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The present research examines the enhancement of skin lesion segmentation with U-
Net++. Achieving accurate classification of dermoscopy images is heavily contingent 
on the precise segmentation of skin lesions or nodules. However, this task is 
considerably challenging due to the elusive edges, irregular perimeters, and variations 
both within and across lesion classes. Despite numerous existing algorithms for 
segmenting skin lesions from dermoscopic images, they often fall short of industry 
benchmarks in terms of precision. To address this, our research introduces a novel U-
Net++ architecture, implementing tailored adjustments to feature map dimensions. 
The aim is to significantly enhance automated segmentation precision for dermoscopic 
images. Our evaluation involved a comprehensive assessment of the model's 
performance, encompassing an exploration of various parameters such as epochs, batch 
size, and optimizer selections. Additionally, we conducted extensive testing using 
augmentation techniques to bolster the image volume within the HAM10000 dataset. A 
key innovation in our research is the integration of a hair removal process into the U-
Net++ algorithm, significantly enhancing image quality and subsequently leading to 
improved segmentation accuracy. The results of our proposed method demonstrate 
substantial advancements, showcasing an impressive Mean Intersection over Union 
(IoU) of 84.1%, a Mean Dice Coefficient of 91.02%, and a Segmentation Test Accuracy 
of 95.10%. Our suggested U-Net++ algorithm does a better job of segmenting than U-
Net, Modified U-Net, K-Nearest Neighbors (KNN), and Support Vector Machine 
(SVM). This shows that it could be used to improve dermoscopy image analysis. Our 
proposed algorithm shows remarkable improvement in both observational outcomes 
and classifier performance.  
  

Contribution/Originality: The study presents a customized U-Net++ architecture for accurate segmentation 

of skin lesions in dermoscopy images. It emphasizes adjustments to feature map dimensions and integrates a hair 

removal step. Notably, contour prediction is highlighted for its crucial role in enhancing segmentation performance. 

 

1. INTRODUCTION 

Skin cancer, encompassing melanoma, stands as one of the prevailing forms of cancer on a global scale. Prompt 

and precise identification of melanoma holds immense importance, as it plays a critical role in ensuring successful 

treatment and better results for patients. Within the realm of machine learning, deep learning emerges as a subset 

with considerable promise, particularly in the realm of medical image interpretation. Melanoma, a skin condition 

that has seen a worldwide uptick, recorded nearly 3 million fresh instances in the year 2022 [1]. Tackling skin 

cancer has evolved into a significant issue within public health. While visually scrutinizing the skin's exterior might 
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appear uncomplicated for detection, medical professionals frequently miss the majority of melanoma cases. 

Approximately 60% of diagnoses stem from visual assessments conducted by proficient dermatologists. 

Unfortunately, this also means that a significant number of potentially treatable melanomas remain unnoticed 

until they reach advanced stages. The accuracy and timeliness of segmenting skin lesions play a vital role in identifying 

and locating visual dermoscopic skin characteristics and categorizing skin-related ailments. Dermoscopy, an imaging 

method enhancing melanoma diagnosis and decreasing melanoma-related deaths, allows the visualization of deeper 

skin layers by minimizing surface reflections.  

 

   
   Pre processing                Color space  
                                            conversion 

 Color thresholding             Segmented skin               
                                             region 

                   Post-processing  
 

Figure 1. Generalized skin lesion segmentation block diagram. 

 

Figure 1 shows a block diagram of skin lesions in dermoscopic images. Skin lesion segmentation becomes 

difficult due to variability in lesion types, complex and irregular boundaries, overlapping lesions, class imbalance, 

limited annotated data, varied imaging conditions, small lesions and fine details. An automated melanoma detection 

from the surrounding skin is a critical process in the computerized assessment of dermoscopic images. The presence 

of artefacts and inherent cutaneous elements such as hairs, borders, blood vessels, and air bubbles further 

compounds the complexity of automated segmentation. Diagnosing skin lesions becomes more intricate when 

comparing them based on color skin imaging, like distinguishing between nevi and melanoma. An imperative need 

exists for a robust automated technique to locate skin lesions, as early detection significantly shortens diagnostic 

timelines [2]. Prompt lesion identification remains crucial, particularly given the higher survival rate it offers when 

compared to individuals who have recently undergone treatment. Conventional visual assessment employed in 

dermoscopic image analysis proves inadequate for accurate lesion type assessment. 

 

2. SKIN LESION SEGMENTATION USING DEEP LEARNING 

Many scientists have expressed a keen interest in improving the diagnosis of severe skin conditions through 

various methods of segmenting skin diseases. These techniques include clustering, expanding regions, dividing, and 

utilizing both supervised and unsupervised learning methods. Skin lesion segmentation is of utmost importance, as 

it entails the process of separating a singular image into smaller sections [3]. Researchers have put forward a range 

of methods, which include both modern deep learning techniques and traditional segmentation approaches, to tackle 

this aspect of analyzing skin lesions. 

Researchers have introduced a hybrid k-means segmentation [4], in which images are segmented using k-

means clustering to locate the precise lesion region, and then the firefly technique is implemented to improve 

segmentation accuracy [5]. In histogram segmentation with the Genetic algorithm, initially computation of a set of 

image pixels using c-means clustering is employed, then graph cut methodology is employed to attain the 

segmentation of skin lesions [6, 7]. 

A different approach to segmentation involves using the region-growing technique, which incorporates fuzzy 

clustering segmentation [8]. This unsupervised clustering method is an extended form of k-means clustering. In 

this method, adjacent pixels are merged based on their spatial context to facilitate region growth and segmentation 

[9]. During the segmentation process, the image's similarity index is assessed based on important attributes such 
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as color and texture [10]. In situations involving K-means clustering and histogram computation, segmentation 

centers on the extraction of color features [11]. In the semi-supervised, shift mean segmentation technique, there is 

no need for an initial determination of the cluster count [12]. In threshold segmentation, the image is subdivided 

into various regions using a predefined threshold value as a reference. This strategy helps improve the 

distinctiveness of edges in areas affected by cancer, thereby supporting the segmentation process [13].  

Researchers introduced an auxiliary function-based technique [14], involving the creation of a smoothed 

auxiliary function using Bezier curves. This function is constructed using a local minimizer, effectively addressing 

global optimization concerns. The primary aim is focused on utilizing active contour fusion segmentation to 

segment pixel data with low contrast [15]. A novel method involving exponential neighborhood grey wolf 

optimization was employed to optimize a fully convolved network for the segmentation of dermoscopic data [16]. 

Improved CNNs such as Retina-Deep Lab [17], and recurrent CNN [18] are widely used by researchers for lesion 

segmentation on large dataset; alternatively combinations of ResNet and DenseNet inside a dense encoder-decoder-

based system led to performance enhancement [19].  

Furthermore, the integration of Atrous Spatial Pyramid Pooling (ASPP) involved in capturing contextual 

information with skip connections played a vital role in recovering image pixel-level information [20]. In Adaptive 

moment Estimation (ADAM) optimization [21], multi-scale fusion features and spatial image characteristics are 

considered to minimize segmentation loss. In improved fully convolutional networks (iFCN), lesion segmentation is 

performed without preprocessing. To address potential drawbacks of the segmentation process, the approach takes 

into account specific lesion location information along its perimeter [22]. In the current method, like the one 

involving a Gaussian radial basis kernel and SVM classifier [23, 24], the combination of texture and color features 

extracted from dermoscopic images faces challenges in generating segmented images of high quality and achieving 

superior classification results. 

More recently, though, researchers have been looking more closely at different versions of Deep Learning (DL) 

and Convolutional Neural Network (CNN) architectures to try to solve the problems mentioned above in terms of 

segmentation [28, 29]. In a fully automated method for skin lesion segmentation [30], researchers employed a 19-

layer deep CNN that was extensively trained without requiring any prior data-specific knowledge. Their approach 

yielded a Jacquard distance value of 0.963. Lately, the U-Net architecture was introduced for the segmentation of 

lesions and their characteristics, utilizing the framework of convolutional neural networks (CNN). Numerous 

researchers have engaged with the ISIC datasets from 2016, 2017, and 2018, encompassing a total of 2750 images. 

In a particular study by Yuan [30], the author focused on three distinct classes, namely melanocytic nevi (NV), 

melanoma (MEL), and intraepithelial carcinoma/Bowen disease (AKIEC), employing four pre-trained models: 

Inception-v3, ResNet-50, InceptionResNet-v2, and DenseNet20, for the purpose of segmentation across the 2750 

images. The anticipated segmentation accuracies were 81.29%, 81.57%, 81.34%, and 73.44%, respectively. 

U Net is an improved version of CNN that has flexible global aggregation blocks. These blocks are effective for 

preserving image pixel data during-up-and-down sampling. For the International Skin Imaging Collaboration 

(ISIC) 2018 dataset, a MultiRes U Net architecture [31] and cascaded fully convolutional neural networks [32] 

were developed, achieving dice score measurements of 87.9% and 92.3% respectively. The outcomes of the 

segmentation process show a noticeable improvement, and the achieved results are deemed satisfactory. Existing 

literature demonstrates that utilizing the segmented images for classification purposes leads to a notable 

enhancement in classification accuracy. 

The significant outcomes from the study reveal and establish objectives to design novel algorithms to:  

• Implement image enhancement techniques before segmentation for performance improvement. 

• Data augmentation methods have been implemented to enhance the variability of images, thereby promoting 

improved stability in the overall process. 

• The suggested model is subjected to validation using diverse optimizers, batch sizes, and epochs in order to 
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achieve enhanced accuracy. 

• The proposed model has been analyzed with numerous performance parameters and observational results. 

 

3. SEGMENTATION USING MODIFIED U-NET 

3.1. Overview & Architecture 

An improved iteration of the Convolutional Neural Network (CNN) architecture was created to handle 

biomedical images. A goal extends beyond categorizing the presence of an infection; it also involves objective 

measures.  

It also involves identifying the precise area that the infection has affected. The Modified U-Net architecture 

comprises two fundamental paths: the initial path referred to as the contraction path, or encoder, and the expansion 

path or decoder. The encoder is dedicated to grasping the contextual information within the image, while the 

decoder employs transposed convolutions to facilitate accurate identification of localized regions [33]. 

Figure 2 shows a modified U-Net structure in which the input image undergoes a multi-tiered decomposition 

within the encoder pathway, and the feature maps are reduced using a max pooling layer.  

Modified U Net architecture consists of 3X3 layer size Convolution [ ] with ReLU (Rectified Linear Unit) 

activation function, Max pooling Layer [ ], 2X2 size Upsampling [ ] and concatenation [ ] in the 

encoder-decoder section.  

The details of Modified U-Net architecture are elaborated in Table 1. 

 

Table 1. Layer wise modified U net model design summary. 

Layer/Operation Input shape Output shape Parameters 

Input_1 (None, 128, 128,3) ---- 0 

Conv2d (None, 128, 128, 64) (None, 128, 128, 64) 1792 
Conv2d_1 (None, 128, 128, 64) (None, 128, 128, 64) 36928 
Max_pooling2d (None, 128, 128, 64) (None, 64, 64, 64) 0 
Conv2d_2 (None, 64, 64, 64) (None, 64, 64, 128) 73856 
Conv2d_3 (None, 64, 64, 128) (None, 64, 64, 128) 147584 
Max_pooling2d_1 (None, 64, 64, 128) (None, 32, 32, 128) 0 
Conv2d_4 (None, 32, 32, 128) (None, 32, 32, 256) 295168 
Conv2d_5 (None, 32, 32, 256) (None, 32, 32, 256) 590080 
Max_pooling2d_2 (None, 32, 32, 256) (None, 16, 16, 256) 0 
Conv2d_6 (None, 16, 16, 256) (None, 16, 16, 512) 1180160 
Conv2d_7 (None, 16, 16, 512) (None, 16, 16, 512) 2359808 
Up_sampling2d (None, 16, 16, 512) (None, 32, 32, 512) 0 
Concatenate (None, 32, 32, 256) (None, 32, 32, 768) 0 
Conv2d_8 (None, 32, 32, 768) (None, 32, 32, 256) 1769728 
Conv2d_9 (None, 32, 32, 256) (None, 32, 32, 256) 590080 
Up_sampling2d_1 (None, 32, 32, 256) (None, 64, 64, 256) 0 
Concatenate_1 (None, 64, 64, 128) (None, 64, 64, 384) 0 
Conv2d_10 (None, 64, 64, 384) (None, 64, 64, 128) 442496 
Conv2d_11 (None, 64, 64, 128) (None, 64, 64, 128) 147584 
Up_sampling2d_2 (None, 64, 64, 128) (None,128,128, 128) 0 
Concatenate_2 (None, 128, 128, 128) (None, 128, 128, 192) 0 
Conv2d_12 (None, 128, 128, 192) (None, 128, 128, 1) 193 
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Figure 2. Modified U net architecture. 

 

3.2. Mathematical Modelling  

In the encoder section of U Net X, the input image tensor is Conv2D represents the 2D convolutional operation, 

and MaxPooling2D represents the max-pooling operation. The encoder consists of 3 blocks; each block is 

represented by Equations 1 to 6. 

                        (1) 

Pooled data by Ist block is                     (2) 

                (3)  

Pooled data by IInd block is                 (4) 

                  (5) 

Pooled data by IIIrd block is           (6) 

In the decoder section, upsampling & concatenation operations are performed by each block. The decoder 

consists of 3 blocks, in which Fi is the feature map from the ith encoder block [34].  

Decoder-3 mathematically represented by Equation 7, 8 and 9  

                                      (7) 

                                                 (8) 

                    (9) 

Decoder-2 mathematically represented by Equation 10, 11 and 12  

                                                (10) 

                                                    (11) 

                     (12) 

Decoder-1 mathematically represented by Equation 13, 14 and 15  

                                                (13) 

                                                   (14) 

                        (15) 

Finally output of U Net is calculated by using Equation 16 

                                                          (16) 
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4. U NET++ WITH HAIR REMOVAL TECHNIQUES 

4.1. Overview & Architecture 

The core of our segmentation model is the U-Net++ architecture, an extension of the original U-Net. U-

Net++ enhances the representation capability of the model by introducing multiple skip pathways at different depths 

in the network. This allows the model to capture multi-scale features and improve segmentation accuracy. 

Our model consists of an encoder-decoder structure. The encoder extracts hierarchical features from the input 

image through a series of convolutional layers followed by max-pooling operations. This downsampling process 

reduces the spatial dimensions while increasing the depth of the features. The middle block further refines these 

features to capture more complex patterns [35]. In U-Net++, dense skip pathways are introduced by connecting 

each layer in the encoder with every layer in the corresponding decoder. This allows for dense and rich feature 

reuse, helping to capture both low-level and high-level features. Figure 3 depicts an enhanced U-Net++ encoder-

decoder architecture, detailing the specifications for each layer in the structure. 

 

 
Figure 3. U Net++ Encoder-decoder architecture. 

 

The decoder then reconstructs the segmented mask using a series of upsampling operations. Skip connections 

are established by concatenating the encoder's feature maps with the corresponding decoder's feature maps. This 

enables the model to leverage both low-level and high-level features for accurate segmentation. The details of the 

Modified U-Net architecture are elaborated in Table 2.  

To enhance the model's accuracy, we also implement a hair removal preprocessing step. By thresholding the 

input images in the HSV color space; we create a hair mask that highlights hair regions. Inverting this mask allows us 

to identify the background and hair regions. Applying this mask to the original image using bitwise operations 

removes the hair, which can otherwise interfere with accurate segmentation. 
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Table 2. Layer wise U net ++ Model design summary. 

Layer/Operation Input shape Output shape Parameters 

Input (None, 128, 128, 3) 0  
Conv2D_1 (None, 128, 128, 64) 1792 Input 
Conv2D_2 (None, 128, 128, 64) 36928 Conv2D_1 
MaxPooling2D_1 (None, 64, 64, 64) 0 Conv2D_2 
Conv2D_3 (None, 64, 64, 128) 73856 MaxPooling2D_1 
Conv2D_4 ((None, 64, 64, 128) 147584 Conv2D_3 
MaxPooling2D_2 (None, 32, 32, 128) 0 Conv2D_4 
Conv2D_5 (None, 32, 32, 256) 295168 MaxPooling2D_2 
Conv2D_6 (None, 32, 32, 256) 590080 Conv2D_5 
MaxPooling2D_3 (None, 16, 16, 256) 0 Conv2D_6 
Conv2D_7 (None, 16, 16, 512) 1180160 MaxPooling2D_3 
Conv2D_8 (None, 16, 16, 512) 2359808 Conv2D_7 
UpSampling2D_1 (None, 32, 32, 512) 0 Conv2D_8 
Concatenate_1 (None, 32, 32, 768) 0 Conv2D_6, UpSampling2D_1 
Conv2D_9 (None, 32, 32, 256) 1769728 Concatenate_1 

Conv2D_10 (None, 32, 32, 256) 590080 Conv2D_9 
UpSampling2D_2 (None, 64, 64, 256) 0 Conv2D_10 
Concatenate_2 (None, 64, 64, 384) 0 Conv2D_4, UpSampling2D_2 
Conv2D_11 (None, 64, 64, 128) 442496 Concatenate_2 
Conv2D_12 (None, 64, 64, 128) 147584 Conv2D_11 
UpSampling2D_3 (None, 128, 128, 128) 0 Conv2D_12 
Concatenate_3 (None, 128, 128, 192) 0 Conv2D_2, UpSampling2D_3 
Conv2D_13 (None, 128, 128, 64) 110656 Concatenate_3 
Conv2D_14 (None, 128, 128, 64) 36928 Conv2D_13 
Conv2D_15 (None, 128, 128, 1) 65 Conv2D_14 

 

4.2. U Net++ Backgrounds with Mathematical Preliminaries  

The U-Net++ architecture builds upon the U-Net architecture with additional skip connections and nested 

feature aggregation. The working of the encoder section in U-Net++ is similar to U-Net, only the decoder section 

was reformed. Decoder with Nested Skip Connections is as shown below: 

Decoder-3 mathematically represented by Equation 17, 18 & 19. 

                          (17) 

                                   (18) 

      (19) 

Decoder-2 mathematically represented by Equation 20, 21 & 22. 

                                  (20) 

                                    (21) 

      (22) 

Decoder-1 mathematically represented by Equation 23, 24 & 25 

                                   (23) 

                                    (24) 

      (25) 

The U Net++ architecture combines data from different levels of encoding through nested skip connections. This 

lets the model do more complete feature aggregation and better segmentation, especially when working with objects that 

are different sizes or appear at different scales in the image.  

In U Net ++, up sampling & concatenate process is explained by Equation 26, 27 & 28. 

                                               (26) 

                                                (27) 

                                               (28) 

While nesting process is expressed by using Equation 29, 30 & 31 
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                             (29) 

                                          (30) 

)                                        (31) 

Finally output of U Net++ is calculated by using Equation 32. 

                                            (32) 

 

5. RESULTS & DISCUSSIONS 

5.1. Materials and Methods 

The suggested approach utilizes the Modified U-Net and U-Net++ architectures to perform segmentation of 

lesions in dermoscopy images of skin diseases. This novel model was tested on the Human against Machine (HAM 

10000) dataset, which comprises 5000 dermoscopy images of skin diseases. The images were resized to a 

standardized resolution of 128 x 128 pixels. This step ensures uniformity in input dimensions and prepares the data 

for model training. Training is conducted with a batch size of 16 images.  

Using this smaller batch size ensures more frequent updates to the model's weights, facilitating quicker 

convergence. During each training iteration, 16 images along with their corresponding masks are processed 

simultaneously. In order to mitigate overfitting and improve the model's ability to generalize, dropout 

regularization is integrated. Dropout involves randomly disabling a portion of neurons during training, essentially 

generating an ensemble of neural networks with varying sets of active neurons in each iteration. A dropout rate of 

0.2 is implemented, indicating that 20% of neurons are randomly deactivated during the training process. Both the 

U-Net and U-Net++ models undergo training for 10 epochs, where an epoch signifies a full iteration through the 

entire training dataset. Employing multiple epochs enables the models to progressively grasp intricate patterns and 

connections within the data. Observing the changes in training and validation losses across epochs aids in 

evaluating convergence and identifying the possibility of overfitting. 

 

 
Figure 4. (a )  U net training, Validation loss & accuracy (b) Proposed U Net++ training, validation loss & accuracy. 
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5.2. Training, Validation Loss & Accuracy 

For training, the binary cross-entropy loss function is utilized, which is well-suited for binary segmentation 

tasks. To adjust the model's weights during training, the Adam optimizer is employed. The role of the loss function 

is to steer the optimization procedure by minimizing the disparity between the predicted and actual masks. U-Net 

segmentation works better after the second epoch, where the model has stable loss and accuracy. Epoch count plays 

a vital role in U Net++ segmentation. In Figure 4 (a), the training loss and accuracy variations for the existing U-

Net segmentation model across epochs are depicted. The model attained a peak accuracy of 93.7% and a minimum 

loss of 15% after the second epoch. Figure 4 (b) shows how the training loss and accuracy changed over time for our 

proposed U-Net++ segmentation model that includes a hair removal component at different time points. Notably, this 

improved model achieved a maximum accuracy of 95.70% and a minimum loss of 10% after the tenth epoch. 

 

5.3. Performance Parameters of Segmentation Model 

Performance parameters for image segmentation tasks are crucial in evaluating the quality of the model's 

predictions. Our novel U-Net++ Segmentation approach, augmented with a hair removal algorithm, is evaluated by 

comparing its performance parameters with existing methodologies, including the modified U-Net (MU Net), conventional 

U-Net, the K-Nearest Neighbors Algorithm (KNN), and the Support Vector Machine (SVM).  

 

 

 
Figure 5. U net ++, Modified U performance parameter comparison with U net [36], KNN [37] & SVM [24]. 
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Above are some common performance metrics for segmentation, as illustrated in Figure 5. We can obtain 

insights into how effectively the model performs on the segmentation work by analyzing these performance 

characteristics and identifying areas for improvement, such as classes with lower IOU or Dice coefficient scores. 

These indicators are critical for evaluating the segmentation model's efficacy and directing the model's development 

and fine-tuning.  

 

5.4. Observational Results on Training Dataset 

In Figure 6 (a), the simulation results of the proposed segmentation method during the model training are 

presented. The comparison involves the input image being compared with both the ground truth image and the 

predicted mask for segmentation. 

 
(a): U Net ++ Training images with their ground truth masks and predicted masks. 

 

 
(b): U Net ++ Testing images with their ground truth masks and predicted masks. 
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(c): Prediction on testing images without contours. 

 

 
(d): Prediction on Testing images with contours. 

Figure 6. U Net ++ Training, testing & prediction simulation results. 
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In Figure 6 (b), the simulation results of the proposed segmentation method during model testing are 

showcased. The comparison entails presenting the input image alongside both the ground truth image and the 

predicted mask for segmentation. 

Figure 6 (c), illustrates the proposed model segmentation results without contour prediction. It may result in 

imprecise delineation of melanoma boundaries. This lack of precise boundary information can affect the accuracy of 

lesion size, shape, and margin assessment, which is crucial for diagnosis and treatment planning. Also, it is hard to 

accurately capture Melanoma lesions irregular and complex shapes. Also, pixel-level features for segmentation may 

not capture all the discriminative characteristics of melanoma.  

Figure 6 (d) shows the proposed model segmentation of testing images with contours. Predicting contours 

makes it possible to keep track of how the lesion's form and size vary over time, which is crucial for monitoring the 

melanoma's growth or retreatment, which helps medical professionals decide on the best course of action. The 

boundaries of melanoma lesions can be properly detected and defined using contour prediction, which also it helps 

to differentiate between the melanoma lesion and surrounding healthy skin tissue.  

 

6. CONCLUSION & FUTURE WORK 

To conclude, this study introduces a highly resilient deep learning network tailored for segmentation purposes. 

This network holds the promise of delivering heightened accuracy compared to alternative models, particularly 

when confronted with the intricate task of delineating skin lesion regions, even in scenarios where hair is present in 

the input images. Mean Intersection Over Union (IOU) evaluates overlapping between the predicted and ground 

truth masks.  

By using U Net ++ we get a maximum IoU of 0.841 (+0.012 mod U Net, +0.019 U Net, 0.063 KNN, +0.043 

SVM), which is better than all existing and modified methods. The mean Dice coefficient computes the Dice 

coefficient that is averaged over all samples in the dataset. It returns a single result that represents the model's 

overall segmentation performance. Maximum Dice coefficient 0.910 is obtained from the U-net [proposed] method. 

Figure 4 shows that all performance parameter behavior is efficient for U Net, Modified U-Net, and U Net++ with 

hair removal methods. 

The hair removal preprocessing step eliminates the interference that hair regions, which are frequently present 

in medical images, cause. By explicitly identifying and removing these regions, we reduce noise and increase the 

accuracy of the segmentation.  

To avoid overfitting and select the best-performing model, we implement early stopping and model 

checkpointing. The hierarchical feature extraction improves the model's ability to segment complex structures 

accurately. Nested skip connections are a key architectural feature of the U Net++ model that enhances its ability to 

capture hierarchical and multi-scale features in an image. These connections allow the model to fuse information 

from different levels of the encoding and decoding paths, leading to improved feature representation and 

segmentation accuracy.  

The U Net++ architecture enables the model to perform more comprehensive feature aggregation and achieve 

improved segmentation performance, especially when dealing with objects that vary in size or are present at 

different scales within the image. 
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