
 

 

 
1 

† Corresponding author  
© 2015 Conscientia Beam. All Rights Reserved. 

 

 

 

POSTBUCKLING ANALYSIS OF FUNCTIONALLY GRADED BEAMS USING 

HYPERBOLIC SHEAR DEFORMATION THEORY 

    

Mokhtar Bouazza1† --- Khaled Amara2 --- Mohamed Zidour3 ---- Abedlouahed 
Tounsi4 --- EL Abbas Adda-Bedia5 
1Department of Civil Engineering, University of Bechar,  Bechar, Algeria;  Laboratory of Materials and Hydrology (LMH), 

University of Sidi Bel Abbes, Sidi Bel Abbes, Algeria 

2Laboratory of Materials and Hydrology (LMH), University of Sidi Bel Abbes, Sidi Bel Abbes, Algeria; Department of Civil 

Engineering, University centre of Ain Temouchent , Ain Temouchent, Algeria 

3Laboratory of Materials and Hydrology (LMH), University of Sidi Bel Abbes, Sidi Bel Abbes, Algeria; Department of Civil 

Engineering, University of Ibn Khaldoun, Zaaroura, Tiaret, Algeria 

4,5Laboratory of Materials and Hydrology (LMH), University of Sidi Bel Abbes, Sidi Bel Abbes, Algeria 

 

ABSTRACT 

In the present study, post-buckling of a thick FGM rectangular beam is carried out using the hyperbolic 

shear deformation theory (HYSDT). The theory accounts for parabolic distribution of transverse shear 

stresses across the thickness satisfying the stress free boundary conditions at top and bottom surfaces of the 

beam. It is assumed that elasticity modulus is changing in the thickness direction and all other material 

properties are taken to be constant. Variation of elasticity modulus in the thickness direction, are described by 

a simple power law distribution in terms of the volume fractions of constituents. Governing equations of 

FGM beam for post-buckling problem were found by applying Hamilton principle and Navier type solution 

method was used to solve post-buckling problem. The results obtained for post-buckling analysis of 

functionally graded beams are compared with those obtained by other theories, to validate the accuracy of the 

presented theory. 

Keywords: Functionally graded materials, Beams, Post-buckling, Hyperbolic function, Hamilton principle, Navier t 

solution. 

 

Contribution/ Originality 

This study originates new formula to investigate the postbuckling behaviors of simply 

supported FGM beams subjected to mechanical loads. 
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1. INTRODUCTION 

Functionally graded materials (FGMs), a type of composite materials formed of two or more 

constituent phases with a continuously variable composition, received increasingly growing 

research interests in recent years, because of their high performance in reducing the mismatch of 

material properties and improving the bonding strength [1]. To fit different requirements of the 

mechanical performance, the material properties along the gradient direction of FGMs are often 

designed into variety ways; therefore, the study of FGMs with arbitrary mechanical property is 

necessary. The investigations of dynamic fracture response in FGMs are also significant due to 

the fact that FGMs are usually subjected to dynamic load in engineering problems.  

Miyamoto, et al. [2] discussed the methods of FGM fabrication and general information 

about FGMs including microstructure analysis of the graded materials.. The thermoelastic 

behaviour of functionally graded beams was also studied by Chakraborty, et al. [3]. A beam finite 

element based on Timoshenko’s theory was developed, accounting for an exponential and a power 

law through-the-thickness variation of elastic and thermal properties. Zhao, et al. [4] studied the 

post-buckling of simply supported rod made of functionally graded materials under uniform 

thermal loading using the numerical shooting method. Li, et al. [5] studied the thermal post-

buckling behaviour of a fixed-fixed beam based on the Timoshenko beam theory. They found the 

effect of shear on buckling of homogeneous beams and used the shooting method to analyze the 

post-buckling behaviour of FGM beams. Rastgo, et al. [6] discussed the buckling of functionally 

graded material curved beams under linear thermal loading. They studied both the in-plane and 

out of plane buckling of curved beams. Ke, et al. [7] presented the post-buckling of a cracked 

beam for hinged–hinged and clamped–hinged edge conditions based on the Timoshenko beam 

theory. Also, Ke, et al. [8] presented the free vibration and mechanical buckling of cracked beams 

using the first order shear deformation beam theory for three types of boundary conditions. 

Recently, considerable interest has also been focused on investigating the performance of 

FGM plates. For example, Reddy [9] proposed an analytical formulation relied on a Navier’s 

approach using the third-order shear deformation theory and the von Karman-type geometric 

non-linearity.Vel and Batra [10], Vel and Batra [11]  introduced an exact formulation based on a 

power series for thermo-elastic deformations and vibration of rectangular FGM plates. Also, 

Bouazza and Adda-Bedia [12] expressed the mechanical buckling of plates under three types of 

mechanical loadings for simply supported plates in all edges. Bouazza, et al. [13] investigated the 

post-buckling behavior of a simply-supported FG beam by using Euler–Bernoulli beam theory, 

first-order shear deformation beam theory, parabolic shear deformation beam theory and 

exponential shear deformation beam theory. 

In this present study on the nonlinear response of FGM beams using hyperbolic shear 

deformation theory. The material properties of the beams vary continuously in the thickness 

direction according to the power-law form. The formulations are developed by using HYSDT. 

Governing equations were found by applying Hamilton’s principle. Navier type solution method 

was used to obtain critical buckling loads.  
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2.  ANALYSIS 

2.1. Material Properties 

Consider a rectangular beam made of a mixture of metal and ceramic as shown in Fig. 1. The 

material in top surface and in bottom surface is ceramic and metal respectively. The modulus of 

elasticity E, and the Poisson’s ratio m are assumed as [12-14] 
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where 
cE  and 

mE  denote values of the elasticity modulus at the top and bottom of the beam, 

respectively, and k is a variable parameter. According to this distribution, bottom surface (z = 
-h/2) of functionally graded beam is pure metal, whereas the top surface (z = h/2) is pure 

ceramics, and for different values of k one can obtain different volume fractions of ceramic. 
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denotes the volume fraction of the ceramic and is assumed as a power function as follows: 
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Fig-1. Co-ordinates and geometry of functionally graded beam. 

 

Fig. 2 shows the variation of volume fractions of ceramic in the thickness direction of FGM beam. 

Here, volume fraction for ceramic increases from 0 at z = -h/2to 1 at z = h/2.  

The state of stress in the beam is given by the generalized Hooke’s law as follows: 
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Fig-2. Volume fraction of ceramic along the thickness direction 

 

2.2. Governing Equations 

Based on the assumptions made in the previous section, hyperbolic shear deformation theory 

(HYSDT) proposed by Soldatos [15], Soldatos [16] is used for the mathematical formulation. 

The displacement field of presented theory is as follows: 
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Here, u and w represent middle surface displacement components along the x and z 

directions. The hyperbolic function in terms of thickness coordinate in both the displacement u is 

associated with the transverse shear stress distribution through the thickness of the beam and the 

function 1u  is the unknown function associated with the shear slopes. 

According to the small-strain, moderate-rotation approximations, the nonvanishing strains 

are given as follows: 
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where x  is the normal strain and xz  is the engineering shear strain. 

Here the axial displacement u is assumed to be of order
2w , which is based on the insignificant 

effect of the inplane inertia. Substituting Eq. (5)  into Eq. (6)  yields 
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The following stress resultants are introduced  
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where N and M are the classical well-known force and moment stress resultants, Qs and Ms are 

stress resultants associated with the shear deformation. Using Hook’s law, the stress resultants 

are expressed in terms of the strains as follows: 
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The extensional, coupling and bending rigidities appearing in Eq. (9a) are, respectively, 

defined as follows: 
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Moreover, the transverse shear rigidity appearing in Eq.(9b) is defined according to 
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It should be pointed out that the extensional 11A , coupling 11B  and bending 11D  rigidities 

are the ones usually appearing even in the classical beam theories. Among the additional rigidities 

in Eq. (9a), the one denoted as 11E is considered as additional coupling rigidity while the ones 

denoted as 11F and 11H  are considered as additional bending rigidities. 

The total potential energy can be expressed as follows: 

 
v

L

xzxzxx dxwNdvV
0

2'

2

1
)(

2

1
  

Substituting  Eq. (7) into Eq. (12) and noting the definition of the stress resultants, the potential 

energy can be expressed as follows: 
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The kinetic energy of the composite beam is given by 
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where   is the mass density per unit volume. 

Hamilton’s variational principle states that 
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where   is the first variation and ncW  is the work done by non conservative forces. Applying this 

principle yields the following equations of motion: 
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The equations of motion can be expressed in terms of the displacements, wu,  and 1u . To 

this end, we substitute Eqs (9a) and (9b) into Eqs. (16)–(18) and obtain 
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The boundary-value problem governing the static postbuckling response, expressed in terms 

of stress resultants, can be obtained from Eqs. (16)–(18) by setting all time-dependent terms equal 

to zero and disregarding the non conservative forces. The result is 
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As it is evident from Eq. (23), the stress resultant N, which is the total axial force exerted on 

the beam’s cross section, is a constant. In the context of linear analysis, where the contribution of 

the midplane stretching is negligible, the induced axial force is simply equal to the externally 

applied axial load at the beam ends. As a matter of fact, the midplane stretching introduces a 

tension force on the beam’s cross section. As a result, the total axial force N, which is a constant 

according to Eq. (23), will account for the applied axial force and the induced axial force due to 

midplane stretching. This means that for a compressive external axial force N, the stress resultant 

N will be less than the applied force by an amount that is equal to tension due to midplane 

stretching. Consequently, Eq. (24) that governs the transverse displacement w will be nonlinear. 

To this end, we express the equations governing the static response of the beam in terms of the 

displacements. Eqs. (23)–(25) can be expressed as follows: 
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One notes that Eq. (26) may be solved for the axial displacement u, and hence it can be 

eliminated from the other two equations. This will lead to a flexural model that is given in terms 

of only the displacements unknowns w and 1u . It is worth noting that this is applicable 

regardless of the symmetry property of the structural laminate. Integrating Eq. (26) with respect 

to the spatial coordinate x yields 
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where 1c  is a constant that represents the induced axial tension force due to midplane stretching 

as it will be shown. Integrating Eq. (29) once more, we obtain 
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For the midplane stretching to be significant, the beam ends must be restrained [17]. The 

boundary conditions for the axial displacement are assumed as follows: 

u=0 at x = 0; L 

The constants 1c  and 2c  are now given by 
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Now, Eq. (29) can be rewritten as follows: 
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Eq. (26) and its first derivative can be expressed as follows: 
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Substituting Eqs. (32)-(34) into Eqs. (27) and (28), we obtain 
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Where   is a constant defined by 
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In view of Eqs.(10a) and .(10b), the stress resultants M and Ms are given by 
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These two equations can be solved for ws and u'
1 at the boundaries and obtain 
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  ,0)('

11111

2

11  uDHF       with  =0,L        

Since  1111, HF  ,and 11D  do not vanish, the boundary conditions in terms of the displacements 

can be expressed as follows: 

w= 0 and 0'

1 u  at x = 0,  

The first buckling mode was proofed to be the only stable equilibrium position [18]. For 

simply supported boundary conditions outlined above, the following displacement field is 

assumed:  

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 
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L

x
bxu

L

x
axw





cos)(

sin)(

1 



 

where a and b are unknowns to be determined. Substituting Eqs.(42) and (43) into Eqs. (35) and 

(36), yields three solutions: the first is the trivial solution, 0a , that corresponds to the 

equilibrium position in the pre-buckling state and the other two solutions, 0a  , correspond to 

the stable equilibrium positions in the post-buckling state. As it is well-known, the pre-buckling 

equilibrium position becomes unstable beyond the state of buckling. The post-buckling response 

can be obtained as follows:   

11

2

55

2

2

11

4

11

22

11

2

HAL

F
DLN

A
a






 


 

We note that the buckling amplitude a corresponds to the maximum buckling level that 

occurs at the midspan of the beam where x = L/2. 

On the other hand, the critical buckling load, crN , can be obtained by solving the linear 

counterpart of Eq. (36). The result is 


















11

2

55

2

2

11

2

112

2

HAL

F
D

L
N cr




 

 

3. RESULTS AND DISCUSSION 

The constituent material properties of the FGM beam were chosen as follows [13, 14]: 

Al: ;3.0;70  mm GPaE   

Ceramic: ;3.0;380  cc GPaE   

The nondimensional critical buckling load, crP , is defined as follows: 

cr

m

cr N
Ebh

L
P

3

2

  

Non-dimensional first critical buckling load were given in Tables 1-5 for L/h = 5, 10, 20, 50 

and 100, respectively, for different theories and for different material distributions. It is seen from 

the tables that critical buckling load is decreasing with increasing k and increasing with 

(42) 

(43) 

(44) 

(45) 

(46) 
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increasing L/h ratios. Difference between the critical buckling load predicted by classical beam 

theory and shear deformation theories is decreasing with increasing L/h ratio. 

 

Table-1. Comparison of nondimensional first critical buckling load with different theories for different material 

distribution (L/h = 5,a=0). 

Theory Ceramic k = 0.3  k = 1 k = 3 k = 5 k = 10  Metal 

Classical beam theory [13] 4.906 3.812 2.905 2.305 2.047 1.688 0.904 
First-order shear 
deformation beam theory 
[13] 

4.485 3.498 2.655 2.069 1.824 1.4999 0.826 

Parabolic shear 
deformation beam theory 
[13] 

4.4097 3.447 2.611 1.996 1.741 1.433 0.812 

Exponential shear 
deformation beam theory  
[13] 

4.413 3.721 2.613 1.995 1.737 1.433 0.813 

HYSDT 4,4097 3,447 2,611 1,997 1,741 0,983 0.812 

 

Table-2. Comparison of nondimensional first critical buckling load with different theories for different material 

distribution (L/h = 10, a=0). 

Theory Ceramic k = 
0.3  

k = 
1 

k = 
3 

k = 5 k = 
10  

Metal 

Classical beam theory [13]  4.906 3.812 2.905 2.305 2.047 1.688 0.904 
first-order shear deformation 
beam theory [13]  

4.794 3.728 2.838 2.241 1.987 1.636 0.883 

parabolic shear deformation beam 
theory [13] 

4.772 3.714 2.825 2.219 1.961 1.616 0.879 

Exponential shear deformation 
beam theory [13] 

4.773 3.788 2.826 2.219 1.9598 1.616 0.879 

HYSDT 4,772 3,714 2,825 2,219 1,961 1,688 0.879 

 

Table-3. Comparison of nondimensional first critical buckling load with different theories for different material 

distribution (L/h = 20, a=0). 

Theory Ceramic k = 
0.3  

k = 
1 

k = 
3 

k = 
5 

k = 
10  

Metal 

Classical beam theory [13] 4.906 3.812 2.905 2.305 2.047 1.688 0.904 
First-order shear deformation 
beam theory [13] 

4.878 3.791 2.888 2.288 2.032 1.674 0.899 

Parabolic shear deformation beam 
theory [13] 

4.872 3.787 2.885 2.283 2.025 1.669 0.897 

Exponential shear deformation 
beam theory [13] 

4.872 3.806 2.885 2.282 2.025 1.669 0.898 

HYSDT 4,872 3,787 2,885 2,283 2,025 1,432 0.897 
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Table-4. Comparison of nondimensional first critical buckling load with different theories for different material 

distribution (L/h = 50, a=0). 

Theory Ceramic k = 0.3  k = 1 k = 3 k = 5 k = 10  Metal 

Classical beam theory [13] 4.906 3.812 2.905 2.305 2.047 1.688 0.904 
first-order shear deformation beam 
theory [13] 

4.902 3.809 2.902 2.302 2.045 1.685 0.903 

parabolic shear deformation beam 
theory [13] 

4.901 3.808 2.902 2.301 2.044 1.685 0.903 

Exponential shear deformation beam 
theory [13] 

4.901 3.811 2.902 2.301 2.044 1.685 0.903 

HYSDT 4,901 3,808 2,902 2,301 2,044 0,863 0.903 

 

Table-5. Comparison of nondimensional first critical buckling load with different theories for different material 

distribution (L/h = 100,a=0). 

Theory Ceramic k = 0.3  k = 1 k = 3 k = 5 k = 10  Metal 

Classical beam theory [13] 4.906 3.812 2.905 2.305 2.047 1.688 0.904 

First-order shear deformation beam 
theory [13]  

4.905 3.811 2.904 2.304 2.047 1.687 0.904 

Parabolic shear deformation beam 
theory [13] 

4.905 3.811 2.904 2.304 2.047 1.687 0.904 

Exponential shear deformation beam 
theory [13] 

4.905 3.812 2.904 2.304 2.046 1.6867 0.904 

HYSDT 4,905 3,811 2,904 2,304 2.047 1,688 0.904 

 

 

Fig-3. Variation of the maximum buckling with the applied axial load for L/h = 5. 

 

 
Fig-4. Variation of the maximum buckling with the applied axial load for L/h = 10. 
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It is worth investigating the significance of shear deformation not only on the critical 

buckling load but also on the resulting post-buckling response, which is considered to be the 

contribution of this study. The post-buckling response of simply supported FGM beams using the 

hyperbolic shear deformation theory (HYSDT) is presented. 

Fig.3-4 shows the critical buckling load  crP   vs the   nondimensional amplitude for 

different values of volume fraction exponent k for L/h = 5 and 10, respectively. It is seen that the 

nondimensional axial load increases monotonically as the nondimensional amplitude increases. On 

the other hand, the critical buckling load decreases, when the material gradient index k is 

increased. Comparing Fig. 3 with Fig. 4, the responses are very similar, however, the critical 

buckling load of slenderness ratio L/h=10 is higher than that critical buckling load of slenderness 

ratio L/h=5. 

 

4. CONCLUSION 

In the present paper, equilibrium and stability equations for a simply supported rectangular 

functionally graded beam are obtained using the using the hyperbolic shear deformation theory 

(HYSDT), with the assumption of power law composition for the constituent materials. Closed 

form solutions for the critical buckling load and static post-buckling response of beams are 

presented. Post-buckling responses solutions for simply supported FGM rectangular beams are 

developed using the Navier procedure. From the numerical results and discussion, it is observed 

that, in case of isotropic beam, the critical buckling loads obtained by the presented theory are in 

excellent agreement with those of other refined theories. On the other hand, based on the post-

buckling response, one can conclude that the effect of the shear deformation has considerable 

effect on the critical buckling load of functionally graded beam, especially for a thick beam. 
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