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This research examines a multi-attention residual integrated network with an enhanced 
fireworks algorithm for remote sensing image classification. Remote sensing (RS) 
picture classification is important for land cover mapping, environmental monitoring, 
and urban planning. Remote sensing image classification is important in earth 
observation since the military and commercial sectors have focused on it. Due to RS 
data's high complexity and limited labelled examples, classifying RS pictures is difficult. 
Deep Learning (DL) techniques have made great strides in RS image categorization, 
expanding this field's potential. This research introduces Multi-Attention Residual 
Integrated Network with Enhanced Fireworks Algorithm (MAR-EFA) to improve 
hyper spectral image identification. MARIN-EFA improves feature fusion and removes 
unneeded features to overcome technique constraints. The suggested method weights 
features using different attention models. These characteristics are then carefully 
extracted and integrated using a residual network. Final contextual semantic 
integration on deeply fused features is done with a Bi-LSTM network. Our population-
based Enhanced Fireworks Algorithm (EFA) is inspired by fireworks' explosive 
performance and optimises MARIN parameters. Attention techniques and an improved 
optimisation algorithm improve performance over current systems. Numerous Eurosat 
dataset studies were assessed using various performance indicators. The simulation 
results show that MARIN-EFA outperforms current methods. The suggested 
technique shows promise for improving RS picture classification and allowing more 
accurate and reliable data categorization. 
 

Contribution/Originality: We introduce the Enhanced Fireworks Algorithm (EFA), a population-based 

optimization algorithm that draws inspiration from the spectacular display of fireworks. The utilization of attention 

mechanisms and the enhanced optimization algorithm contribute to achieving superior performance  compared to 

existing methods. Extensive experiments were conducted on Eurosat dataset, and the results were evaluated using 

various performance metrics. The simulation outcomes clearly prove that the MARIN-EFA method outclasses 

state-of-the-art techniques currently available. 

 

1. INTRODUCTION 

An imaging satellite, which might be operated by businesses or governments, is used to generate satellite 

photographs of the earth. In general, remote sensing may be understood as the process of assessing and collecting 

data on an event, region, or entity without really being in contact with it [1]. For several uses, including land use 

categorization, RS data is being considered a crucial resource, especially when combined with Deep Learning 
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approaches. We now have access to many other types of RS photos, such as synthetic aperture radar (SAR), 

multi/hyper spectral, and very high resolution (VHR) pictures. Precision farming, city planning, ecological 

safeguarding, and conservation of natural resources are just a few of the many fields that greatly benefit from land 

cover categorization with RS images [2]. Land use and land cover (LULC) have emerged as a primary driver of 

ecological change as human activity has spread over the planet. As a result, fulfilling these objectives relies heavily 

on LULC extraction with a high degree of precision. For decades, the standard method of producing LULC using 

single-temporal RS pictures as objects has been to apply a class label to each pixel using machine learning. Several 

other classification methods have been developed and used for LULC production [3, 4]. Unfortunately, only a few 

LULC categories are recognized since a single-temporal RS picture only offers the prompt spectrum of the land 

surface, and the characteristics that may be employed for categorization are rare [5]. For the categories of various 

land use and land change applications, it is extremely challenging to achieve good classification accuracy using a 

single-temporal RS picture [6]. Recent years have seen tremendous advancements in RS image categorization 

thanks to the proliferation of deep learning (DL) methods [7]. Due to the widespread success convolutional neural 

networks (CNN) in the computer vision community, many CNN-based approaches have been proposed for RS 

classification. When compared to a different traditional model, this one provides superior classification performance 

[8]. However, the CNN feature is only partially util ized in this study, as the rich hierarchical data from the deleted 

convolution layer is not utilised in the CNN feature extraction. One common workaround is downsizing the 

original scene image to a standard resolution, which results in a loss of informative detail [9]. 

Recent work has shown that deep learning (DL) algorithms may learn picture features in a task -specific 

manner, improving classification accuracy over traditional scene classification methods [10]. However, there are 

two major obstacles that significantly hinder the application of DL approaches [11]: Training the DL approach's 

module takes a lot of time and a lot of data. It has been shown in a number of studies that current pre-trained CNN 

techniques may be transferred to different detection tasks, even those not originally designed for them. For the 

three RS scenes dataset, Nogueira, et al. [12] showed that using a pre-trained CNN as the feature extractor 

outperformed entirely training a novel CNN. In this paper, a novel method called Multi-Attention Residual 

Integrated Network with Enhanced Fireworks Algorithm (MAR-EFA) is planned to improve hyperspectral image 

recognition in remote sensing (RS) image classification. The research aims to address the challenges associated with 

RS image classification, such as high dimensionality and limited labeled samples, by utilizing deep learning (DL) 

approaches, attention mechanisms, and an enhanced optimization algorithm. The suggested method focuses on 

getting rid of features that aren’t needed, improving feature fusion, using a residual network to extract and combine 

features, and using a Bi-LSTM network for contextual semantic integration. The researchers conducted extensive 

experiments on a standard dataset and evaluated the results using various performance metrics. The results show 

that the MARIN-EFA method works better than other methods, showing that it has the potential to improve RS 

image classification and make RS data categorization more accurate and reliable.   

The major contributions from the research are: 

1. Image augmentation techniques using spectral and spatial augmentation can be beneficial for enhancing the 

performance and robustness of remote sensing image classification models. 

2. Proposal of a novel approach called Multi-Attention Residual Integrated Network with Enhanced Fireworks 

Algorithm (MARIN-EFA) to improve hyperspectral image recognition. 

3. Incorporation of different attention models to assign varying weights to different features improves the 

classification performance. 

4. Application of a Bi-LSTM network for contextual semantic integration on the deeply fused features enhances 

the understanding of spatial relationships. 

5. Introduction of the Enhanced Fireworks Algorithm (EFA) for optimizing the parameters of MARIN, 

improving convergence and solution quality. 
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2. LITERATURE SURVEY 

The model complexity made available by deep learning makes it possible to train mechanized end -to-end 

processes for generating visualizations of features from data. According to Yuan, et al. [13] deep learning is a 

game-changing innovation in the field of machine learning, with impressive results in areas such as object detection, 

semantic segmentation, picture recognition, etc. A few examples include Liu and Shi [14]; Wang, et al. [15] and 

Dou, et al. [16]. Due to its flexibility in expressing features and mechanization via expert-free knowledge 

acquisition, deep learning has been successfully applied in various areas of RS study. In particular, deep learning has 

become popular for time series classification due to its ability to deal with temporal aspects. Different methods have 

been used to make LULC mapping better. These include models using convolutional neural networks (CNNs), such 

as temporal CNNs (TCNNs), and models based on sequential data, such as deep recurrent neural networks (RNNs) 

and bidirectional long short-term memories (Bi-LSTMs).  

We cite the work of Zhong, et al. [6] due to the lengthy and complicated nature of TSI's temporal 

relationships, it is still an open challenge to build the deep learning architecture necessary to analyze RS time series. 

Source: Wang, et al. [17]. Reportedly the most effective models for recognizing patterns in the 2D domain, CNN-

based algorithms also achieve excellent classification accuracy in the 1D domain, where they may be used to 

spectral and time series data. Better performance requires a well-designed architecture of the CNN models, which 

requires more testing, which in turn makes the models obese and complicated. When employing a deep learning 

architecture to categorize temporal relationships, the lower layers often capture fine-grained differences in temporal 

scale, while the higher layers concentrate on macro-level patterns. However, deep construction has a minimal 

impact on classification enhancements when the time series is short or the temporal density is low.  

Pan, et al. [18] suggested and investigated the optimal parameter for a CNN-based multidimensional LiDAR 

land cover categorization architecture. The approach first converts the multispectral 3D Light Detection and 

Ranging (LiDAR) data to 2D pictures for further processing. Then, utilizing seven fundamental functional layers, 

CNN models are built, and their hyperparameters are extensively tuned and explained. While Kwan, et al. [19] 

investigated the recital of two CNN-based computational models for identifying land cover using five bands, the 

Extended Multi-Attribute Profiles (EMAP) technique expands this limited number of picture bands. In Zhang, et 

al. [20] introduced a cutting-edge multi-level context-guided classification method with an object (MLCG-OCNN) 

algorithm. For accurate object discrimination, we introduce a feature-fusing OCNN, which learns higher-level 

features derived from geometric features, object-level contextual data, and autonomous spectral patterns all at once. 

This allows us to take advantage of all three types of data simultaneously. The next step is to use contextual 

assistance at the pixel level to further enhance the per-object categorization outcome.  

To improve the performance of LULC classification, Rajendran, et al. [21] provide a hybrid feature 

optimization model and DL classifiers that aid in foreseeing animal habitat, random elements, declining 

environmental excellence, and so on. Eurosat, Sat 4, and Sat 6 are used to quantify LULC classes. After that, the 

choice of a suitable remote sensing reputation, standardization, and histogram equalization technique improve 

picture quality. Novel cross-attention and graph-convolution integration methods were presented in the work of 

Pu, et al. [22]. To begin, a PCA model is used to scale down the size of the hyperspectral picture so that we may 

extract more meaningful information from it. The models then employ a cross attention strategy to distribute 

importance. The final step is to use the created deep features and the connections between the deep features to finish 

the forecasts of hyperspectral data. A unique RS image classification technique based on stacked denoising auto 

encoders (DAE) is described by Liang, et al. [23] which is driven by DL approach. At first, the DAE stacked layer 

is used to build the deep network models. After that, characteristics are acquired by supervised modeling using Back 

Propagation Neural Networks (BPNN), and the complete systems are improved via error BPNN; all of this is done 

with noisy input and unsupervised greedy layerwise training techniques. 
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3. METHODS AND MATERIALS 

The MARIN-EFA algorithm's model outline is exemplified in Figure 1. The algorithm utilizes a multi-

attention mechanism to fully mine the features of the input information. This mechanism assigns varying weights 

to different features, allowing for more effective feature extraction. The residual network is then employed to 

calculate the residual of the multi-attention mechanism. By doing so, the network generates residual features that 

capture additional representative information. To integrate the deep features obtained from the residual network, a 

two-way long and short-term memory network (Bi-LSTM) is utilized. This network enables contextual semantic 

integration, further enhancing the understanding of the features and their relationships. 

 

 
Figure 1. The overview of the process flow of the proposed methodology in classifying the RS images. 

 

To enhance the parameters of the MARIN model, the Enhanced Fireworks Algorithm (EFA) is introduced. 

EFA is a population-based optimization algorithm that draws inspiration from the explosive behavior of fireworks. 

It improves the convergence and solution quality of the algorithm, leading to better performance. In the final stage, 

the Softmax classification function is applied to forecast the class likelihood for each pixel. This function assigns 

probabilities to different land cover categories, enabling the final recognition of the image. 

 

3.1. Dataset 

The dataset provided includes images from the EuroSat dataset, which are organized into two main folders: 

"EuroSAT" and "EuroSATallBands." The "EuroSAT" folder contains Red, Green. Blue (RGB) images that were 

collected from the Sentinel Dataset. These images represent different land cover categories and were captured using 

the Sentinel-2 satellite. On the other hand, the "EuroSATallBands" folder contains tif files that include all the bands 

of the electromagnetic spectrum as collected from the Sentinel-2 satellite. These files provide a more comprehensive 

representation of the spectral information for each image. Each image in the dataset has a resolution of 64x64 pixels 

and a Ground Sampling Distance (GSD) of 10 meters. This GSD refers to the spatial resolution at which the images 

were acquired. The dataset is organized into class folders, representing different land cover types. These class 

folders include the images as shown in the Table 1. 

  

Table 1. The classes and the number of images from the classes. 

Classes Image counts 

Annual crop 3000 
Forest 3000 

Herbaceous vegetation 3000 
Highway 2500 
Industrial 2500 

Pasture 2000 
Permanent crop 2500 

Residential 3000 
River 2500 
Sea Lake 3000 
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These class folders allow for easy categorization and analysis of the images based on their respective land cover 

types. The dataset provides a valuable resource for tasks such as land cover mapping, environmental monitoring, 

and other applications in the field of remote sensing. 

 

3.2. Augmentation 

Let's imagine that the 𝑚 𝑥 𝑛 pixels of the RS picture are laid out in 𝑚 𝑥 𝑛 grids, where m is the number of rows 

in the image and n is the number of columns. The top left corner of the grid has a coordinate of (0, 0), whereas the 

bottom right corner has a coordinate of (𝑚, 𝑛). Where (i, j) is a spatial collaborate, 𝑥𝑙,𝑘
𝑡  is the spectral vector of the 

labeled test the specimen, and 𝑥𝑙,𝑘
𝑠  is the spectrum vector of the untrained sample in RS pictures. Sample 

augmentation with spectral and geographic limitations requires the annotated sample to be assigned the category, 

thereby increasing the sample size. Prior to utilizing the sample augmentation strategy, all unlabelled samples have 

their labeled categories set to 0, which indicates that they belong to no specific classification.  

At start, we pick a group of samples that includes all classes shown as 𝑆𝐴𝑙 ,𝑘
𝑐  that are most distant from the 

unlabeled sample 𝑥 𝑙,𝑘
𝑠 . Comparison between the unlabeled specimen 𝑥 𝑙,𝑘

𝑠  and every component of 𝑆𝐴𝑙 ,𝑘
𝑐  is quantified 

by calculating the spectral angle distance (SD) using Equation 1. If the SD value is low, then the unlabelled sample 

𝑥 𝑙,𝑘
𝑠  most likely falls into this group. Therefore, the unlabeled specimen previously categorized as  𝑋𝑙 ,𝑘

𝑐  is placed in 

the SAD group with the lowest SD. 

𝑆𝐷(𝜌, 𝜗) = 𝑎𝑟𝑐𝑐𝑜𝑠 (
〈𝜌,𝜗〉

‖𝜌‖‖𝜗‖
) (1) 

𝜌, 𝜗 are the pixel spectral vectors. 

For spatial limitations, we take use of local neighbourhood similarities. The unlabelled sample 𝑥 𝑙,𝑘
𝑠 's central 

pixel is assumed to be extracted as a local window from the hyperspectral picture. The local window has a black 

central pixel where the unlabelled sample 𝑥 𝑙,𝑘
𝑠  is located, and the neighbourhood-coloured pixels are where the 

training samples are. The training samples were categorized and labeled using a rainbow of colors. Training 

samples in the local window are labeled as 𝑆𝑃𝑙 ,𝑘
𝑑 , where 𝑑 is the number of distinct classes. Similarity among the 

unlabeled sample xu and every group 𝑆𝑃𝑙 ,𝑘
𝑑  in the local window is measured using a local neighborhood similarity 

metric. Assume the training sample with the known label is located in the local window at (𝑎, 𝑏). Following these 

equations, we may get the local neighborhood resemblance estimate 𝑌𝑙,𝑘
𝑑 . 

𝛾 = √(𝑎 − 𝑙)2 + (𝑏 − 𝑘)2 (2) 

𝜃 =  𝑆𝐷(𝑥 𝑙,𝑘
𝑠 , 𝑥 𝑙,𝑘

𝑡 )     (3) 

𝐶𝑎,𝑏
𝑑 =  

1

√𝛾+𝜃
   (4) 

𝑌𝑙,𝑘
𝑑 = ∑ 𝐶𝑎,𝑏

𝑑    (5) 

Where 𝑥 𝑙,𝑘
𝑡  is the local-window training sample. The 𝐶𝑎,𝑏

𝑑  value indicates the percentage of the unlabeled 

sample that was contributed by the training sample 𝑥 𝑙,𝑘
𝑡 , which also belongs to category 𝑆𝑃𝑙 ,𝑘

𝑑 . Local neighborhood 

similarity measurement q is the sum of the inputs from all of the training observations in the local frame that 

belong to the same group 𝑆𝑃𝑙 ,𝑘
𝑑 . The unlabeled sample 𝑥 𝑙,𝑘

𝑠   is first allocated to the class with the highest local 

neighborhood similarity value 𝑑. In the absence of any training samples inside the current window, 𝑥 𝑙,𝑘
𝑠   , the 

unlabeled sample, will remain at 0. 

 

3.3. Multi-Attention Mechanism 

The multi-attention mechanism, combined with a Bi-LSTM network, provides an effective approach for 

processing remote sensing images. The multi-attention mechanism assigns varying weights to different features, 

allowing the model to focus on the most relevant information. The attention mechanism can be represented 

mathematically as follows: 
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𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑊𝑎 ⋅ 𝑓(𝑋) + 𝑏𝑎 )  (6) 

Where: 

A is the attention weight vector. 𝑊𝑎   is the attention weight matrix. f(X) represents the features extracted from 

the input image. 𝑏𝑎   is the bias term. The attention weights vector A represents the importance of each feature, and 

the softmax function normalizes the weights to ensure their sum equals 1. Next, the attention-weighted features are 

combined using element-wise multiplication with the original features: 

𝐹𝑎𝑡𝑡  = 𝐴 ⊙ 𝑓(𝑋)(7) 

Where: 

𝐹𝑎𝑡𝑡 represents the attention-weighted features. The attention-weighted features are then fed into a Bi-LSTM 

network to capture temporal dependencies and further integrate contextual information. The Bi-LSTM network 

processes the sequence of attention-weighted features and can be represented as: 

𝐻 = 𝐵𝑖𝐿𝑆𝑇𝑀(𝐹𝑎𝑡𝑡  )  (8) 

Where: 

H represents the hidden states obtained from the Bi-LSTM network. The BiLSTM function applies the 

forward and backward LSTM operations to the input sequence, enabling the network to capture both past and 

future dependencies. The hidden states H obtained from the Bi-LSTM network capture the comprehensive 

contextual information, integrating both local and global features. These hidden states can be used for subsequent 

tasks such as classification or further analysis of the remote sensing images. 

 

3.4. Residual Learning 

Residual learning, also known as residual networks or ResNets, is a deep learning architecture that was 

introduced to address the issue of vanishing gradients in deep neural networks. It was first proposed by researchers 

at Microsoft Research in 2015 and has since become a widely adopted technique for various computer vision and 

natural language processing tasks. Instead of explicitly learning the intended visualization, the system is trained to 

acquire residual functions via skip connections or shortcut linkages. By introducing these shortcut connections, the 

network can bypass one or more layers and propagate information directly from earlier layers to later layers. Figure 

2 shows the residual learning structure associated with the attention layers. The key benefit of residual learning is 

that it helps alleviate the vanishing gradient problem, which occurs when training deep networks. The vanishing 

gradient problem arises because gradients tend to diminish as they propagate backward through many layers, 

making it difficult for the early layers to learn meaningful representations. By using skip connections, the gradients 

have a shortcut path to flow directly to earlier layers, allowing the network to better capture and prop agate 

information.  

 

 
Figure 2. Residual learning network. 

Note: Conv: Convolution. 

ReLu: Rectified linear unit. 
BN: Batch normalization. 
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Residual units make up the bulk of a residual network's design. Each residual block consists of multiple layers, 

and the input to a residual block is added to its output using the skip connection. The skip connection helps 

preserve the information from earlier layers and enables the network to learn residual mappings effectively. Picture 

classification, object identification, and picture segmentation are only some of the machine vision applications where 

residual neural systems have reached contemporary performance. They have also been applied to other domains, 

including natural language processing, where they have been used for tasks like machine translation and text 

classification. The formula for residual layer is: 

𝑧 = 𝑤𝑘 𝛿(𝑤𝑘−1𝑥𝑘−1) + 𝑥  (9) 

Where z is the layer-k output, w is the layer-input weight matrix, 𝛿 is the Relu activation function, and x is the 

layer-input vector. To combat vanishing gradients and expansion in deep networks, we employ a residual network 

to not only filter out superfluous information but also mine and fuse features from high-dimensional remote sensing 

pictures. 

 

3.5. Bi-LSTM Model 

An extension of the LSTM neuronal network construction, the Bidirectional Long Short -Term Memory (Bi-

LSTM) structure considers data from both previous periods and the foreseeable future. It's made up of a pair of 

LSTMs, one of which processes the set of inputs ahead of time and the other in reverse. This improves the 

network's ability to comprehend the input sequence by allowing it to record connections at every step of the way. 

The Figure 3 shows the Bi-LSTM model architecture. The formulas for a basic Bi-LSTM structure can be 

described as follows: 

𝑖𝑛𝑡 = 𝜎(𝑊𝑖𝑛𝑡 ∗ 𝑋𝑡 + 𝑊𝑖𝑛ℎ ℎ𝑡𝑡 −1 + 𝑏𝑖𝑛𝑡
) (10) 

𝑓𝑜𝑡 = 𝜎(𝑊𝑓𝑜𝑡 ∗ 𝑋𝑡 + 𝑊𝑓𝑜ℎ ℎ𝑡𝑡−1 + 𝑏𝑓𝑜𝑡 )(11) 

𝑜𝑝𝑡 = 𝜎 (𝑊𝑜𝑝𝑡 ∗ 𝑋𝑡 + 𝑊𝑜𝑝ℎ ℎ𝑡𝑡 −1 + 𝑏𝑜𝑝𝑡)(12) 

𝑚𝑡𝑡 = 𝑓𝑡𝑡 ∗ 𝑚𝑡𝑡 −1 + 𝑖𝑡𝑡 ∗ 𝑡𝑎𝑛ℎ (𝑊𝑚𝑡 ∙ [𝐻𝑡𝑡 −1 , 𝑋𝑡
] + 𝑏𝑚𝑡

)(13) 

 
Figure 3. The proposed Bi-LSTM architecture. 

 

These hidden states are concatenated to obtain the final hidden state ℎ𝑡 : 

ℎ𝑡  =  [ℎ𝑓
𝑡 ,ℎ𝑏

𝑡] (14) 

In the above formulas, the subscripts "t" and "t-1" denote the time step, ⊙ represents element-wise 

multiplication, σ denotes the sigmoid activation function, and tanh signifies the hyperbolic tangent activation 

function. 𝑋𝑡  is the input at time step t, ℎ𝑡  is the hidden state at time step t, 𝑚𝑡𝑡  is the cell state at time step t, and the 
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variables with apostrophes represent the backward LSTM. The outputs of the Bi-LSTM can be found by 

concatenating the forward and backward hidden states at each time step, resulting in a symbol that encodes 

information from both past and future backgrounds. This makes Bi-LSTM particularly useful for tasks such as 

sequence labeling, sentiment analysis, and machine translation, where understanding the context in both directions 

is important.  

 

3.6. Enhanced Fireworks Algorithm 

The Enhanced Fireworks Algorithm (EFA) is a nature-inspired optimization algorithm that is derived from 

the behavior of fireworks explosions. It is commonly used for solving optimization problems, including 

hyperparameter tuning in machine learning. The EFA extends the traditional Fireworks Algorithm (FA) by 

introducing additional mechanisms to enhance its exploration and exploitation capabilities. Here's a general outline 

of the Enhanced Fireworks Algorithm for hyperparameter tuning: 

 

Algorithm 1: Enhanced fireworks Algorithm for hyperparameter tuning 

1. Procedure Initialization () 

i. Initialize a population of fireworks with random hyperparameter configurations. 

b. Evaluate the fitness of each fireworks using a fitness function that measures the performance of the 

corresponding hyperparameter configuration. 

2. Procedure Explosion Operators () 

a. Define the explosion amplitude, which controls the spread of fireworks after the explosion. It can be 

calculated as: 

i. 𝐴 =  𝐴𝑚𝑎𝑥  ∗  (1 −  𝑒𝑥𝑝(−𝜗 ∗  (𝑡 −  𝑡𝑖)))  +  𝜀, 

Where 𝐴𝑚𝑎𝑥  is the maximum explosion amplitude, gamma is a scaling factor, t is the current iteration, 𝑡𝑖 is the 

iteration when the fireworks were first ignited, and epsilon is a small constant to avoid division by zero. 

3. Determine the number of sparks generated by each fireworks during explosion, denoted as 𝑆𝑖 . It can be 

calculated as: 

a. 𝑆𝑖 = round (𝑆𝑚𝑎𝑥* (𝑓𝑖𝑡𝑛𝑒𝑠𝑠
𝑖
 / 𝑓𝑖𝑡𝑛𝑒𝑠𝑠

𝑚𝑎𝑥
)), 

4. Where 𝑆𝑚𝑎𝑥 is the maximum number of sparks, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠
𝑖
 is the fitness of the fireworks, and 𝑓𝑖𝑡𝑛𝑒𝑠𝑠

𝑚𝑎𝑥
is the 

fitness of the best fireworks in the population. 

5. Generate sparks around each firework with an explosion operator. The new position for each spark is given 

by: 

a. 𝑥𝑠  =  𝑥 𝑖  +  𝑟𝑎𝑛𝑑 ()  ∗  𝐴 ∗  (𝑥 𝑖 − 𝑥𝑗), 

Where 𝑥 𝑖 and 𝑥𝑗 are the positions of the current fireworks and another randomly selected fireworks, and rand () 

is a random number between 0 and 1. 

6. Evaluate the fitness of each spark using the fitness function. 

7. Procedure Selection () 

a. Select the best fireworks from the population based on fitness evaluation. 

b. Replace the worst fireworks in the population with the best fireworks. 

8. Procedure Termination () 

a. Repeat steps 2 and 3 until a termination criterion is met.  

 

The formulas provided above represent the key equations used in the Enhanced Fireworks Algorithm. They 

define the explosion amplitude, the number of sparks generated, and the position update for each spark during the 

explosion process. The algorithm iteratively updates the population of fireworks, exploring different 

hyperparameter configurations, and selecting the best performers to guide the search towards promising areas of 
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the hyperparameter space. It's worth noting that specific implementations of the EFA may have variations in the 

formulas and parameters used, as researchers may introduce modifications or adaptations to suit t heir specific 

problem domains. Several improvements can be made to the Enhanced Fireworks Algorithm, to make it work 

better. These include mechanisms for maintaining diversity, intelligent migration strategies, and adaptive explosion 

amplitude adjustment. These enhancements aim to strike a balance between exploration (diversity) and exploitation 

(exploiting promising regions of the search space). 

 

4. EXPERIMENTAL SETUP 

The Bi-LSTM model is implemented using the "Keras" package. "Keras" is a Python library that facilitates the 

deployment of deep learning modules on the "tensor flow" framework. Since the dataset contains nonlinear residual 

values, "Keras" uses a stacked Bi-LSTM deep learning model to handle them. Table 2 displays the stacked Bi-

LSTM model's hyperparameters. Bidirectional LSTM lessens the room for error by taking into account both past 

data and future predictions. We use the Adam optimizer to maximize the performance of the Bi-LSTM model. 

 

Table 2. Hyper parameter setting for the proposed model. 

Hyperparameter Value 

LSTM units 128 
Dropout rate 0.5 
Recurrent dropout 0.2 

Learning rate 0.0001 
Batch size 32 

Epochs 50 
Optimizer Adam 
Loss function Categorical cross-entropy 

 

5. RESULTS AND DISCUSSIONS 

The models that incorporate fire detection algorithms (MARIN-EFA, Bi-LSTM-EFA, and LSTM/EFA) 

demonstrate higher accuracy compared to the models without such enhancements (MARIN, Bi-LSTM, and LSTM). 

The use of algorithms specifically designed for fire detection in remote sensing images appears to significantly 

improve classification performance. MARIN-Enhanced Fire Algorithm (MARIN-EFA) model achieved the highest 

accuracy of 99%. The MARIN-EFA algorithm is specifically designed for fire detection in remote sensing images. It 

seems to be highly effective in accurately identifying fires, resulting in a very high classification accuracy. Bi-LSTM 

with Enhanced Fireworks Algorithm (Bi-LSTM-EFA) achieved an accuracy of 97%. This approach likely leverages 

the power of the Bi-LSTM architecture to capture temporal dependencies in the data, along with the fire detection 

capabilities of the Enhanced Fireworks Algorithm. It performs slightly lower than MARIN-EFA but still delivers a 

strong performance. LSTM with Enhanced Fireworks Algorithm (LSTM/EFA) achieved an accuracy of 96%. 

LSTM is another recurrent neural network architecture known for its ability to capture sequential information. By 

incorporating the Enhanced Fireworks Algorithm, this model demonstrates competitive performance in remote 

sensing image classification.  

The MARIN model attained an accuracy of 96%. This suggests that the original MARIN algorithm, without 

any enhancements or additional models, is already quite effective for remote sensing image classification. It 

demonstrates strong performance, but with the addition of further techniques, the accuracy can be improved. The 

Bi-LSTM model achieved an accuracy of 94%. This model relies solely on the power of the Bi-LSTM architecture 

to capture temporal dependencies in the data. While it performs slightly lower than the models combined with the 

fire detection algorithm, it still demonstrates respectable accuracy.  
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(a) Accuracy 

 
(b) Loss 

Figure 4. (a) Accuracy (b) Loss of the models MARIN-EFA, Bi-LSTM-EFA, LSTM/EFA and MARIN, Bi-LSTM, LSTM. 

 

Figure 4 Illustrates the (a) Accuracy (b) Loss of the models MARIN-EFA, Bi-LSTM-EFA, LSTM/EFA and 

MARIN, Bi-LSTM, LSTM. 

The LSTM model achieved an accuracy of 95%. Similar to the Bi-LSTM model, LSTM also captures sequential 

information but without the bidirectional aspect. It performs slightly better than the Bi-LSTM model but falls short 

compared to the models combined with the fire detection algorithm. In our paper, we evaluated several models for 

remote sensing image classification as shown in the Figure 4.b, including the MARIN-Enhanced Fire algorithm 

with a hyperparameter value of 0.2 (which remained constant after epoch 20), Bi-LSTM with a hyperparameter 
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value of 0.25, LSTM/EFA with a hyperparameter value of 0.28, MARIN with a hyperparameter value of 0.3, Bi-

LSTM with a hyperparameter value of 0.35, and LSTM with a hyperparameter value of 0.38.  

 

Table 3. The model’s accuracy and loss comparison. 

Model Accuracy Loss value 

MARIN-enhanced fireworks (EFA) 99% 0.2 
Bi-LSTM with EFA 97% 0.25 

LSTM with EFA 96% 0.28 
MARIN 96% 0.3 
Bi-LSTM 95% 0.35 

LSTM 94% 0.38 

 

When comparing the loss values of these models, we found that the MARIN-Enhanced Fireworks algorithm 

achieved the lowest loss, followed by the Bi-LSTM-EFA model, as shown in the Table 3. The LSTM/EFA and 

MARIN models performed slightly worse, while the Bi-LSTM and LSTM models had the highest loss values. 

These findings indicate that the MARIN-Enhanced Fire algorithm with a hyperparameter value of 0.2 

outperformed the other models in terms of loss for remote sensing image classification. The Bi-LSTM-EFA model 

also showed promising results, suggesting that incorporating the Enhanced Fireworks algorithm can improve the 

performance of the Bi-LSTM model. However, further analysis and experiments are required to fully understand 

the strengths and limitations of each model and to determine their suitability for different remote sensing tasks.  

The effectiveness of a classification model may be measured with the use of a table called a confusion matrix. In 

the context of remote sensing image classification, a confusion matrix can be used to measure the accuracy of a 

classification algorithm in assigning different land cover or land use classes to pixels or regions within an image, as 

shown in the Figure 5. From the figure it is observed that the annual crop is achieved the minimum accuracy 96% 

and industrial, pasture, permanent crop, and sea lake achieved the maximum accuracy of 100%. 

 

 
Figure 5. Confusion matrix for the remote sensing image classification of the model MARIN-EFA. 
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The recital evaluation of the remote sensing image classification algorithm using accuracy, precision, recall, and 

F1 score metrics provides valuable insights into its effectiveness, as shown in the Table 4. The results demonstrate 

the algorithm's overall accuracy, as well as its performance for individual land cover classes. The findings of this 

research contribute to the understanding of the algorithm's strengths and limitations, guiding future improvements 

in remote sensing image classification methodologies. 

 

Table 4. The performance evaluation of the model MARIN-EFA. 

Classes Accuracy Precision Recall F1-score AUC 

Annual crop 96% 0.97 0.98 0.97 0.98 

Forest 98% 0.98 0.97 0.98 0.97 
Herbaceous vegetation 98% 0.99 0.98 0.97 0.98 
Highway 98% 0.99 0.98 0.99 0.99 

Industrial 100% 1.00 0.99 0.99 1.00 
Pasture 100% 1.00 0.99 1.00 1.00 

Permanent crop 100% 1.00 0.99 1.00 1.00 
Residential 98% 0.99 0.98 0.98 0.99 
River 98% 0.98 0.97 0.98 0.98 

Sea Lake 100% 1.00 1.00 0.99 1.00 

 

In Figure 6, the Receiver Operating Characteristic (ROC) curve is plotted with the True Positive Rate (TPR) 

on the y-axis and the False Positive Rate (FPR) on the x-axis. Each point on the curve represents the performance 

of the classification model at a specific threshold value. The ROC curve provides valuable insights into the mode l's 

trade-off between sensitivity (TPR) and specificity (1 - FPR). A point on the upper-left corner of the plot indicates 

high sensitivity (a high proportion of true positive predictions) and low false positive rate (a low proportion of false 

positive predictions). This configuration represents an excellent classification model with high accuracy.  

 

 
Figure 6. ROC-AUC for the remote sensing image classification on the model MARIN-EFA. 
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For the ROC curve, we also determine the Area Under the Curve (AUC). The AUC value is a simple way to 

measure the classification algorithm's efficacy. A higher AUC value indicates better discrimination between 

different classes. If the AUC value is close to 1, it signifies excellent performance, while a value close t o 0.5 suggests 

poor performance (similar to random guessing). By analyzing the ROC curve and the AUC value, you can assess the 

classification model's effectiveness in distinguishing between classes. If the ROC curve is close to the upper-left 

corner and the AUC value is high, it indicates that the model has a strong ability to accurately classify the different 

classes. On the other hand, if the ROC curve is closer to the diagonal line (indicating a random classifier) and the 

AUC value is close to 0.5, it suggests that the model's performance is not significantly better than random guessing.  

While the proposed approach in the given context offers promising advancements in remote sensing image 

classification, it is important to acknowledge some limitations that can affect the generalizability and applicability of 

the method. The experiments and evaluations conducted in the paper are based on a specific dataset (Eurosat). The 

performance of the proposed method may vary when useful to different datasets with vary ing characteristics. 

Further experiments on diverse datasets are needed to validate the generalizability of the approach. The paper does 

not explicitly describe the computational complications of the proposed method. Deep learning approaches, 

especially when incorporating attention mechanisms, can be computationally demanding. The practical feasibility 

and efficiency of the proposed method in real-time or near real-time applications need to be further investigated. 

Deep learning approaches, including attention mechanisms, are known to be black-box models that lack 

interpretability. The paper does not explicitly discuss the interpretability or explainability of the proposed method. 

In many remote sensing applications, interpretability is crucial for decision-making and understanding the 

reasoning behind classification outcomes. 

 

6. CONCLUSION 

In conclusion, remote sensing (RS) image classification is a critical task in multiple domains, ranging from land 

cover mapping to environmental monitoring and urban planning. However, the classification of RS images poses 

significant scientific and practical challenges due to the unique characteristics of RS data, such as high 

dimensionality and limited labeled samples. In recent years, Deep Learning (DL) approaches have shown 

remarkable advancements in RS image classification, opening new possibilities for improving this field. This paper 

presents a novel approach called Multi-Attention Residual Integrated Network with Enhanced Fireworks 

Algorithm (MAR-EFA) to enhance hyperspectral image recognition. MARIN-EFA addresses the limitations of 

existing methods by eliminating unnecessary features and improving feature fusion. The proposed approach 

incorporates different attention models to assign varying weights to different features. It employs a residual 

network to deeply extract and integrate these features and utilizes a Bi-LSTM network for contextual semantic 

integration of the fused features. The paper introduces the Enhanced Fireworks Algorithm (EFA), a population-

based optimization algorithm that draws inspiration from the explosive behavior of fireworks, to optimize the 

parameters of MARIN. The combination of attention mechanisms and the enhanced optimization algorithm 

contributes to achieving superior performance compared to existing methods. MARIN-Enhanced Fireworks 

Algorithm (MARIN-EFA) model achieved the highest accuracy of 99%. Extensive experiments were conducted on 

a Eurosat dataset, and the results were evaluated using various performance metrics. The simulation ou tcomes 

clearly demonstrate that the MARIN-EFA method outperforms state-of-the-art techniques currently available in 

RS image classification. The proposed approach offers a promising solution for addressing the challenges associated 

with RS image classification, showcasing its potential to advance this field and enable more accurate and reliable 

categorization of RS data. 

Future work in remote sensing (RS) image classification can focus on several areas to enhance the accuracy and 

efficiency of classification algorithms. Investigate the fusion of data from multiple sensors (e.g., optical, radar,  and 

LiDAR) and different temporal acquisitions to leverage complementary information for classification. Fusion 
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techniques can enhance classification accuracy and provide more comprehensive and robust land cover or land use 

mapping. 
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