuniversity.edu.in

(+ Corresponding author)

 ABSTRACT

Article History
Received: 18 September 2023
Revised: 22 November 2023
Accepted: 27 December 2023
Published: 10 January 2024

Keywords
Ensemble learning
Hyperparameter
Machine learning
Random hyperparameter
Optimization
Scaling
Software reliability prediction.

The paper investigates software reliability prediction by using ensemble learning with
random hyperparameter optimization. Software reliability is a significant problem with
software quality that developers face. It involves accurately predicting the next failure.
In recent years, machine learning techniques and ensemble learning approaches have
been applied to improve software reliability prediction. These approaches aim to
analyze historical data and develop models that can accurately forecast when failures
are likely to occur. The article proposes an ensemble learning regression model using
Ridge, Bayesian Ridge, Support Vector Regressor (SVR), K-Nearest Neighbors
Algorithm (KNN), Regression tree, Random Forest, Neural network, and Decision
Tree as base learners. Ridge is used as a combiner model. Each base learner
hyperparameter is tuned using a random search algorithm automatically. A random
hyperparameter search optimization algorithm selects the hyperparameter and adjusts
it for overfitting and underfitting. The base models are tuned to minimize bias and
variance. The performances of the models are evaluated using standard error measures
such as Mean Squared Error (MSE), Sum of Squared Error (SSE), and Normalized
Root Mean Square Error (NRMSE). The proposed ensemble model is compared with
existing models using a benchmark dataset. The Iyer,and Lee, and Musa datasets are
used for the experiment. The dataset is scaled using standard methods like logarithmic
scaling, lagging, and linear interpolation. The results of the statistical comparison show
better performance by our proposed model as compared to existing models.

Contribution/Originality: This research developed anensemble learning model to predict software reliability.

The use of a random hyperparameter algorithm for automatic parameter selection adds more value to the novel

model. This model fine-tuned the machine learning parameters automatically from a given range.

1. INTRODUCTION

The concept of software reliability is defined as the “ability of the software to perform its required function

under stated conditions for a stated period of time.” Based on the definition provided by the American National

Standards Institute (ANSI), software reliability is “the likelihood of a failure-free process of a software program

for a stated period of time in a stated environment” [1]. Determining the probability of a software failure within a

specified time frame or the expected time interval between successive failures is the main goal of software reliability.

In this work, a model has been developed for predicting and estimating the quantity of defects in the system.

Review of Computer Engineering Research
2024 Vol. 11, No. 1, pp. 1-15
ISSN(e): 2410-9142
ISSN(p): 2412-4281
DOI: 10.18488/76.v11i1.3597
© 2024 Conscientia Beam. All Rights Reserved.

https://orcid.org/0009-0006-7841-5662
https://orcid.org/0000-0003-3065-3881
https://orcid.org/0000-0002-0457-4170
mailto:getachewmekuria19@gmail.com
mailto:hussien.seid@aastu.edu.et
mailto:sudhir.mohapatra@srisriuniversity.edu.in
https://www.doi.org/10.18488/76.v11i1.3597

Review of Computer Engineering Research, 2024 11(1): 1-15

2

© 2024 Conscientia Beam. All Rights Reserved.

Machine Learning (ML) approaches are found to be more effective in predicting than statistical or classical

approaches and could possibly be applied for predicting software reliability. ML is a technique that concentrates on

training instantaneously and permits systems to participate and forecast the software behaviour formulated on

previous and current failure data as well. Therefore, it is fairly common to recognize which technique happens to

be best for an assumed malfunction dataset [2-4].

In this work, an ensemble learning method is applied to predict and evaluate a software model based on its

performance. Researchers use various ML alogarithms to forecast the time between consective software failures. In

software reliability prediction, different models are trained on the input data, and the trained model predicts the

values based on the test data. The main challenge in the prediction problem is to use different error-measuring

techniques to determine the performance of the model. Using a single model for predicting the data may not result

in better predictions all the time. So different regression models are used to determine the next failure time, and

the error measures of different models are compared. Furthermore, the objective is to propose an ensemble model

by combining various models to improve performance over multiple datasets. In this work, several ML methods

are applied for reliability prediction, i.e., Random Forest, Decision Tree, Ridge Regression, Bayesian Ridge

Regression, K-Neighbours Regression, Lasso Regression, ElasticNet Regression, Artificial Neural Network

(ANN), Radial Basis Function Network (RBFN), and Support Vector Regressor (SVR). These machine learning

methodologies are employed on different datasets.

To forecast software reliability, a dataset of consecutive failures of the software is used, and the above-

mentioned ML methods are applied for the prediction of the failure time of the software reliability dataset. The

value is predicted based on the Time Between Successive Failures (TBSF) using a single feature dataset

representing the time between successive failures in chronological order. Based on lag length, a datawindow of

various lengths in the dataset is created. Various ML methods and algorithms are used on the lagged dataset to get

various statistical error measures and the next failure time by reverse logarithmic scaling. In prediction, a set of

hypotheses is combined to generate better accuracy and improved results.

2. LITERATURE SURVEY

In software reliability prediction research, various statistical as well as machine learning models were

previously employed by researchers. Researchers used several ML models for determining software reliability.

Malhotra, et al. [5]; Li, et al. [6]; Lo [7]; Karunanithi, et al. [8]; Singh and Kumar [9] and Costa, et al. [10]. Ho,

et al. [11] conducted a widerange of investigations on connectionist models as well as their relevancy to software

reliability prediction and suggested that these were more effective than conventional type models. Su and Huang

[12] used an artificial neural network (ANN) in their model. The model predicts the software's reliability with less

accuracy. A comparatively new procedure in software reliability prediction development [8] has revealed that

ANN models executed a head of parametric models as well as the kinds of network structural design are able to

remarkably affect predictive efficiency. In the last few years, few works have been reported on assessing the

application of neural network models for software soundness as well as reliability. Time series method is

commonly applied for forecasting the upcoming period between consecutive software failures [13]. Overall, ANN

balances its input in the range [0, 1] by applying a linear interval, like allocating the values through the highest

anticipated value of the correlated input variable. ANN revealed good learning as well as forecasting competence

once data points are equally disseminated within an interval of [0,1] [8]. However, in the early stages of testing,

the time between successive failures is anticipated to be insignificant. As testing proceeds in advance, software

becomes more trustworthy,and the time between successive failures is extended. A predictive capability of ANN

for a software failures data has been examined to be improved after the data are evaluated by using an appropriate

logarithmic function [14] which evaluates the input data in the interval [0,1]. To validate the proposed reliability

prediction model,which hasapplied severalcompetence processes [15] as well to accomplish this implementation,

Review of Computer Engineering Research, 2024 11(1): 1-15

3

© 2024 Conscientia Beam. All Rights Reserved.

the important requirement is the selection of independent and dependent variables. The dependent variable that

has been applied in this research paper [15] was the failure amount,and the independent variable used was a time

interval in a week. Through interrelated failures, testing time in weeks is designatedpossiblyan independent

variable. Pai and Hong [16] perform research utilizing support vector machines (SVM) for prognosis software

reliability. Aljahdali and Buragga [17] as well as Kumar and Singh [18] stated machine learning methodslike

cascade correlation neural networks, decision trees, and fuzzy inference systems to predict the soundness of

software output [17, 19]. A study by Sabnis, et al. [20] and Ho, et al. [11] compared different technologies and

found that ML methods have been used to estimate the defect level of the software. They have utilised various

methods like SVM, ANN, Naive Bayes (NB)and RF, where ANN shows good results as compared to others. ANN

classifiers have the best accuracy, about 65.5%, among all other ML technologies.

Another study has been done by Jindal and Gupta [21] and Su and Huang [12], in which a heuristics test of

different ML and deep learning methods on univariate software failure time stamp data is used to find the best

approach for software reliability. ANN has been taken as the baseline model, and it has been found that the Long

Short-Term Memory (LSTM)model performs well. Banga, et al. [22] and Bisi and Goyal [13] introduced an

approach that is used to find the most relevant parameter affecting software reliability. In this research, a hybrid

approach is used to predict the fault of software with the help of machine learning. Vishwanath [14] proposed a

method to detect the quality of software with the help of matrices. The information provided by the matrices is

important to detect the failure earlier, which is very important in the field of software. In the experiment part, they

utilized eight different types of classifiers using metrics, which are collected from the PROMISE data repository.

Yaghoobi [23] and Jaiswal and Malhotra [15] proposed a Software Reliability Growth Model (SRGM).

However, the model is for the specific data set. Sudharson and Prabha [24] and Pai and Hong [16] stated that to

get dependability in software results by assessing faults during an examination, software reliability was a crucial

quantitative attribute. To find product faults, time-dependent software reliability models are used, but they are

useless in environments that are constantly changing. Other researchers used individual ML techniques for

reliability prediction and fault detection [17, 18]. A detailed literature review was carried out by Habtemariam and

Mohapatra [25] and they elaborately discussed the kinds of literature available and their limitations Habtemariam,

et al. [26]. Habtemariam and Mohapatra [25] and Getachew, et al. [27] use different machine learning and

softcomputingtechineques in software testing for ensuring the reliability of the software [4, 27-29].

Table 1 summarises the performance achievement of selective models from the literature review.

Table 1. Literature review summary.

Studies Performance Dataset Findings

Sabnis, et al. [20] 65.5% accuracy NA ANN classifiers have the best accuracy
among all machine-learning technology

Jindal and Gupta [21] Mean absolute
error is 1.5639

Software failures
dataset[*]

LSTM model performs well.

Banga, et al. [22] 78% accuracy NA A hybrid new approach to fault prediction
based on a machine learning algorithm.

Yaghoobi [23] 85% accuracy NA Statistical models are used.

Sudharson and Prabha
[24]

85% accuracy NA Soft computing methods are used.

Reddivari and Raman
[30]

AUC of 0.75 UIMS and
QUES [**]

Decision tree-basedprediction techniques
perform well.

The following are the two major motivations that were inferred from our literature review:

Note: User Interface Management System dataset (UIMS), Quality Evaluation System dataset (QUES), Area under curve (AUC).
* is used in place of exactly one qualifier.
** indicates either the nonexistence of leading, trailing, or middle qualifiers or the fact that they play no role in the selection process.

Review of Computer Engineering Research, 2024 11(1): 1-15

4

© 2024 Conscientia Beam. All Rights Reserved.

1. It has been proven that ML-based prediction is better than that of statistical technique’. Statistical techniques

are better for correlating variables. ML, on the other hand, is good at prediction.

2. In the case of machine learning, combination or ensembles are proven to bemore effective than a single base

model. The prediction accuracy and performance of ensemble models are much higher than those of a single

model.

2.1. Dataset

In this section, we describe the twobenchmark datasets that have been used in this research work. Several

conventional printed works have been published on these datasets, and numerical fault calculations are also

accessible. The time series datasets used for this model are Iyer and Lee's (1996) software reliability dataset and

Musa, J.D: software reliability data1.These datasets are basically a time of failure for the software. The pattern of

the dataset is depicted in Figure 1.

Figure 1. Software failure process.

Figure 1 depicts a typical software failure procedure, where Ti is the period instant of the ith failure. The

datasets provide the intervals between each of the total failures that are documented. The dataset's individual

inspection is indicated by the notation (i, yi), where i represents the failure number and yi denotes the interval

between the (𝑖 − 1)𝑡ℎ and ith failures. The formula 1 that was produced due to the software malfunction is shown

below.

𝑦𝑖 = 𝑇𝑖 − 𝑇𝑖−1 (1)

Dataset was collected from Bhuyan, et al. [31] in March 2023.

2.2. Proposed Model

The proposed model of software reliability prediction involves learning from a training algorithm and then

integrating the predictions of various learning algorithms. At first, individual algorithms learn by utilizing the

accessible data; subsequently, assembler algorithms learn to create the last prediction by employing every

prediction of the distinct algorithms as further input. When a random assembler algorithm is applied, the model

perhaps hypothetically denotes all the ensemble learning methods. The proposed model is exhibited in Figure 2.

2.2.1. Random Search Optimization Algorithm

The working principle of the random search algorithm is very simple. Firstly, it searches from the list of

possible values of the hyperparameter. This tuning of the hyperparameter continues with several random searches.

It stops when the desired result is achieved. One of the drawbacks of this algorithm is its computational complexity.

The hyperparameter value and range of the individual models are represented in Table 2.

Review of Computer Engineering Research, 2024 11(1): 1-15

5

© 2024 Conscientia Beam. All Rights Reserved.

Figure 2. The proposed ensemble model with automatic hyperparameter selection.

Note: Random forest (RF), decision tree, radial basis function network (RBFN), Ridge, artificial neural network (ANN), Bayesian ridge regression, K-
Neighbours regression, Support vector regressor (SVR).

Table 2. Hyperparameter of individual models.

Base model Values(In range) Hyperparameter

Ridge 10range(−5, 0) Alpha

Bayesian ridge
10range(−5, 0) alpha_1

10range(−5, 0) alpha_2

Regression tree Range(4, 23) max_depth

SVR
Linspace(0.01, 5, 20) C
Range(0.01, 0.5, 0.05) Gamma
{Linear, poly, rbf} Kernel

KNN Range(2, 11) n_neighbors

Random forest
{100, 200, 500} n_estimators
Range(4, 10) max_depth

Neural network
Linspace(0.0001, 0.5, 20) Alpha
Linspace(0.0001, 0.5, 20) Learning_rate_init
{Identity, logistic, tanh, relu} Activation

Decision tree
Range(4, 51) Max_depth
Range(4, 30) Max leaf nodes

Figure 2 shows how various based learner algorithms are integrated to provide the result with the best

precision. The designed model typically yields superior performance than every individual trained model. It has

been efficiently utilized in supervised learning methods as well as in unsupervised learning methods. The proposed

algorithm for our model is given below:

Review of Computer Engineering Research, 2024 11(1): 1-15

6

© 2024 Conscientia Beam. All Rights Reserved.

Algorithm 1 proposed model

Input:D= Dataset

Method:

1. BaseLearnersModels= [Bayesian Ridge, SVR, ANN, KNN,DT……]

2. CombinerModel = [Ridge]

3. x_trainD, x_tesDt, y_trainD, y_testD = split (D)

4. PModel = []

5. For function in BaseLearnersModel:

6. PModel.append (function. train (x_trainD, y_trainD)

7. Train_setD = []

8. For i in range(length(x_trainD)):

9. PTrain = []

10. For m in PModel:

11. PTrain. append (m. predict(x_trainD[i]))

12. CombinerModel. train (Train_setD, y_trainD)

➢ Prediction:

1. Train_ setD_ x = []

2. For m in pmodel:

3. Train_setD_x.append (m. predict(x))

4. Output = CombinerModel. predict (Train_ setD _x)

 Output: Array of Individual model Accuracy and Stacking accuracy

Note: Decision tree (DT).

The above ensemble algorithm that we have applied in our work is intended to enhance the consistency of

software by integrating diverse other algorithms.

2.2.2. Machine Learning and Scaling Techniques

Various base models are used, and the Ridge model is used as the combiner model. For scaling and pre-

processing the data, the logarithmic scaling approach is used.

2.2.3. Logarithmic Scaling

Linear scaling of data points decreases the correlation between the points and, hence, the performance of the

evaluation. So, to enhance the performance of the model, the logarithmic scaling technique is utilized between

successivefailures, as given by Equation 2.

𝑦∗ = ln(1 + 𝐵𝑦)(2)

In which, y* is the measured value of time among consecutive failures, y is the period among consecutive

failures and B is the measuring constant which is given in Equation 3.

𝐵 =
𝑒𝑦∗𝑚𝑎𝑥−1

𝑦𝑚𝑎𝑥
(3)

After prediction, reverse scaling is performed to get the real-time among consecutive failures and is shown in

Equation 4.

𝑦 =
𝑒𝑦∗−1

𝐵
(4)

Where y* is the imitation result of prediction and B is the measuring constant.

Review of Computer Engineering Research, 2024 11(1): 1-15

7

© 2024 Conscientia Beam. All Rights Reserved.

2.2.4. Lagging

The benchmark datasets that have been used for this proposed work are single-featured datasets. So, for a

single instance of the prediction of error, the Lag method is used to generate a window of values by combining the

set of values for the machine learning prediction problem. The lagging algorithm in this work is as follows:

 Input: Dataset, lag sequence (k, e.g.: k=3 or 4 or 5 etc)

 ➢Algorithm:

1. L = dataset length

2. for i in 0 to L-k+1:

3. Store data from i to i + k index of the dataset in the list m

4. return m

 Output: lagged value array

The lag length in this proposed work varies from 2 to 25, depending on the model used for prediction. After

lagging, the single-featured dataset is segmented into different lag sequences according to the defined lag length.

2.2.5. Linear Interpolation

Linear interpolation is a technique for building virtual data points in a dataset. However, in the case of a small

dataset quantity, it is difficult to acquire the best consistency result after the train and split test. Therefore, to

augment the soundness of the model, these methods are applied to optimize the level of the training data. After

optimizing the existing dataset level, it is more efficient in the trainingdataset and model assessment. As the

benchmark dataset used in this work is distinct and features failure time data, linear interpolation is simple to use.

The algorithm of linear interpolation is exhibited as follows:

Algorithm 3 linear interpolation

 Input: D=Dataset

 ➢Algorithm:

1. t = train_set(D)

2. dataset = []

3. dataset.append(train [0])

4. for index in range (1, length(t))

5. dataset.append((t [index-1]+t [index])/2)

6. dataset.append(t [index])

 Output: Linearly interpolated

This algorithm helps to create virtual point in the train data by using the linear interpolation method.

2.2.6. Error Measures

Various statistical error measures are used in this work, to evaluate the regression models and also to compare

the performance of the benchmark dataset. They are listed below.

o NRMSE: Normalized root mean squared error

The Normalized Root Mean Square Error (NRMSE) is used to facilitate the comparison between

models with different scales. The Normalized RMSE (NRMSE) relates the RMSE to the observed

Algorithm 2 lagging

Review of Computer Engineering Research, 2024 11(1): 1-15

8

© 2024 Conscientia Beam. All Rights Reserved.

range of the variable. Terefore, it is possible to interpret the NRMSE as the portion of overall range

that the model typically resolves.

𝑁𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑦𝑖

′)2𝑛
𝑖=1

∑ 𝑦𝑖
′𝑛

𝑖=1

 (5)

Where n is the number of data points used to train the model, yiis the actual value, and 𝑦𝑖
′ is the predicted

value obtained from the algorithm for the ith data point in the software failure dataset. NRMSE is used to

minimize the error generated during the learning of the model with the given algorithm.

o SSE: Sum of squared error

Sum Squared Error (SSE) is an accuracy measure where the errors are squared and then added. It is

used to determine the accuracy of the prediction model when the data points are similar in magnitude.

The lower the SSE, the more accurate the prediction. The sum of squared errors is usually used as a

criterion for the comparison of goodness-of-fit and predictive power. SSE can be calculated as follows:

𝑆𝑆𝐸 = ∑ 𝑦𝑖
𝑛
𝑖=1 − 𝑦𝑖

′)2(6)

Where:

{yi} is the actual observations time series value and {𝑦𝑖
′ }is the estimated or forecasted time

series value

o RE: Relative error

The relative error is defined as the ratio of the absolute error of the measurement to the actual

measurement. Using this method, we can determine the magnitude of the absolute error in terms of the

actual size of the measurement. If the true measurement of the object is not known, then therelative error

can be found using the measured value. The relative error indicates how good the measurement is relative

to the size of the object being measured.If yi is the actual value of a quantity, 𝑦𝑖
′ is the measured value of the

quantity is the absolute error, then the relative error can be measured using the below formula.

𝑅𝐸 =
|𝑦

𝑖′ −𝑦𝑖|

𝑦𝑖
∗ 100(7)

An important note is that relative errors are dimensionless. When writing relative errors, it is usual to multiply

the fractional error by 100 and express it as a percentage.

Overall, n represents the number of prediction data points; yirepresentsthe real-time among failures and

𝑦𝑖′representsthe predictable time among ith and (i-1)th failures data. These are standard error measurementswhich

are utilized to evaluate the performance of the model. The flow of the process of the model is presented in Figure 3.

3. RESULTS

The time between consecutive failures is being experimented with using several algorithms, and the reliability

is assessed by statistical evaluation methods. The gliding window size is set to 2-25 for better observation. In

addition, we discovered that by increasing the distance of the sliding window, the size of the training set is reduced.

Thus, the establishment of virtual data points appeared as a way of growing the dataset. During a time series, data

acquired positive and negative maximum points; linear interpolation was used to sort out the training dataset.

Throughout the investigation, a few models improved their capability by interpolating the outcome since the

relationship among data points was developed and the variance among them dwindled. But, for a few models like

Ridge and Bayesian Ridge regressors, there is a reverse effect. Concurrently, the unfairness of the non-CART

(Classification and Regression Trees) models increases as we downturn the variance through the unfair variance

trade-off; the achievement of the model downturn is notable. The model is implemented using Python 3.6 with

keras, Tensorflow, Pandas, Sklearn, and other required packages. Model execution is done on a hardware platform

Review of Computer Engineering Research, 2024 11(1): 1-15

9

© 2024 Conscientia Beam. All Rights Reserved.

with an Intel (R) 11th Gen Intel (R) Core (TM) i7-1165G7 @ 2.80GHz 2.80 GHz machine with 16.0 GB of memory

capacity. Python is installed in the Windows 11 Home single-user operating system with a visual code editor.

Figure 3. The flowchart of the process.

3.1. Musa Dataset Results

The visualization of NRMSE values for all the base models on the Musa dataset is discussed in this section.

Ridge, Bayesian Ridge, SVR, and Random Forest performance is better. Other regressors, like ElasticNet as well as

Lasso regression, have poor results. The introduction of the interpolation technique makes KNN and ANN achieve

better results. Figure 4 exhibits the NRMSE performances of the algorithms used in our experiment.

The introduction of linear interpolation of the train data set creates a virtual dependency between NRMSE

values and the lag distance of datasets for the regressors. Linear interpolation doesn’t always increase efficiency;

sometimes it reduces the efficiency of the model.

3.2. Iyer Lee Dataset Results

Next, the result of the Iyer and Lee dataset is elaborately discussed in this section. The visual representation is

in two categories, i.e., with interpolation and without interpolation. Regressors RBFN, ANN, and SVR achievement

Review of Computer Engineering Research, 2024 11(1): 1-15

10

© 2024 Conscientia Beam. All Rights Reserved.

is better, whereas ElasticNet and Lasso's results are not satisfactory. In interpolated values KNN, ANN, random

forest, and decision tree performance is good. Figure 5 representsthe NRMSE performances of the algorithms used

in our experiment.

Figure 4. Base model’s NRMSE performance for varied lag length.

The results show that the impact of interpolation has a negative impact on NRMSME for some of the regressor

links in SVR. An increase in lag length convergeson the result.

3.3. Overall Performance

The comparison of the NRMSE values of all the regressed models with a variation in lag length is shown in

Figures 6 and 7 for the Musa dataset and Iyer and Lee dataset, respectively.

Review of Computer Engineering Research, 2024 11(1): 1-15

11

© 2024 Conscientia Beam. All Rights Reserved.

Figure 5. Base model’s NRMSE performance for varied lag length.

Figure 6. Top two individual models (Musa data).

Review of Computer Engineering Research, 2024 11(1): 1-15

12

© 2024 Conscientia Beam. All Rights Reserved.

For the Musa dataset,RandomForest, Ridge, and Bayesian Ridge are the leading performers. In interpolated

data, KNN is the highest performer.

Figure 7. Top two individual models (Iyer Lee Data).

In the Iyer and Lee data set, the best performers are RBFN and SVR on the real dataset. Except for DT, others'

performance is average. The worst performer is DT. NRMSE performance of all the methods over both datasets is

tabulated in Table 3.

Table 3. The NRMSE performance of different benchmark models.

Lag length 2 3 4 5 6 7

ANN
Musa 0.159 0.142 0.053 0.153 0.163 0.168

Iyer Lee 0.513 0.494 0.541 0.532 0.564 0.587

ANN PSO
Musa 0.169 0.163 0.145 0.128 0.153 0.178

Iyer Lee 0.391 0.377 0.325 0.310 0.347 0.398

Ridge
Musa 0.1769 0.171 0.160 0.156 0.151 0.143

Iyer Lee 0.092 0.109 0.124 0.141 0.147 0.155

Table 4. Comparison with existing models.

Statistical models Jelinski Moranda Geometric Musa basic Musa Okumoto

Musa 0.144 0.142 0.141 0.141
Iyer Lee 0.342 0.538 0.211 0.326
ML models ANN ANN-PSO KNN Ridge
Musa 0.142 0.128 0.136 0.157
Iyer Lee 0.494 0.310 0.095 0.492

Note: Artificial neural network-particle swarm optimization (ANN-PSO).

The proposed model is compared with other existing statistical and machine-learning models. The comparison

is represented in Table 4. The proposed model’s performance is better than that of other existing techniques. In

some cases, the ANN-PSO model performs on par with our model.

4. CONCLUSION

The proposed ensemble learning model consists of many weak regressors. Experimental results reveal that

Ridge and Bayesian Ridge regressors produce excellent performance for both datasets. Certain models perform

better on non-interpolated data, whereas other models are executed on interpolated data. With the presence of

Review of Computer Engineering Research, 2024 11(1): 1-15

13

© 2024 Conscientia Beam. All Rights Reserved.

interpolating points, the performance of KNN and ANN is remarkable. Because of scaling, the overall performance

of the model has improved. This is because the time-series data are unevenly distributed, and the presence of a pick

is found at certain points. The lag length is also importance for the model’s performance. RBFN, Ridge, and

Bayesian Ridge bring about better results when the lag length is between 7 and 11. ANN and RF work more

accurately on the actual dataset with a lag length greater than 15. In interpolated data, KNN and SVR perform well

for certain lag lengths.

Funding: This study received no specific financial support.
Institutional Review Board Statement: Not applicable.
Transparency: The authors state that the manuscript is honest, truthful, and transparent, that no key
aspects of the investigation have been omitted, and that any differences from the study as planned have been
clarified. This study followed all writing ethics.
Competing Interests: The authors declare that they have no competing interests.
Authors’ Contributions: Conceptualization, G.M.H. and S.K.M.; methodology, S.K.M. and S.P.; formal
analysis, G.M.H., B.T. and S.K.M.; investigation, G.M.H. and B.T.; resources, S.K.M.,P.S. and H.W.S.; data
curation, P.S. and K.S.C.; writing, G.M.H. and S.K.M.; writing, review and editing, K.S.C., B.T.;
visualization, G.M.H. and H.S.W.; supervision, S.K.M. and S.P.; funding acquisition, S.K.M. All authors
have read and agreed to the published version of the manuscript.

REFERENCES

[1] A. Quyoum, M.-U.-D. Dar, and S. Quadri, "Improving software reliability using software engineering approach-A

review," International Journal of Computer Applications, vol. 10, no. 5, pp. 41-47, 2010. https://doi.org/10.5120/1474-

1990

[2] K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra, "Investigating the effect of coupling metrics on fault proneness in

object-oriented systems," Software Quality Professional, vol. 8, no. 4, p. 4, 2006.

https://doi.org/10.5381/jot.2007.6.10.a5

[3] B. Goel and Y. Singh, "An empirical analysis of metrics to predict the maintainability for real-time object-oriented

software," Software Quality Professional, vol. 11, no. 3, pp. 35-45, 2009.

[4] S. Ramalingam, "Study and review of classical, machine learning and deep learning methods of software reliability

estimation for safety-critical systems," Indian Journal of Natural Sciences, vol. 13, no. 76, pp. 1-16, 2023.

[5] R. Malhotra, A. Kaur, and Y. Singh, "Empirical validation of object-oriented metrics for predicting fault proneness at

different severity levels using support vector machines," International Journal of System Assurance Engineering and

Management, vol. 1, pp. 269-281, 2010. https://doi.org/10.1007/s13198-011-0048-7

[6] X. Li, X. Li, and Y. Shu, "An early prediction method of software reliability based on support vector machine,"

presented at the 2007 International Conference on Wireless Communications, Networking and Mobile Computing,

2007.

[7] J.-H. Lo, "Predicting software reliability with support vector machines," presented at the 2010 Second International

Conference on Computer Research and Development, 2010.

[8] N. Karunanithi, D. Whitley, and Y. K. Malaiya, "Prediction of software reliability using connectionist models," IEEE

Transactions on Software Engineering, vol. 18, no. 7, pp. 563-574, 1992. https://doi.org/10.1109/32.148475

[9] Y. Singh and P. Kumar, "Prediction of software reliability using feed forward neural networks," presented at the 2010

International Conference on Computational Intelligence and Software Engineering, 2010.

[10] E. O. Costa, A. T. R. Pozo, and S. R. Vergilio, "A genetic programming approach for software reliability modeling,"

IEEE Transactions on Reliability, vol. 59, no. 1, pp. 222-230, 2010. https://doi.org/10.1109/tr.2010.2040759

[11] S. L. Ho, M. Xie, and T. Goh, "A study of the connectionist models for software reliability prediction," Computers &

Mathematics with Applications, vol. 46, no. 7, pp. 1037-1045, 2003. https://doi.org/10.1016/s0898-1221(03)90117-9

[12] Y.-S. Su and C.-Y. Huang, "Neural-network-based approaches for software reliability estimation using dynamic

weighted combinational models," Journal of Systems and Software, vol. 80, no. 4, pp. 606-615, 2007.

https://doi.org/10.1016/j.jss.2006.06.017

https://doi.org/10.5120/1474-1990
https://doi.org/10.5120/1474-1990
https://doi.org/10.5381/jot.2007.6.10.a5
https://doi.org/10.1007/s13198-011-0048-7
https://doi.org/10.1109/32.148475
https://doi.org/10.1109/tr.2010.2040759
https://doi.org/10.1016/s0898-1221(03)90117-9
https://doi.org/10.1016/j.jss.2006.06.017

Review of Computer Engineering Research, 2024 11(1): 1-15

14

© 2024 Conscientia Beam. All Rights Reserved.

[13] M. Bisi and N. K. Goyal, Artificial neural network applications for software reliability prediction. Hoboken, N.J: John Wiley

& Sons, 2017.

[14] S. P. Vishwanath, "Software reliability prediction using neural networks," Doctoral Dissertation, IIT Kharagpur, 2006.

[15] A. Jaiswal and R. Malhotra, "Software reliability prediction using machine learning techniques," International Journal of

System Assurance Engineering and Management, vol. 9, pp. 230-244, 2018. https://doi.org/10.1007/s13198-016-0543-y

[16] P.-F. Pai and W.-C. Hong, "Software reliability forecasting by support vector machines with simulated annealing

algorithms," Journal of Systems and Software, vol. 79, no. 6, pp. 747-755, 2006.

https://doi.org/10.1016/j.jss.2005.02.025

[17] S. H. Aljahdali and K. A. Buragga, "Employing four ANNs paradigms for software reliability prediction: An analytical

study," ICGST International Journal on Artificial Inteligence and Machine Learning, vol. 8, no. 2, pp. 1-8, 2008.

[18] P. Kumar and Y. Singh, "An empirical study of software reliability prediction using machine learning techniques,"

International Journal of System Assurance Engineering and Management, vol. 3, no. 3, pp. 194-208, 2012.

https://doi.org/10.1007/s13198-012-0123-8

[19] J. D. Musa, A. Iannino, and K. Okumoto, "Software reliability," Advances in Computers, vol. 30, pp. 85-170, 1990.

https://doi.org/10.1016/S0065-2458(08)60299-5

[20] P. S. Sabnis, S. Joshi, and J. Naveenkumar, "A study on machine learning techniques based software reliability

assessment," in 2022 4th International Conference on Inventive Research in Computing Applications (ICIRCA), 2022: IEEE,

pp. 687-692.

[21] A. Jindal and A. Gupta, "Comparative analysis of software reliability prediction using machine learning and deep

learning," presented at the 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS),

2022.

[22] M. Banga, A. Bansal, and A. Singh, "Implementation of machine learning techniques in software reliability: A

framework," presented at the 2019 International Conference on Automation, Computational and Technology

Management (ICACTM), 2019.

[23] T. Yaghoobi, "Selection of optimal software reliability growth model using a diversity index," Soft Computing, vol. 25,

no. 7, pp. 5339-5353, 2021. https://doi.org/10.1007/s00500-020-05532-0

[24] D. Sudharson and D. Prabha, "A novel machine learning approach for software reliability growth modelling with

pareto distribution function," Soft Computing, vol. 23, no. 18, pp. 8379-8387, 2019. https://doi.org/10.1007/s00500-

019-04047-7

[25] G. M. Habtemariam and S. K. Mohapatra, "A genetic algorithm-based approach for test case prioritization. In:

Mekuria, F., Nigussie, E., Tegegne, T. (eds) Information and Communication Technology for Development for Africa.

ICT4DA 2019. Communications in Computer and Information Science," vol. 1026. Cham: Springer.

https://doi.org/10.1007/978-3-030-26630-1_3, 2019.

[26] G. M. Habtemariam, S. K. Mohapatra, H. W. Seid, and D. B. Mishra, A systematic literature review of predicting software

reliability using machine learning techniques. In: Khari, M., Mishra, D.B., Acharya, B., Gonzalez Crespo, R. (Eds.), Optimization

of Automated Software Testing Using Meta-Heuristic Techniques. Cham: EAI/Springer Innovations in Communication and

Computing. Springer, 2022, pp. 77-90.

[27] D. Getachew, S. K. Mohapatra, and S. Mohanty, A heuristic-based test case prioritization algorithm using static metrics. In:

Khari, M., Mishra, D.B., Acharya, B., Gonzalez Crespo, R. (eds) Optimization of Automated Software Testing Using Meta-

Heuristic Techniques. EAI/Springer Innovations in Communication and Computing. Cham: Springer.

https://doi.org/10.1007/978-3-031-07297-0_4, 2022.

[28] S. K. Mohapatra, A. K. Mishra, and S. Prasad, "Intelligent local search for test case minimization," Journal of The

Institution of Engineers (India): Series B, vol. 101, pp. 585–595, 2020. https://doi.org/10.1007/s40031-020-00480-7

https://doi.org/10.1007/s13198-016-0543-y
https://doi.org/10.1016/j.jss.2005.02.025
https://doi.org/10.1007/s13198-012-0123-8
https://doi.org/10.1016/S0065-2458(08)60299-5
https://doi.org/10.1007/s00500-020-05532-0
https://doi.org/10.1007/s00500-019-04047-7
https://doi.org/10.1007/s00500-019-04047-7
https://doi.org/10.1007/978-3-030-26630-1_3
https://doi.org/10.1007/978-3-031-07297-0_4
https://doi.org/10.1007/s40031-020-00480-7

Review of Computer Engineering Research, 2024 11(1): 1-15

15

© 2024 Conscientia Beam. All Rights Reserved.

[29] G. M. Habtemariam, S. K. Mohapatra, and H. W. Seid, "Prediction of software reliability using particle swarm

optimization," presented at the International Conference on Innovations in Intelligent Computing and

Communications, 2022.

[30] S. Reddivari and J. Raman, "Software quality prediction: An investigation based on machine learning," in 2019 IEEE

20th International Conference on Information Reuse and Integration for Data Science (IRI), 2019: IEEE, pp. 115-122.

[31] M. K. Bhuyan, D. P. Mohapatra, and S. Sethi, "Software reliability prediction using fuzzy min-max algorithm and

recurrent neural network approach," International Journal of Electrical & Computer Engineering (2088-8708), vol. 6, no. 4,

pp. 1929-1938, 2016.

Views and opinions expressed in this article are the views and opinions of the author(s), Review of Computer Engineering Researchshall not be responsible or
answerable for any loss, damage or liability etc. caused in relation to/arising out of the use of the content.

