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ABSTRACT 

In recent years many developments have been made in the area of the vibration behavior of the supported by 
bearings or journal bearings rotating shafts. The results, if they are generally acceptable for common-use in 
terms of operating conditions, are far from meeting the aircraft industry, where the machining at high 
speeds is an undeniable need. This research therefore is aimed to provide an analytical simulation based on 
theoretical developments of the vibration response of a ball bearing.  The generation of vibration by a point 
in a rolling element bearing is modeled as a function of the rotation of the bearing, the distribution of the 
load in the bearing, the transfer function between the bearing, transducer and elasticity of the bearing 
structure. The essence of this work is to present an analytical model of a specific type single of row effect 
balls (SKF 6004). This study is a first step dedicated to define the geometric characteristics, and in second 
time to determine the equations governing the distribution of responsibilities within the ball bearing. 

Keywords: Ball bearing, Damage, Vibration, Rolling element, Row balls, Effect balls. 

 

1. INTRODUCTION 

Even if the geometry of a ball bearing is perfect, it will still produce vibrations. The 

vibrations are caused by the rotation of a finite number of loaded rolling contacts between the 

balls and the guiding rings. Because these contacts are elastic, the bearing stiffness becomes 

explicitly dependent on time. In general, a time varying stiffness causes vibrations, even in the 

absence of external loads. Since the stiffness can be regarded as a system parameter, the variable 

stiffness leads to a so-called parametric excitation. It is one of the major sources of vibration in 

ball bearings. The first systematic research on this subject was conducted by Perret [1] and 

Meldau [2]. 

Dowson and Higginson [3] have proposed the first analytical solutions to EHD in case of 

cylinder/plane contact. Then, in the middle of 1970s, digital solutions contact ellipsoid/ maps 

have been proposed by Hamrock and Dowson [4]. From the viewpoint of contact fatigue in the 

presence of indentation, [5] exhibit a work based on the introduction of a ceramic rolling element 

(Si3N4), from the rolling ones in steel. This study demonstrates a “smoothing effect” created by 
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the passage of ceramic rolling element which generates strong plastic deformation of bead. This 

“smoothing effect” makes it possible to reduce the height of beads and, at the same time, local 

overpressure. This suggests that the addition of ceramic allows increasing number of cycles to 

chipping adjacent indents. In addition, the work presented by Jacq [6] shows a smaller effect of 

the load on damage by chipping in vicinity with respect of sliding. 

 

2. BEARING MODELING 

2.1. General Model  

The bearing is a mechanical body to allow rotation between two shafts, or between a shaft 

and housing in good condition, guide with little energy loss. The rotation is permitted by rolling 

bodies, separated by a cage, which roll on the inner ring and outer. The load applied to the 

bearing can be axial or radial, and of many geometries rings and rolling bodies exist depending on 

the nature of forces to be transmitted (Figure 1). 

 

Figure-1. Overview of ball bearings components 

 

2.2. Bearing Lubrication 

It is therefore advantageous to reduce the coefficient of friction by inserting a fluid in contact 

through lubrication. Indeed, as the Egyptians used water or animal fat to reduce sliding friction, 

current bearings are lubricated with special industrial oils. 

Figure 2 shows the characteristics of contact EHD regime. 

 

Figure-2. The EHD Contacts of field pressure and film thickness fluid 
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We thus distinguish three zones to describe an EHD contact. An inlet zone, high pressure 

zone and outlet zone of contact. 

- Zone entrance in touch: it is an area of hydrodynamic lubrication resulting in increased contact 

pressure due to the presence of a convergent formed by elements. 

- Pressure Zone: this is the elastohydrodynamic zone characterized by the presence of a high 

pressure that temporarily causes the transition to the glassy state of the lubricant and the elastic 

deformation of the contact surfaces. 

- Zone output: the lubricant is ejected from the contact formed by the divergent parts. This 

implies a drop in oil thickness at contact exit due to flow conservation film. 

 

3. MATHEMATICAL DEVELOPMENT OF A SINGLE BEARING 

3.1. Initial Model 

In this part we consider a rotor, bearing rings and support. The model becomes complex with 

a large number of degrees of freedom (ddl). In our model, we applied three degree of freedom 

system as described in Figure 3, in order to focus the study on the vibration response of the balls 

[7] and Tanaka and Mura [8]. 

The dynamic behavior of rigid bearing support and the contribution of the support is also 

considered. Thus, this simplified model that will be adjusted with the calculation of vibration 

response. 

 

Figure-3. Model of bearing system 
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With: 

M1: Mass of outer ring [kg] 

M3: Mass of  inner ring [Kg] 

M2: Mass of ball [kg] 

K1: stiffness of outer ring [N/m], 

K3: stiffness of inner ring [N / m] 

K21: stiff ball [N / m] 

C22: damping ratio Film external fluid [N.s / m] 

C21: damping coefficient of internal fluid film [N.s / m] 

The different parameters governing the behavior of this model were developed using the 

following analytical elements: 

3.2. The Rings 

We considered a mass-spring system with neglected structural damping, the rigidities of the 

two rings is determined by the following equations: 

Rigidity of the inner ring 
2

3 3 3k M                                                                                   (1)  

Rigidity of the outer ring 
2

1 1 1k M                                                                                         (2)  

Each of inner and outer rings will be represented by a mass-spring combination which 

corresponds to a single degree of freedom system. The internal damping has been neglected. The 

natural frequency of the flexural vibration mode number "n" is given by the following expression: 

4

[ ² 1]

1 ²
n

n n EI

Rn








                                

(3)  

where: 

ωn  angular frequency of mode [rad/s] 

n     order mode 



Review of Energy Technologies and Policy Research, 2014, 1(2): 56-68 

 

 
60 

© 2014 Conscientia Beam. All Rights Reserved. 

E     modulus longitudinal elasticity [N/m2] 

I      moment of inertia cross section of the ring [m4] 

μ      linear density [kg/m] 

R     radius of ring [m]. 

Modes 0 and 1 are considered as rigid modes. Therefore the second mode is considered as the 

first bending vibration mode. The angular frequency of the system to a single degree of freedom 

will be taken as: 

4
2.68n

EI

R





                                                                       
(4)

 

3.3. The Balls 

Rigidity ball has the order of 8.3 109 N / m. Compared to other rigidities, it is considered 

infinitely rigid. Therefore modeling the ball was deemed to be a mass element. 

 

3.4. The Fluid Film 

The development of elastohydrodynamic theory of lubrication (EHD) showed that films with a 

few micrometers thick are occurs in rolling contact. Therefore, the characterization of lubrication 

system depends on the value of lubricant film thickness. The theory developed by Hamrock and 

Dowson [4], expressed in terms of stiffness and damping coefficients dimension film of fluid is 

given by the following expressions: 

 Fluid film stiffness: 

2 2

20 0 0 0

0 0 0 02 2 2 2 5/2 2 3

0 0 0

3 2 (1 )4
[ sin ² sin cos cos ]
(1 ) 4(1 ) (1 )r k

k
W

   
   

   


  

  
          (5) 

  Amortization of fluid film : 

2

20 0

0 0 0 02 2 3/2 2 2 2 5/2

0 0 0

4 (1 2 )4
[ sin ² sin cos cos ]
2(1 ) (1 ) 2(1 )r k

C
W

  
   

   


  

  
           (6) 

With : 

2 2

20

02 2 2 2 1/2

0 0 0

(1 )4
cos

[16 (1 )]r kW




    




 
 

2 1/2

0

0

0

(1 )
tan

4

 







 

0 1
h

c
    

And: 
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λk     defines the ratio of width length of contact area 

φ0    is the maximal angle, described by the distribution charge  

Wr  is the resultant force applied to fluid film 

0    
 is an eccentricity coefficient 

  c     is the diametrical bearing clearance 

  h     is the thickness of the fluid film  

 

4. RESULTS AND DISCUSSIONS 

The general equation to solve a system of three degrees of freedom subjected to three forces, 

depending on the mass matrices, damping and stiffness being have a general form: 

       [ ]. [ ]. [ ].A y B y C y F      

A, B and C represent respectively the masses of balls, damping and stiffness system. 

             

1

2

3

0 0

0 0

0 0

M

A M

M

 
 


 
  

                                     

22 22

22 22 21 21

21 21

0

0

C C

B C C C C

C C

 
 

   
 
  

 

1 22 22

12 22 21 21

21 3 21

0

0

k k k

C k k k k

k k k

  
 

   
 
   

 

The motion vector [5] and the force vector [5]. The vector F represents the impact forces 

generated by the fault of passage balls. 

                      

1

2

3

y

y y

y

 
  

  
 
                      

                    

1

2

3

F

F F

F

 
  

  
 
  

                                           

 The equation of motion, governing this system model is the following:   

1 1 22 1 22 2 1 22 1 22 2 1

2 2 22 2 22 21 2 21 3 22 1 22 21 2 21 3 2

3 3 21 3 21 2 3 21 3 21 2 3

( )

( ) ( )

( )

M y C y C y k k y k y F

M y C y C C y C y k y k k y k y F

M y C y C y k k y k y F

     

         

      

            

                 (7)  

This can be written in matrix form: 
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1 1 1 1
1 22 22 1 22 22

2 2 22 22 21 21 2 22 22 21 21 2 2

3 21 21 21 3 21
3 3 3 3

0 0 0 0

0 0

0 0 0 0

y y y F
M C C k k k

M y C C C C y k k k k y F

M C C C k k
y y y F

                                 
                    

                               




 

 The trivial solution of the equation can be written as: 

AY BY CY F               

It becomes, after multiplication by A-1: 

1 1 1Y A BY A CY A F          

We work in the case without default so F1 = F2 = F3 = 0, 

 Therefore 
1 1 1Y A BY A CY A F       

A-1 is calculated by the shape: 

1 1

det

tA coA
A

 
             

  

 With: 

 1 2 3det( )A M M M
 

And           
1

1

2

3

1
0 0

1
0 0

1
0 0

M

A
M

M



 
 
 
 

  
 
 
 
 

 

By replacing matrices by actual experimental values of the masses (M1, M2, M3), damping (k1, k3, 

k21, k23) and stiffness (C21, C23). 

k1, k2 calculated from (5) 

C21, C23: calculated from (6) 

M1 = 25*10-3 kg, M2 = 2*10-3 kg, M3 = 23*10-3 Kg 

k1 = 107 N/m, k3 = 107 N/m, k21 = 0, 9925 N/m, k23 = 0, 9925 N/m 

C21 = 9, 9072, C23 = 9, 9072 

The mass matrix becomes: 

 

0 0 0

0 9,9 9,9

0 9,9 9,9

B

 
 

  
  

 

With: 
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1

40 0 0 0 0 0

0 500 0 0 9,9 9,9

0 0 43,5 0 9,9 9,9

A B

  
  

   
    

  

And: 

 1

0 0 0

0 4950 4950

0 413,25 413,25

A B

 
 

  
  

 

The damping matrix: 

 

7

8

10 0 0

0 0,99 0,99

0 0,99 10

C

 
 

  
  

 

With: 

 

7

1

8

40 0 0 10 0 0

0 500 0 0 0,99 0,99

0 0 43,5 0 0,99 10

A C

  
  

   
    

 

And: 

 

7

1

7

40.10 0 0

0 495 495

0 43 435.10

A C

 
 

  
  

 

The matrix L which explicitly interpolating numerical application: 

7

7

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

40.10 0 0 0 0 0

0 495 495 0 4950 4950

0 43 435.10 0 413,25 413,25

L

 
 
 
 

  
 
  
    

  

In seeking solutions of X: 
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 6 7

7

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

40.10 0 0 0 0

0 495 495 0 4950 4950

0 43 435.10 0 413,25 413,25

X

X

X
A I X

X

X

X

 
 

 
 

   
 

   
     

 

The polynomial to be solved is given by: 

6 5 9 4 13 3 18 2 21( ) 5,363. 4,75.10 . 2368.10 . 1,74.10 . 8,613.10 . 8,61P X X X X X X X        

The own values are: 

 

4

1

4

2

4

3

4

4

3

5

6

2.10

2.10

6,5763.10

6,6178.10

4,948.10

0,1

V

V

V

V

V

V



 

 





 

 

The vectors associated with each own values are: 

5

1 1 4

5

2 1 4

6 5 2 1

3 2 3 5 6

6 5 2 1

4 2 3 5 6

4

5 2

5.10

5.10

1,0618.10 1,517.10 6,98.10 9,97.10

1,22.10 1,5.10 8,06.10 9,97.10

2,02.10 9,

V e e

V e e

V e e e e

V e e e e

V e





   

   



 

 

   

    

  8 4

3 5 6

5 10 2 11

6 2 3 5 6

55.10 4,72.10

9,95.10 3,83.10 9,95.10 3,83.10

e e e

V e e e e

 

   

 

    

  

The explicit matrix vectors calculated: 
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5 5

6 6 4 1

5 5 8 10

2 2 2

1 1 4 11

5.10 5.10 0 0 0 0

0 0 1,0618.10 1,22.10 2,02.10 9,95.10

0 0 1,517.10 1,5.10 9,55.10 3,83.10

1 1 0 0 0 0

0 0 6,98.10 8,06.10 1 9,95.10

0 0 9,97.10 9,97.10 4,72.10 3,83.10

P

 

   

   

  

   

 
 
 
 

  
 

  
 
    

 

With: 

P: matrix that contains the own vector  

Furthermore P-1 results in the following matrix: 

 

4 1

4 1

4 4 3

1

4 4 3

2 3 3

4 8

10 0 0 85.10 0 0

10 0 0 5.10 0 0

0 3,05.10 3,31.10 0 2,93.10 0,5

0 3,53.10 3,31.10 0 3,4.10 0,5

0 9,994.10 4,98.10 0 1 5,83.10

0 1 1 0 2,02.10 3,47.10

P





 



 

 

 

 
 

 
   

  
   

 
 
    

 

And: 

 

4

4

4

1

4

3

2.10 0 0 0 0 0

0 2.10 0 0 0 0

0 0 6,5763.10 0 0 0

0 0 0 6,6178.10 0 0

0 0 0 0 4,948.10 0

0 0 0 0 0 0,1

P AP

 
 

 
 

  
 
 
 
  

 

And we consider : 

'

1

'

2

'

3

'

4

'

5

'

6

y

y

y y

yy

y

y

 
 
 

   
    
     

 
 
  

 

This vector can be written as follows: 
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'

1

'

2

'

3

''

1

''

2

''

3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Vt

y

y

y
e K

y

y

y

 
 
 
 

  
 

 
 
  

 

With the vector V can be written as: 

1 1

0 I
V

A C A B 

 
  
 

  

The previous system is reflected in the resolution of the matrix: 

4

4

4

4

3

2.10
'

1
2.10'

2

' 6,5763.10
3

''
6,6178.10

1

''
4,948.102

''
0,13

1 0 0 0 0 00 0 0 0 0

0 1 0 0 0 00 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0
0 0 0 0 1 0

0 0 0 0 0
0 0 0 0 0 1

t

t

t

t

t

t

ey

ey

y e

y e

y
e

y
e







    
   
   
   

      
   

         

Hence the withdraws: 

 
42.10

1 1ty e    

Incorporating includes: 

42.10

1 42.10

te
y t A                                                                                                                           

With the initial conditions imposed on the constant A to the value: 

At                      t = 0 then        y1=0                      
4

1

2.10
A    

Hence the solution y1: 

 

42.10

1 4 4

1

2.10 2.10

te
y t                                                                    (10)  

Similarly for y1 we find the general expression of y2: 

 
42.10

2 1ty e    

42.10

2 42.10

te
y t B



     
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 With the initial conditions imposed there is the value of the constant B:  

At          t = 0        y2 =0             
4

1

2.10
B   

Where: 

  

42.10

2 4 4

1

2.10 2.10

te
y t



                                                                                                         (11)  

Integrating is the solution of the vector y3: 

 
46,5763.10

3 1ty e    

46,5763.10

3 46,5763.10

te
y t C



     

  

With the initial conditions imposed there is the value of the constant C:  

At          t = 0            3 0y             
4

1

6,5763.10
C    

46,5763.10

3 4 4

1

6,5763.10 6,5763.10

te
y t



     

 

5. CONCLUSION 

Vibration analysis, for conditional preventive maintenance, proves a wonderful tool for 

several decades for the industry. It serves three levels of analysis: monitoring, diagnosis and 

damage of equipment state. 

This work helped to develop an analytical model that simulates the behavior of a vibratory 

ball bearing with three degrees of freedom. 

The problem addressed in this paper is the development of an analytical simulator vibration 

bearing. Theoretical research is detailed enough to provide a simple model that lends itself easily 

to programming, but powerful enough to incorporate the effect of a maximum of influential 

parameters on the vibration of bearings. 
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