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The paper investigates software reliability prediction by using ensemble learning with 
random hyperparameter optimization. Software reliability is a significant problem with 
software quality that developers face. It involves accurately predicting the next failure. 
In recent years, machine learning techniques and ensemble learning approaches have 
been applied to improve software reliability prediction. These approaches aim to 
analyze historical data and develop models that can accurately forecast when failures 
are likely to occur. The article proposes an ensemble learning regression model using 
Ridge, Bayesian Ridge, Support Vector Regressor (SVR), K-Nearest Neighbors 
Algorithm (KNN), Regression tree, Random Forest, Neural network, and Decision 
Tree as base learners. Ridge is used as a combiner model. Each base learner 
hyperparameter is tuned using a random search algorithm automatically. A random 
hyperparameter search optimization algorithm selects the hyperparameter and adjusts 
it for overfitting and underfitting. The base models are tuned to minimize bias and 
variance. The performances of the models are evaluated using standard error measures 
such as Mean Squared Error (MSE), Sum of Squared Error (SSE), and Normalized 
Root Mean Square Error (NRMSE). The proposed ensemble model is compared with 
existing models using a benchmark dataset. The Iyer,and Lee, and Musa datasets are 
used for the experiment. The dataset is scaled using standard methods like logarithmic 
scaling, lagging, and linear interpolation. The results of the statistical comparison show 
better performance by our proposed model as compared to existing models. 
 

Contribution/Originality: This research developed anensemble learning model to predict software reliability. 

The use of a random hyperparameter algorithm for automatic parameter selection adds more value to the novel 

model. This model fine-tuned the machine learning parameters automatically from a given range.  

 

1. INTRODUCTION 

The concept of software reliability is defined as the “ability of the software to perform its required function 

under stated conditions for a stated period of time.” Based on the definition provided by the American National 

Standards Institute (ANSI), software reliability is “the likelihood of a failure-free process of a software program 

for a stated period of time in a stated environment” [1]. Determining the probability of a software failure within a 

specified time frame or the expected time interval between successive failures is the main goal of software reliability. 

In this work, a model has been developed for predicting and estimating the quantity of defects in the system. 
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Machine Learning (ML) approaches are found to be more effective in predicting than statistical or classical 

approaches and could possibly be applied for predicting software reliability. ML is a technique that concentrates on 

training instantaneously and permits systems to participate and forecast the software behaviour formulated on 

previous and current failure data as well. Therefore, it is fairly common to recognize which technique happens to 

be best for an assumed malfunction dataset [2-4].   

In this work, an ensemble learning method is applied to predict and evaluate a software model based on its 

performance. Researchers use various ML alogarithms to forecast the time between consective software failures. In 

software reliability prediction, different models are trained on the input data, and the trained model predicts the 

values based on the test data. The main challenge in the prediction problem is to use different error-measuring 

techniques to determine the performance of the model. Using a single model for predicting the data may not result 

in better predictions all the time. So different regression models are used to determine the next failure time, and 

the error measures of different models are compared. Furthermore, the objective is to propose an ensemble model 

by combining various models to improve performance over multiple datasets. In this work, several ML methods 

are applied for reliability prediction, i.e., Random Forest, Decision Tree, Ridge Regression, Bayesian Ridge 

Regression, K-Neighbours Regression, Lasso Regression, ElasticNet Regression, Artificial Neural Network 

(ANN), Radial Basis Function Network (RBFN), and Support Vector Regressor (SVR). These machine learning 

methodologies are employed on different datasets.  

To forecast software reliability, a dataset of consecutive failures of the software is used, and the above-

mentioned ML methods are applied for the prediction of the failure time of the software reliability dataset. The 

value is predicted based on the Time Between Successive Failures (TBSF) using a single feature dataset 

representing the time between successive failures in chronological order. Based on lag length, a datawindow of 

various lengths in the dataset is created. Various ML methods and algorithms are used on the lagged dataset to get 

various statistical error measures and the next failure time by reverse logarithmic scaling. In prediction, a set of 

hypotheses is combined to generate better accuracy and improved results.  

 

2. LITERATURE SURVEY  

In software reliability prediction research, various statistical as well as machine learning models were 

previously employed by researchers. Researchers used several ML models for determining software reliability. 

Malhotra, et al. [5]; Li, et al. [6]; Lo [7]; Karunanithi, et al. [8]; Singh and Kumar [9] and Costa, et al. [10]. Ho, 

et al. [11] conducted a widerange of investigations on connectionist models as well as their relevancy to software 

reliability prediction and suggested that these were more effective than conventional type models. Su and Huang 

[12] used an artificial neural network (ANN) in their model. The model predicts the software's reliability with less 

accuracy. A comparatively new procedure in software reliability prediction development [8] has revealed that 

ANN models executed a head of parametric models as well as the kinds of network structural design are able to 

remarkably affect predictive efficiency. In the last few years, few works have been reported on assessing the 

application of neural network models for software soundness as well as reliability. Time series method is 

commonly applied for forecasting the upcoming period between consecutive software failures [13]. Overall, ANN 

balances its input in the range [0, 1] by applying a linear interval, like allocating the values through the highest 

anticipated value of the correlated input variable. ANN revealed good learning as well as forecasting competence 

once data points are equally disseminated within an interval of [0,1] [8]. However, in the early stages of testing, 

the time between successive failures is anticipated to be insignificant. As testing proceeds in advance, software 

becomes more trustworthy,and the time between successive failures is extended. A predictive capability of ANN 

for a software failures data has been examined to be improved after the data are evaluated by using an appropriate 

logarithmic function [14] which evaluates the input data in the interval [0,1]. To validate the proposed reliability 

prediction model,which hasapplied severalcompetence processes [15] as well to accomplish this implementation, 
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the important requirement is the selection of independent and dependent variables. The dependent variable that 

has been applied in this research paper [15] was the failure amount,and the independent variable used was a time 

interval in a week. Through interrelated failures, testing time in weeks is designatedpossiblyan independent 

variable. Pai and Hong [16] perform research utilizing support vector machines (SVM) for prognosis software 

reliability. Aljahdali and Buragga [17] as well as Kumar and Singh [18] stated machine learning methodslike 

cascade correlation neural networks, decision trees, and fuzzy inference systems to predict the soundness of 

software output [17, 19]. A study by Sabnis, et al. [20] and Ho, et al. [11] compared different technologies and 

found that ML methods have been used to estimate the defect level of the software. They have utilised various 

methods like SVM, ANN, Naive Bayes (NB)and RF, where ANN shows good results as compared to others. ANN 

classifiers have the best accuracy, about 65.5%, among all other ML technologies.  

Another study has been done by Jindal and Gupta [21] and Su and Huang [12], in which a heuristics test of 

different ML and deep learning methods on univariate software failure time stamp data is used to find the best 

approach for software reliability. ANN has been taken as the baseline model, and it has been found that the Long 

Short-Term Memory (LSTM)model performs well. Banga, et al. [22] and Bisi and Goyal [13] introduced an 

approach that is used to find the most relevant parameter affecting software reliability. In this research, a hybrid 

approach is used to predict the fault of software with the help of machine learning. Vishwanath [14] proposed a 

method to detect the quality of software with the help of matrices. The information provided by the matrices is 

important to detect the failure earlier, which is very important in the field of software. In the experiment part, they 

utilized eight different types of classifiers using metrics, which are collected from the PROMISE data repository.  

Yaghoobi [23] and Jaiswal and Malhotra [15] proposed a Software Reliability Growth Model (SRGM). 

However, the model is for the specific data set.  Sudharson and Prabha [24] and Pai and Hong [16] stated that to 

get dependability in software results by assessing faults during an examination, software reliability was a crucial 

quantitative attribute. To find product faults, time-dependent software reliability models are used, but they are 

useless in environments that are constantly changing. Other researchers used individual ML techniques for 

reliability prediction and fault detection [17, 18]. A detailed literature review was carried out by Habtemariam and 

Mohapatra [25] and they elaborately discussed the kinds of literature available and their limitations Habtemariam, 

et al. [26]. Habtemariam and Mohapatra [25] and Getachew, et al. [27] use different machine learning  and 

softcomputingtechineques in software testing for ensuring the reliability of the software [4, 27-29]. 

Table 1 summarises the performance achievement of selective models from the literature review. 

 

Table 1. Literature review summary. 

Studies  Performance Dataset Findings  

Sabnis, et al. [20] 65.5% accuracy NA ANN classifiers have the best accuracy 
among all machine-learning technology 

Jindal and Gupta [21] Mean absolute 
error is 1.5639  

Software failures 
dataset[*] 

LSTM model performs well. 

Banga, et al. [22] 78% accuracy NA A hybrid new approach to fault prediction 
based on a machine learning algorithm. 

Yaghoobi [23] 85% accuracy NA Statistical models are used. 

Sudharson and Prabha 
[24] 

85% accuracy NA Soft computing methods are used. 

Reddivari and Raman 
[30] 

AUC of 0.75 UIMS and 
QUES [**] 

Decision tree-basedprediction techniques  
perform well. 

 

 

 

The following are the two major motivations that were inferred from our literature review:  

Note:   User Interface Management System dataset (UIMS),  Quality Evaluation System dataset (QUES), Area under curve (AUC). 
* is used in place of exactly one qualifier. 
** indicates either the nonexistence of leading, trailing, or middle qualifiers or the fact that they play no role in the selection process. 
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1. It has been proven that ML-based prediction is better than that of statistical technique’. Statistical techniques 

are better for correlating variables. ML, on the other hand, is good at prediction.   

2. In the case of machine learning, combination or ensembles are proven to bemore effective than a single base 

model. The prediction accuracy and performance of ensemble models are much higher than those of a single 

model.  

 

2.1. Dataset 

In this section, we describe the twobenchmark datasets that have been used in this research work. Several 

conventional printed works have been published on these datasets, and numerical fault calculations are also 

accessible. The time series datasets used for this model are Iyer and Lee's (1996) software reliability dataset and 

Musa, J.D: software reliability data1.These datasets are basically a time of failure for the software. The pattern of 

the dataset is depicted in Figure 1.  

 

 
Figure 1. Software failure process. 

 

Figure 1 depicts a typical software failure procedure, where Ti is the period instant of the ith failure. The 

datasets provide the intervals between each of the total failures that are documented. The dataset's individual 

inspection is indicated by the notation (i, yi), where i represents the failure number and yi denotes the interval 

between the (𝑖 − 1)𝑡ℎ and ith failures. The formula 1 that was produced due to the software malfunction is shown 

below. 

𝑦𝑖 = 𝑇𝑖 − 𝑇𝑖−1 (1) 

Dataset was collected from Bhuyan, et al. [31] in March 2023.  

 

2.2. Proposed Model 

The proposed model of software reliability prediction involves learning from a training algorithm and then 

integrating the predictions of various learning algorithms. At first, individual algorithms learn by utilizing the 

accessible data; subsequently, assembler algorithms learn to create the last prediction by employing every 

prediction of the distinct algorithms as further input. When a random assembler algorithm is applied, the model 

perhaps hypothetically denotes all the ensemble learning methods. The proposed model is exhibited in Figure 2.  

 

2.2.1. Random Search Optimization Algorithm 

The working principle of the random search algorithm is very simple. Firstly, it searches from the list of 

possible values of the hyperparameter. This tuning of the hyperparameter continues with several random searches. 

It stops when the desired result is achieved. One of the drawbacks of this algorithm is its computational complexity. 

The hyperparameter value and range of the individual models are represented in Table 2. 
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Figure 2. The proposed ensemble model with automatic hyperparameter selection. 

Note:   Random forest (RF), decision tree, radial basis function network (RBFN), Ridge, artificial neural network (ANN), Bayesian ridge regression, K-
Neighbours regression, Support vector regressor (SVR). 

 

 

Table 2. Hyperparameter of individual models. 

Base model Values(In range) Hyperparameter 

Ridge 10range(−5, 0) Alpha 

Bayesian ridge 
10range(−5, 0) alpha_1 

10range(−5, 0) alpha_2 

Regression tree Range(4, 23) max_depth 

SVR 
Linspace(0.01, 5, 20) C 
Range(0.01, 0.5, 0.05) Gamma 
{Linear, poly, rbf} Kernel 

KNN Range(2, 11) n_neighbors 

Random forest 
{100, 200, 500} n_estimators 
Range(4, 10) max_depth 

Neural network 
Linspace(0.0001, 0.5, 20) Alpha 
Linspace(0.0001, 0.5, 20) Learning_rate_init 
{Identity, logistic, tanh, relu} Activation 

Decision tree 
Range(4, 51) Max_depth 
Range(4, 30) Max leaf nodes 

 

Figure 2 shows how various based learner algorithms are integrated to provide the result with the best 

precision. The designed model typically yields superior performance than every individual trained model. It has 

been efficiently utilized in supervised learning methods as well as in unsupervised learning methods. The proposed 

algorithm for our model is given below:  
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Algorithm 1 proposed model  

Input:D= Dataset  

Method:  

1. BaseLearnersModels= [Bayesian Ridge, SVR, ANN, KNN,DT……]  

2. CombinerModel = [Ridge]  

3. x_trainD, x_tesDt, y_trainD, y_testD = split (D)  

4. PModel = [ ] 

5. For function in BaseLearnersModel:  

6. PModel.append (function. train (x_trainD, y_trainD)  

7. Train_setD = [ ] 

8. For i in range(length(x_trainD)):  

9. PTrain = [ ] 

10. For   m in PModel:  

11. PTrain. append (m. predict(x_trainD[i]))  

12. CombinerModel. train ( Train_setD, y_trainD) 

➢ Prediction:  

1. Train_ setD_ x = [ ] 

2. For  m in pmodel:  

3. Train_setD_x.append (m. predict(x))  

4. Output = CombinerModel. predict (Train_ setD _x)  

 Output: Array of Individual model Accuracy and  Stacking accuracy 

 

Note:  Decision tree (DT). 

 

The above ensemble algorithm that we have applied in our work is intended to enhance the consistency of 

software by integrating diverse other algorithms.  

 

2.2.2. Machine Learning and Scaling Techniques  

Various base models are used, and the Ridge model is used as the combiner model. For scaling and pre-

processing the data, the logarithmic scaling approach is used.  

 

2.2.3. Logarithmic Scaling  

Linear scaling of data points decreases the correlation between the points and, hence, the performance of the 

evaluation. So, to enhance the performance of the model, the logarithmic scaling technique is utilized between 

successivefailures, as given by Equation 2. 

𝑦∗ = ln(1 + 𝐵𝑦)(2) 

In which, y* is the measured value of time among consecutive failures, y is the period among consecutive 

failures and B is the measuring constant which is given in Equation 3. 

𝐵 =
𝑒𝑦∗𝑚𝑎𝑥−1

𝑦𝑚𝑎𝑥
(3) 

After prediction, reverse scaling is performed to get the real-time among consecutive failures and is shown in 

Equation 4. 

𝑦 =
𝑒𝑦∗−1

𝐵
(4) 

Where y* is the imitation result of prediction and B is the measuring constant.  
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2.2.4. Lagging  

The benchmark datasets that have been used for this proposed work are single-featured datasets. So, for a 

single instance of the prediction of error, the Lag method is used to generate a window of values by combining the 

set of values for the machine learning prediction problem. The lagging algorithm in this work is as follows:  

 

 Input: Dataset, lag sequence (k, e.g.: k=3 or 4 or 5 etc)  

 ➢Algorithm:  

1. L = dataset  length 

2. for i in 0 to L-k+1:   

3. Store data from i to i + k index of the dataset in the list m 

4. return m 

 Output: lagged value array  

 

The lag length in this proposed work varies from 2 to 25, depending on the model used for prediction. After 

lagging, the single-featured dataset is segmented into different lag sequences according to the defined lag length.  

 

2.2.5. Linear Interpolation  

Linear interpolation is a technique for building virtual data points in a dataset. However, in the case of a small 

dataset quantity, it is difficult to acquire the best consistency result after the train and split test. Therefore, to 

augment the soundness of the model, these methods are applied to optimize the level of the training data. After 

optimizing the existing dataset level, it is more efficient in the trainingdataset and model assessment. As the 

benchmark dataset used in this work is distinct and features failure time data, linear interpolation is simple to use. 

The algorithm of linear interpolation is exhibited as follows:   

 

Algorithm 3 linear interpolation   

 Input: D=Dataset  

 ➢Algorithm:  

1. t = train_set(D)  

2. dataset = [ ] 

3. dataset.append(train [0])  

4. for index in range (1, length(t))  

5. dataset.append((t [index-1]+t [index])/2)  

6. dataset.append(t [index])  

 Output: Linearly interpolated 

 

This algorithm helps to create virtual point in the train data by using the linear interpolation method.   

 

2.2.6. Error Measures  

Various statistical error measures are used in this work, to evaluate the regression models and also to compare 

the performance of the benchmark dataset. They are listed below. 

o NRMSE:  Normalized root mean squared error  

The Normalized Root Mean Square Error (NRMSE) is used to facilitate the comparison between 

models with different scales. The Normalized RMSE (NRMSE) relates the RMSE to the observed 

Algorithm 2 lagging  
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range of the variable. Terefore, it is possible to interpret the NRMSE as the portion of overall range 

that the model typically resolves. 

𝑁𝑅𝑀𝑆𝐸  = √
∑ (𝑦𝑖−𝑦𝑖

′)2𝑛
𝑖=1

∑ 𝑦𝑖
′𝑛

𝑖=1

       (5) 

Where n is the number of data points used to train the model, yiis the actual value, and 𝑦𝑖
′ is the predicted 

value obtained from the algorithm for the ith data point in the software failure dataset. NRMSE is used to 

minimize the error generated during the learning of the model with the given algorithm. 

o SSE:       Sum of squared error  

Sum Squared Error (SSE) is an accuracy measure where the errors are squared and then added. It is 

used to determine the accuracy of the prediction model when the data points are similar in magnitude. 

The lower the SSE, the more accurate the prediction. The sum of squared errors is usually used as a 

criterion for the comparison of goodness-of-fit and predictive power. SSE can be calculated as follows: 

𝑆𝑆𝐸 =  ∑ 𝑦𝑖 
𝑛
𝑖=1 − 𝑦𝑖

′)2(6) 

Where: 

{yi} is the actual observations time series  value and  {𝑦𝑖
′ }is the estimated or forecasted time 

series value 

 

o RE:  Relative error  

The relative error is defined as the ratio of the absolute error of the measurement to the actual 

measurement. Using this method, we can determine the magnitude of the absolute error in terms of the 

actual size of the measurement. If the true measurement of the object is not known, then therelative error 

can be found using the measured value. The relative error indicates how good the measurement is relative 

to the size of the object being measured.If yi is the actual value of a quantity, 𝑦𝑖
′ is the measured value of the 

quantity is the absolute error, then the relative error can be measured using the below formula. 

𝑅𝐸 =
|𝑦

𝑖′ −𝑦𝑖|

𝑦𝑖
∗ 100(7) 

An important note is that relative errors are dimensionless. When writing relative errors, it is usual to multiply 

the fractional error by 100 and express it as a percentage. 

Overall, n represents the number of prediction data points; yirepresentsthe real-time among failures and 

𝑦𝑖′representsthe predictable time among ith and (i-1)th failures data. These are standard error measurementswhich 

are utilized to evaluate the performance of the model. The flow of the process of the model is presented in Figure 3. 

 

3. RESULTS 

The time between consecutive failures is being experimented with using several algorithms, and the reliability 

is assessed by statistical evaluation methods. The gliding window size is set to 2-25 for better observation. In 

addition, we discovered that by increasing the distance of the sliding window, the size of the training set is reduced. 

Thus, the establishment of virtual data points appeared as a way of growing the dataset. During a time series, data 

acquired positive and negative maximum points; linear interpolation was used to sort out the training dataset. 

Throughout the investigation, a few models improved their capability by interpolating the outcome since the 

relationship among data points was developed and the variance among them dwindled. But, for a few models like 

Ridge and Bayesian Ridge regressors, there is a reverse effect. Concurrently, the unfairness of the non-CART 

(Classification and Regression Trees) models increases as we downturn the variance through the unfair variance 

trade-off; the achievement of the model downturn is notable.  The model is implemented using Python 3.6  with 

keras, Tensorflow, Pandas, Sklearn, and other required packages. Model execution is done on a hardware platform 
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with an Intel (R) 11th Gen Intel (R) Core (TM) i7-1165G7 @ 2.80GHz 2.80 GHz machine with 16.0 GB of memory 

capacity. Python is installed in the Windows 11 Home single-user operating system with a visual code editor.  

  

 
Figure 3. The flowchart of the process. 

 

3.1. Musa Dataset Results  

The visualization of NRMSE values for all the base models on the Musa dataset is discussed in this section. 

Ridge, Bayesian Ridge, SVR, and Random Forest performance is better. Other regressors, like ElasticNet as well as 

Lasso regression, have poor results. The introduction of the interpolation technique makes KNN and ANN achieve 

better results. Figure 4 exhibits the NRMSE performances of the algorithms used in our experiment. 

The introduction of linear interpolation of the train data set creates a virtual dependency between NRMSE 

values and the lag distance of datasets for the regressors. Linear interpolation doesn’t always increase efficiency; 

sometimes it reduces the efficiency of the model.  

 

3.2. Iyer Lee Dataset Results  

Next, the result of the Iyer and Lee dataset is elaborately discussed in this section. The visual representation is 

in two categories, i.e., with interpolation and without interpolation. Regressors RBFN, ANN, and SVR achievement 
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is better, whereas ElasticNet and Lasso's results are not satisfactory. In interpolated values KNN, ANN, random 

forest, and decision tree performance is good. Figure 5 representsthe NRMSE performances of the algorithms used 

in our experiment. 

 

 
Figure 4. Base model’s NRMSE performance for varied lag length. 

 

The results show that the impact of interpolation has a negative impact on NRMSME for some of the regressor 

links in SVR. An increase in lag length convergeson the result.  

 

3.3. Overall Performance  

The comparison of the NRMSE values of all the regressed models with a variation in lag length is shown in 

Figures 6 and 7 for the Musa dataset and Iyer and Lee dataset, respectively.   
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Figure 5. Base model’s NRMSE performance for varied lag length. 

 

 
Figure 6.  Top two individual models (Musa data). 
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For the Musa dataset,RandomForest, Ridge, and Bayesian Ridge are the leading performers. In interpolated 

data, KNN is the highest performer.   

 

 
Figure 7. Top two individual models (Iyer Lee Data). 

 

In the Iyer and Lee data set, the best performers are RBFN and SVR on the real dataset. Except for DT, others' 

performance is average. The worst performer is DT. NRMSE performance of all the methods over both datasets is 

tabulated in Table 3. 

 

Table 3. The NRMSE performance of different benchmark models. 

Lag length  2 3 4 5 6 7 

ANN  
Musa   0.159 0.142 0.053 0.153 0.163 0.168 

Iyer Lee  0.513 0.494 0.541 0.532 0.564 0.587 

ANN PSO  
Musa  0.169 0.163 0.145 0.128 0.153 0.178 

Iyer Lee  0.391 0.377 0.325 0.310 0.347 0.398 

Ridge  
Musa  0.1769 0.171 0.160 0.156 0.151 0.143 

Iyer Lee  0.092 0.109 0.124 0.141 0.147 0.155 

 

Table 4. Comparison with existing models. 

Statistical models Jelinski Moranda Geometric Musa basic Musa Okumoto 

Musa  0.144 0.142 0.141 0.141 
Iyer Lee  0.342 0.538 0.211 0.326 
ML models ANN ANN-PSO KNN Ridge 
Musa  0.142 0.128 0.136 0.157 
Iyer Lee  0.494 0.310 0.095 0.492 

Note:   Artificial neural network-particle swarm optimization (ANN-PSO). 

 

The proposed model is compared with other existing statistical and machine-learning models. The comparison 

is represented in Table 4. The proposed model’s performance is better than that of other existing techniques. In 

some cases, the ANN-PSO model performs on par with our model.  

 

4. CONCLUSION 

The proposed ensemble learning model consists of many weak regressors. Experimental results reveal that 

Ridge and Bayesian Ridge regressors produce excellent performance for both datasets. Certain models perform 

better on non-interpolated data, whereas other models are executed on interpolated data. With the presence of 
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interpolating points, the performance of KNN and ANN is remarkable. Because of scaling, the overall performance 

of the model has improved. This is because the time-series data are unevenly distributed, and the presence of a pick 

is found at certain points. The lag length is also importance for the model’s performance. RBFN, Ridge, and 

Bayesian Ridge bring about better results when the lag length is between 7 and 11. ANN and RF work more 

accurately on the actual dataset with a lag length greater than 15. In interpolated data, KNN and SVR perform well 

for certain lag lengths. 
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