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ABSTRACT 

This paper presents a new efficient approach to   economic load dispatch (ELD) problem with cost functions 

using curve fitting, ANN and particle swarm optimization (PSO). Economic load dispatch is one of the 

most important problems in power system operation. The practical ELD problems may not have fixed cost 

functions rather it changes with the coal quality, that make the problem of finding the global optimum 

difficult using any traditional mathematical approach. Therefore, curve fitting technique is used to obtain 

the coefficients of the cost curve. The same data is used for the training of the artificial neural network. The 

effectiveness of the algorithm is validated by carrying out extensive test on a power system involving 8 

thermal generating units. The variation in calorific values of the coal used in different generators cause the 

change in coefficients of cost curve. This effect is incorporated using curve fitting, ANN and PSO 

approaches. The ELD problem is then optimized. The comparison shows the better results.   

Keywords: Economic load dispatch, Gross calorific value, Curve fitting technique, Artificial neural network, Efficiency in 

thermal generating units, Particle swarm optimization. 

 

Contribution/ Originality  

This study for economic load dispatch is one of very few studies which have investigated for 

variation in calorific values of the coal used time to time in thermal power plants.  This uses the 

comparison of conventional, curve fitting, PSO and ANN. 

 

1. INTRODUCTION 

The economic load dispatch (ELD) is one of the most important optimization problems in 

power system operation and planning to derive optimal economy. The main objective of economic 

load dispatch is to determine the optimal combination of all generating units so as to meet the 

required load demand at minimum cost while satisfying the various operating constraints like 

energy balance, max-min generation limits, transmission line constraints, running spare capacity 
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and network security. A station has incremental operating costs for fuel, maintenance cost and 

fixed cost associated with the station itself that can be quite considerable for a typical thermal and 

nuclear power plant for example. Things get even more complicated when utilities try to account 

for transmission line losses and the seasonal changes associated with hydraulic power plants. 

Conventionally, the cost function for each unit for ELD problem has been approximately 

represented by a quadratic equation and is solved by using various mathematical techniques like 

Lambda-iteration method, Lagrange method, Curve Fitting and Artificial Neural Network etc [1-

4]. Unfortunately, the cost characteristics of thermal generating units are highly non-linear 

because of prohibited operating zones, valve point loading and multi fuel insertion etc. Thus, 

Practical ELD problem is represented as a non linear optimization problem with various equality 

and inequality constraints, which directly cannot be solved by conventional mathematical 

techniques. Hence numerous intelligent techniques like Biogeography-Based Optimization (BBO) 

[5], genetic algorithm (GA) [6], Differential Evolutionary (DE) [7], Evolutionary 

Programming (EP) [8-10], neural network approaches [11], Tabu Search [12] etc were 

introduced to solve complex nonlinear ELD problems over past few years. 

Recently, Eberhart and Kennedy suggested particle swarm optimization (PSO) based on the 

analogy of swarm of bird and school of fish [13]. In PSO, each individual makes its decision based 

on its own experience together with other individual`s experiences. The individual particles are 

drawn stochastically towards the position of present velocity of each individual, their own 

previous best performance, and the best previous performance of their neighbor. PSO have been 

successfully applied to various fields of power system optimization in recent years such as reactive 

power and voltage control [14], power system stabilizer design [15] and dynamic security 

border identification [16]. Yoshida, et al. [14] presented a modified PSO to control reactive 

power and voltage considering voltage security constraint. Since the problem was a mixed-integer 

nonlinear optimization problem with inequality constraints, they applied the classical penalty 

method to reflect the constraint- violating variables. In order to utilize the PSO algorithm to 

solve ELD problem, it is necessary to revise the original PSO to reflect the equality/inequality 

constraints of the variables in the process of modifying each individual‟s search. Victoire and 

Jeyakumar [17] presented a deterministically guided particle swarm optimization (DGPSO) 

algorithm to solve the dynamic ELD of generating units considering the valve-point effects. 

Pandian and Thanushkodi [18] presented an Evolutionary Programming (EP) and Efficient 

Particle Swarm Optimization (EPSO) techniques to solve ELD problems including transmission 

losses in power system. Efficient Particle Swarm Optimization (EPSO) technique is employed so 

that optimized results are obtained, and by applying EP, faster convergence is obtained.  

In this paper, cost characteristics for different coal quality are obtained by curve fitting 

method. The same data is used to train the ANN. The generated power, cost, GCV and these 

values as previous operating point are considered input values of ANN to obtain a, b, c coefficients 

of cost characteristics for all the generators.  The fuel cost curves of generators are represented by 

quadratic equation of real power generation. 
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The coefficients a, b, c of each unit are updated automatically depending upon the point of 

operation used and GCV of coal. It is therefore, expected better result than conventional method 

where a, b, c coefficients are constant throughout all the range of generation irrespective of coal 

quality which may actually change time to time. The remaining organization of this paper is as                                                                               

follows. Section II addresses the formulation of economic load dispatch problem, section III 

describes the curve fitting, ANN and PSO approaches, and section IV describes the results and 

discussion. Finally, the conclusion is given in section V.   

 

2. FORMULATION OF ELD PROBLEM 

The ELD problem is to find the optimal combination of power generations that minimizes 

the total generation cost while satisfying an equality constraint and inequality constraints. The 

most simplified cost function of each generator can be represented as a quadratic function as given 

in (2). 

   (   )       
                         …….(1) 

    ∑    
 
   (   )              …….(2) 

Where 

    is the total fuel cost. 

    is the cost function of generator  . 

    is electrical output of generator  . 

         are the cost coefficients of generator  . 

While minimizing the total generation cost, the total generation should be equal to the total 

system demand plus the transmission network loss. However, the network loss is not considered 

in this paper as all the operating units of a power plant are on single bus. This gives the equality 

constraint 

   ∑    
 
       …….(3) 

Where     is the total power demand.          

The maximum active power generation of a source is limited again by thermal consideration 

and also minimum power generation is limited by the flame instability of a boiler. If the power 

output of a generator for optimum operation of the system is less than a pre-specified value      , 

the unit is not put on the bus bar because it is not possible to generate that low value of power 

from the unit. Hence the generator power P cannot be outside the range stated by the inequality 

     
    

           
      …...(4) 

Where   
   ,    

    is the minimum, maximum output of generator number „ ‟. 

 

3. ELD USING NEW APPROACHES 

A. Overview of Curve Fitting Technique 

A curve which is most near to given points is called approximating curve which may be linear 

or non linear and is called “best fit”. It is obtained by Legendre`s principle of least squares in 

which we minimize the sum of the squares of the deviations of the actual values from their 
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estimated as given by the curve of best fit. According to the above description, the performance 

steps of this technique are as follows [19]: 

      1.  Data generation, which can be implemented in floating point, since this portion 

corresponds to sensors that will be independent of the curve fitting device. 

      2.  Off-line computations which can be implemented in floating points with invariant signals. 

       3.  Run- time computation, which must be implemented in fixed point. 

       4. Data visualization, which must be implemented in floating point.     

       5. MATLAB`s extensive, device independent plotting capabilities are one of its most 

powerful features. 

 

B. Artificial Neural Networks 

Artificial Neural Network, here referred to as ANN, are an attempt at modeling the 

processing power of the human brain. Humans are able to adapt to new situations and learn 

quickly when given the correct context. Computers are relatively slow at performing simple 

human tasks such as recognizing a lizard in a painting of the jungle. ANN work by simulating the 

structure of the human brain. At their basic level they consist of a network of neurons connected 

by synapse.   

Neurons are the basic elements of an ANN. Neurons accept inputs from other connections 

and produce an output by firing their synapse. Neurons typically perform a weighted sum on all 

of their input connections and then pass it through a transfer function to produce its output. The 

traditional ANN is a binary network in which a synapse either fires or doesn`t fire. This type of 

transfer function in which the neurons compares its weighted sum to a threshold and then either 

emits a 1 or a 0 (fires or doesn`t fire its synapse). While binary networks have their uses, most 

engineering applications involve the real number system. ANN has thus been adapted to use real 

numbers.  

In this model are used to the six inputs ppg1, pg1, GCV1, GCV1, fppg1 and fpg1 i.e. obtain the 

output values a1, b1 and c1. In this model, one input layer, one hidden layer and output layer has 

been considered. Total epochs values considered are 300. Learning rate considered is 0.05. 

Number of neurons in the hidden layer is 1. Back propagation method is used. 

 

C. PSO as ELD Problem  

In PSO, the potential solutions, called particles, fly through the problem space by following 

the current optimum particles. The system is initialized with a population of random solutions 

and searches for optima by updating generations. 

PSO is initialized with a group of random particles (solutions) and then searches for optima 

by updating generations. All the particles are updated by following two "best" values in each 

iteration. The first one is the best solution (fitness) it has achieved so far. (The fitness value is also 

stored.) This value is called        . Another "best" value that is tracked by the particle swarm 

optimizer is the best value, obtained so far by any particle in the population. This best value is a 
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global best and called       . When a particle takes part of the population as its topological 

neighbors, the best   value is a local best and is called       . After finding the two best values, the 

particle updates its velocity and positions with following equation (8) and (9) as 

  
(   )      

         ( )  ( 
        

 )         ( )  ( 
        

 )      

 …...(8) 

   
(   )    

    
(   )

     …...(9) 

In the above equation, 

 The term     ( )  (         
 ) is called particle memory influence 

 The term     ( )  (         
 ) is called swarm influence. 

   
  is the velocity of     particle at iteration „u‟  

     and    are constants which pulls each particle towards pbest and gbest positions. 

   is the inertia weight provides a balance between global and local explorations. It is set 

according to the following equation, 

Fig-1. Flow Chart for PSO Algorithm 

 

       [
         

       
]                        …...(10) 

Where 

       - maximum value of weighting factor 

       - minimum value of weighting factor 
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         - maximum number of iterations 

       - current number of iteration 

 

When any optimization process is applied to the ELD problem, some constraints are 

considered. In this work three different constraints are considered. Among them the equality 

constraint is summation of all the generating power must be equal to the load demand and the 

inequality constraint is the powers generated must be within the limit of maximum and minimum 

active power of each unit. The additional constraint is the real time efficiency. The sequential 

steps of the proposed PSO method are given below. 

Step 1) the individuals of the population are randomly initialized according to the limit of each 

unit including individual dimensions. The velocities of the different particles are also randomly 

generated keeping the velocity within the maximum and minimum values.  

Step 2) each set of solution in the space should satisfy the equality constraints. So equality 

constraints are checked. If any combination doesn‟t satisfy the constraints then they are set 

according to the power balance equation. 

Step 3) the evaluation function of each individual    is calculated in the population using the 

evaluation function     (2). The present value is set as the       value. 

Step 4) each       values are compared with the other       values in the population. The best 

evaluation value among the       is denoted as      . 

Step 5) the member velocity v of each individual Pg is modified according to the velocity update 

equation (8). 

Step 6) the velocity components constraint occurring in the limits from the following conditions 

are Checked 

  
          

    

  
          

    

Step 7) the position of each individual    is modified according to the position update equation (9). 

Step 8) If the evaluation value of each individual is better than previous      , the current value is 

set to be      . If the best       is better than      , the value is set to be      . 

Step 9) If the number of iterations reaches the maximum, then go to step 10.Otherwise, go to step 

2. 

Step 10) The individual that generates the latest       is the optimal generation power of each 

unit with the minimum total generation cost.  

 

4. RESULTS AND DISCUSSION 

The proposed methods are used independently to solve case study problem involving 8 

generating units. Usually, training of a neural network is a slow intelligence process. So to speed 

it up optimization is required at every point, i.e., in deciding the neural network architecture, the 

number and type of training or testing patterns, the learning rate, the error goal etc. The training 
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patterns consist of input-output pairs. The proposed approach is tested on a standard test system. 

The initial particles are randomly generated within the feasible range. The parameters        and 

inertia weight are selected for best convergence characteristic. Here    =     = 2.0 The maximum 

value of w is chosen 0.9 and minimum value is chosen 0.4. The velocity limits are selected as 

  
          

    and the minimum velocity is selected as   
          

   . There are 10 no of 

particles selected in the population. 

This test case comprises of 8 generating units with quadratic cost functions given in 

appendixes. The outputs of generating units and aggregate fuel cost comparison for 800 MW and 

850 MW are shown in Table-1 and 2. Comparison for load dispatch using Curve Fitting and 

ANN for different set of data is shown in Fig.2 and Fig.3. The transmission loss is assumed to be 

zero.  

 

Table-1. Comparison of Fuel Costs for 8-Generator System with PD = 800MW 

 Unit1 
(MW) 

Unit2 
(MW) 

Unit3 
(MW) 

Unit4 
(MW) 

Unit  5 
(MW) 

Unit6 
(MW) 

Unit7 
(MW) 

Unit8 
(MW) 

Fuel cost (in 
Rs/Hr) 

Efficiency 42.3 51.4 60.0 52.5 61.9 50.8 61.7 58.6  
Normal 
Loading 

102 83 80 82 195 210 258 258  

ELD 
Conventional 
method 

60 50 50 50 121.4 138.5 165 165 7651.6 

Load Dispatch 
using Curve 
fitting 
GCV3374 

60 50 50 50 121.4 138.5 165 165 7651.6 

Load Dispatch 
using Curve 
fitting GCV 
3400 

60 50 50 50 121.5 138.5 165 165 7618.8 

Load Dispatch 
using Curve 
fitting 
GCV3450 

60 50 50 50 121.5 138.4 165 165 7583.1 

Load Dispatch 
using Curve 
fitting 
GCV3470 

60 50 50 50 121.4 138.5 165 165 7547.2 

Load Dispatch 
using Curve 
fitting 
GCV3500 

60 50 50 50 121.5 138.4 165 165 7510.1 

Load Dispatch 
using Curve 
fitting 
GCV3524 

60 50 50 50 121.4 138.5 165 165 7465.9 

ANN with 
GCV3374 

60 50 50 50 126.9 133.0 165 165 7599.8 

ANN with 
GCV 3400 

60 50 50 50 127 133 165 165 7585.9 

ANN with 
GCV3450 

60 50 50 50 126 133 165 165 7597.08 

ANN with 
GCV3470 

60 50 50 50 126 133 165 165 7225.08 
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ANN with 
GCV3500 

60 50 50 50 125 134 165 165 6928.79 

ANN with 
GCV3550 

60 50 50 50 126 133 165 165 6911.45 

PSO UsingȠ 69.18 50 50 50 115.76 120.83 165 165 7065.25 

 

Table-2. Comparison of Fuel Costs for 8-Generator System with PD = 850MW 

 Unit1 
(MW) 

Unit2 
(MW) 

Unit3 
(MW) 

Unit4 
(MW) 

Unit5 
(MW) 

Unit6 
(MW) 

Unit7 
(MW) 

Unit8 
(MW) 

Fuel cost 
(in 
Rs/Hr) 

Efficiency 42.3 51.4 60.0 52.5 61.9 50.8 61.7 58.6  
Normal Loading 102 83 80 82 195 210 258 258  

ELD Conventional 60 50 50 50 144.9 163.4 166.6 165 8715.56 
ELD using Curve fitting 
GCV3526 

60 50 50 50 144.9 163.4 166.6 165 8715.56 

ELD using Curve fitting 
GCV3540 

60 50 50 50 144.8 163.4 166.6 165 8685.47 

ELD using Curve 
fittingwith GCV 3570 

60 50 50 50 144.9 163.1 166.6 165 8648.02 

ELD using Curve fitting 
GCV4100 

60 50 50 50 144.8 163.2 166.8 165 8612.16 

ELD using Curve fitting 
GCV4120 

60 50 50 50 144.9 163.2 166.7 165 8576.26 

ELD using Curve fitting 
GCV4150 

60 50 50 50 145.0 163.2 166.7 165 8531.31 

ANN with GCV3526 60 50 50 50 151.2 158.7 165 165 8531.3 
ANN  with GCV3540 60 50 50 50 150.6 159.3 165 165 8616.9 

ANN with GCV3570 60 50 50 50 149.6 160.3 165 165 8623.0 
ANN with GCV4100 60 50 50 50 147.3 160.2 167.4 165 8244.0 

ANN with GCV4120 60 50 50 50 146.0 161.4 167.4 165 7937.3 
ANN with GCV4150 60 50 50 50 147.3 166.2 166.2 165 7892.2 

PSO UsingȠ 73.3 53 51.2 52.4 123.5 130.9 165.7 165.7 8235.8 

 

 

Fig-2. Comparison of Total Fuel Cost (in Thousands) obtained by applying curve fitting and ANN against step wise 

increase in different values of GCVs 
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Fig-3. Comparison of Total Fuel Cost (in Thousands) obtained by applying curve fitting and ANN against step wise 

increase in different values of GCVs    

 

5. CONCLUSION 

This paper presents a new approach of considering efficiency (Turbine, Boiler and 

Generator), GCV value of coal as an inequality constraint to solve the economical load dispatch 

problem in thermal power plants. A comparison analysis has been made on a test systems 

comprises 8 generating units for different load demands. Since quality of coal changes time to 

time, the program incorporates the change in GCV of coal. In curve fitting method, we are able to 

obtain a, b, c coefficients of cost characteristics from experimental data. This program may not 

give it best results for new value of GCV. The program using ANN has been trained to obtain a, 

b, c coefficients of cost characteristics from operating point‟s (pg) current value of cost,   GCV and 

previous operating point. Thus ANN based computer programs developed is most robust and 

works dynamically and gives better results in compare to the conventional method as well as 

curve fitting approach.    

 

APPENDIX 

Table-3. Input Parameters of Various Operating Units 

 Normal 
Loading 
( MW) 

Max limit 
(MW) 

Min limit 
(MW) 

Tripping 
limit 
(MW) 

a b C 

Unit1 102 110 60 35 0.3167 -10.9 102.8 

Unit2  83 105 50 35 0.3463 -7.57 100.6 
Unit3  80  85 50 60 0.6362 -23.5 104.6 
Unit4  82  82 50 60 0.5263 -16.2 109.6 
Unit5 195 216 110 30 0.0884 -2.34 63.7 
Unit6 210 216 100 45 0.0839 -4.14 77.77 
Unit7 258 266 165 80 0.0864 -5.49 98.7 
Unit8 258 266 165 75 0.0953 -6.38 58.44 
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Table-4. Total efficiency for various operating units 

Unit 
No. 

Ƞt Ƞb Ƞg Ƞtotal 

Unit1 77.26 68.81 79.73 42.39 (Min) 
Unit2 82.99 69.09 89.80 51.49 
Unit3 82.84 80.10 90.56 60.09 
Unit4 83.15 74.53 84.83 52.57 
Unit5 83.67 79.31 93.34 61.94 (Max) 
Unit6 74.61 72.04 94.65 50.87 
Unit7 87.56 75.82 92.99 61.73 
Unit8 76.61 80.29 95.30 58.62 

 

Table-5. Cost of generator at the different GCVs 

Ppg1 Pg1 GCV1 Fppg1 Fpg1 

63 66 3374 670.56 760.30 
63 66 3400 670.56 760.30 
63 66 3450 670.56 760.30 
63 66 3470 670.56 760.30 

63 66 3500 670.56 760.30 
63 66 3550 670.56 760.30 

  

Ppg2 Pg2 GCV2 Fppg2 Fpg2 

53 56 3526 671.29 761.78 
53 56 3540 671.29 761.78 

53 56 3570 671.29 761.78 
53 56 4100 671.29 761.78 
53 56 4120 671.29 761.78 
53 56 4150 671.29 761.78 

 

Ppg3 Pg3 GCV3 Fppg3 Fpg3 

53 56 3572 645.13 782.60 
53 56 3580 645.13 782.60 
53 56 3588 645.13 782.60 
53 56 3599 645.13 782.60 
53 56 4200 645.13 782.60 
53 56 4210 645.13 782.60 

 

Ppg4 Pg4 GCV4 Fppg4 Fpg4 

53 56 3728 732.03 855.68 
53 56 3740 732.03 855.68 
53 56 3760 732.03 855.68 
53 56 3800 732.03 855.68 
53 56 3860 732.03 855.68 
53 56 3900 732.03 855.68 
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Ppg5 Pg5 GCV5 Fppg5 Fpg5 

191 194 3779 2841.6 2936.7 
191 194 3790 2841.6 2936.7 
191 194 3810 2841.6 2936.7 

    Continue 
191 194 3850 2841.6 2936.7 
191 194 3890 2841.6 2936.7 
191 194 4050 2841.6 2936.7 

 

Ppg6 Pg6 GCV6 Fppg6 Fpg6 

181 184 3955 2000.8 2078.8 
181 184 4000 2000.8 2078.8 
181 184 4050 2000.8 2078.8 
181 184 4100 2000.8 2078.8 
181 184 4160 2000.8 2078.8 
181 184 4200 1996.6 2073.8 

 

Ppg7 Pg7 GCV7 Fppg7 Fpg7 

168 171 3426 1613.4 1684.7 
168 171 3450 1613.4 1684.7 
168 171 3490 1613.4 1684.7 
168 171 4200 1613.4 1684.7 
168 171 4250 1613.4 1684.7 
168 171 4280 1575.5 1610.4 

Ppg8 Pg8 GCV8 Fppg8 Fpg8 

168 171 3600 1674.6 1752.3 
168 171 3650 1674.6 1752.3 

168 171 3700 1674.6 1752.3 
168 171 3750 1674.6 1752.3 
168 171 3800 1674.6 1752.3 
168 171 3850 1645.9 1720.5 

 

NOMENCLATURE 

                  Automatic Generation Control 

                     Quadratic fuel coefficient 

                      Linear fuel coefficient 

                      Minimum fuel used during no load 

                Computer Integrated Plant Management System 

                  Efficiency of generating units 

               Acceleration Constants 

                    Differential Evolution 

                   Economic Load Dispatch 

                    Fuel Cost (in Rupees) 

Gbest                         Best of Pbest called as Global best 

                Total efficiency of generating units 

                Manimum value of efficiency 
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                       Incremental Cost 

Itermax               Maximum number of iteration 

                      Current number of iteration 

                       Gross Penalty Factor for operating unit 

Li
Turbine Effic        Penalty Factor associated with turbine efficiency 

Li
Boiler Effic          Penalty Factor associated with boiler efficiency 

Li
Generator Effic      Penalty Factor associated with generator efficiency 

Li
 Effic                Penalty Factor associated with  efficiency 

MATLAB        Matrix Laboratory 

MW                  Mega-Watt 

ANN                 Artificial Neural Network 

PSO                  Particle Swarm Optimization 

Ƞ                       Efficiency 

GCV                 Gross Calorific Value 

                       Inertia Weighting factor 

WMAX                 Maximum value of weighting factor 

WMIN                 Minimum value of weighting factor 

λ                        Incremental Fuel Cost of the plant 

Pgi         Power generated by generator no. “i” 

GCVi         Gross Calorific Value of Coal in generator  no”i” 

Fpgi         Cost offered by generator no. “i” in  per hour 

Ppgi         Previous Power generated by generator no. “i” 

Fppgi         Previous Cost offered by generator no. “i” in  per hour 
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