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Most of researchers presented a model to solve combined economic emission dispatch 
(CEED) problem in a precise formulation, but in reality data cannot be reported or 
collected preciously due to several reasons. The impreciseness of the mathematical 
model is occurring due to environmental fluctuations or instabilities in the global 
market which leads to the rapid fluctuations of prices. Therefore, in many cases, the 
various parameters of CEED model cannot be considered in a precise manner.  So, in 
this paper, a new methodology is presented to solve imprecise CEED problem. In this 
methodology, we propose a chaos based enriched swarm optimization algorithm that 
relies on chaos in order to enhance its global search ability. The enriched swarm 
optimization algorithm combining two heuristic optimization techniques, particle 
swarm optimization (PSO) and genetic algorithm (GA) to integrate the merits of both 
them. Also, to improve the search engine visibility of the proposed approach, PSO has 
been enriched with a new evolution scheme; where a chaotic constriction factor is used 
to control the velocity of each particle in the swarm. Furthermore, local search (LS) 
technique is applied to improve the results quality; where it intends to scan the less-
crowded region and obtain more nondominated solutions. Finally, the new 
methodology is carried out on the standard IEEE 30-bus 6-generator test system. 
From the results it is quite evident that our approach gives comparable minimum fuel 
cost and comparable minimum emission or better than those generated by other 
evolutionary algorithms (EAs). Also using the imprecise model enables us to predict the 
best cost and emission for any price fluctuation without solving the problem again. 
 

Contribution/ Originality: This study presents a new methodology for solving imprecise combined economic 

emission dispatch using a chaos based enriched swarm optimization algorithm; where it integrates the main features 

of particle swarm optimization and genetic algorithm. The tests demonstrated that the proposed approach has a 

satisfactory performance compared to previous studies. 

 

1. INTRODUCTION 

In the past two decades optimal power flow (OPF) problem has received much attention, because of its 
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capability to determine the dispatch of generators so as to meet the load demand while minimizing the total fuel 

cost, subject to the satisfaction of all constraints on the system. OPF [1] is considered highly nonlinear, large-scale, 

non-convex, static optimization problem restricted by inequality and equality constraints [2]. Recently more 

objective functions have been embedded into the formulation of OPF. These include optimization of reactive/active 

losses, power system stability, voltage profile, and plants emission. So, OPF definition has been extended from a 

single objective problem to a multiobjective one [3, 4] such as CEED multiobjective problem. The CEED problem 

seeks to minimize the fuel cost with the emissions produced by power system plants. 

Various mathematical and optimization techniques, in the previous literatures, have been used to solve OPF. 

On the other hand, Traditional approaches such as linear programming method, gradient method, quadratic 

programming, nonlinear programming method, Lagrange relaxation method [5-10] etc. have been applied for 

solving the CEED problems. Also, in Liang and Glover [10] the authors proposed the dynamic programming as a 

new algorithm; where there are no restrictions on the nature of cost curves and hence it can solve CEED problems 

if it is convex or non-convex. But, in the solution procedure, dynamic programming has many limitations in the 

problems that have high dimensionality. Generators nonlinear features is the main reason that the classical 

optimization technique may not be able to find a solution in a suitable computational time and also, the restriction 

on these approaches leads to  lack in their robustness and efficiency in a number of practical limitations.  

According to these limitations EAs methods are proposed [11]. EAs are stochastic search algorithm that 

simulates the metaphor of natural biological evolution. Because of their universality, validity for parallel computing, 

and ease of implementation, EAs often take less computational time than the traditional methods to reach the 

optimal solution [12, 13]. In addition, due to the availability of high-speed technology, more interests have been 

focused on the application of EAs techniques for the solution of CEED problem.  

Recently, there has been a boom in applying EAs to solve CEED problems. Several EAs methods, such as GA 

[12-15] artificial neural networks [16] Tabu search [17] evolutionary programming [18] PSO [19-21] ant 

colony optimization [22] differential evolution (DE) [23] and Hopfield neural networks [24] have been developed 

and applied successfully to CEED problems. Also, other powerful techniques called hybridization algorithms have 

been suggested. The hybrid approaches are using to deal with complicated problems such as: fuzzy adaptive hybrid 

PSO algorithm [25] hybrid PSO and sequential quadratic programming (PSO–SQP) [26] hybrid PSO and LS 

scheme (PSO–LS) [27] self-adaptive real-coded GA [28] hybrid chaotic DE and sequential quadratic programming 

(DE–SQP) [29] multiobjective EA based on decomposition (MOEA/D) [30] and combination between ACO and 

EA based on decomposition [31]. 

This paper intends to present a new optimization approach to solve imprecise CEED. The impreciseness of the 

mathematical model in CEED problem is occurring due to environmental fluctuations or instabilities in the global 

market which leads to the rapid fluctuations of prices. Therefore, the various parameters of CEED model cannot be 

considered in a precise manner. The new approach integrates the advantages of both PSO and GA. Also, to improve 

the search engine visibility of the proposed approach and control the velocity of each particle in the swarm; it has 

been enriched with a new evolution scheme (chaotic constriction factor). In addition, to control the velocity of each 

particle in the swarm, PSO has been enriched with a new evolution scheme (chaotic constriction factor). 

Furthermore, LS technique is applied to enhance the quality of the obtained solutions. The results demonstrate the 

abilities of our approach to generate well-distributed Pareto optimal front of the imprecise CEED problem and it 

can help us to predict what happens if there is a change in the system parameters. 

The paper is structured as follows: Section 2 provides prerequisite mathematics on multiobjective optimization. 

Imprecise multiobjective optimization is presented in section 3. Multiobjective imprecise CEED problem is 

discussed in section 4. The proposed approach is described in section 5, while section 6 is introduced the 

implementation of the proposed approach. Results and discussion are given in section 7. Finally, the conclusions are 

drawn in Section 8. 
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2. PREREQUISITE MATHEMATICS 

In this section we discuss some preliminary mathematics which we have used to study the imprecise CEED 

model. Definition 1. (Interval number): An interval number B is represented by a closed interval [ , ]l ub b  and 

defined by  [ , ] : ,l u l uB b b y b y b y R     , where R is the set of real numbers and ,  l ub b  are the lower and 

upper bounds of the interval number respectively. 

Definition 2. (Interval-valued function): Let , 0c d   and consider an interval of the form [ , ]c d , the interval-

valued function of the interval [ , ]c d  is represented as 1( ) ;  [0,1]p ph p c d p  . 

Now some arithmetic operations on interval valued functions is presented. Let [ , ]l uA a a  and [ , ]l uB b b  be 

two interval numbers so that , 0l la b  . 

Addition: [ , ] [ , ] [ , ]l u l u l l u uA B a a b b a b a b      . The interval-valued function for the interval A B  is given 

by 1( ) ,  [0,1];p p

L Uh p a a p   where 
L l la a b   and U u ua a b  . 

Subtraction: [ , ] [ , ] [ , ]l u l u l u u lA B a a b b a b a b      . Provided 0l ua b  . The interval-valued function for the 

interval A B  is given by 1( ) ,  [0,1]p p

L Uh p b b p   where 
L l ub a b   and 

U u lb a b  . 

Scalar multiplication: 
 
 

, ,  if  0
[ , ]

, ,  if  0

l u

l u

u l

a a
A a a

a a

  
 

  

 
  


 provided 0la  . The interval-valued function for 

the interval A  is given by 1( ) ,  [0,1]p p

L Uh p c c p   if 0   and 1( ) ,  [0,1]p p

U Lh p d d p    if 0  , where 

, ,L l U u L lc a c a d a      and U uc a . 

 

3. IMPRECISE MULTIOBJECTIVE OPTIMIZATION 

The following imprecise vector minimization problem (I-VMP) involving interval value parameters in the 

objective and constraints: 

 1 2  ( , ), ( , ),....., ( , )
;

  ( , ) 0

mMin f X a f X a f X a

subject to g X a




 
                                                                                                                   (1) 

where ( , )if X a
 
is the ith objective function; and ( , )g X a

 
is constraint vector, X is vector of decision variables; and 

1 2( , ,.... )na a a a
 
represented a vector of interval numbers in the problem. 

Definition 3. (p-level set): The p-level set or p-cut of the interval numbers a  is defined as 

1( ) { | };p p

p l uL a a a a a 
 
where ,l ua a

 
gives the lower and upper bound for the parameter a . 

For a certain degree p, the imprecise multiobjective problem can be represented as ordinary multiobjective 

problem as follows:  

 1 2

1 2 1 2

1

  ( , ), ( , ),....., ( , )

  ( , ) 0
;

( , ,... ),  ( , ,...., )

, [0,1] 

m

n n

p p

i il iu

Min f X a f X a f X a

subject to g X a

X x x x a a a a

a a a p




 


  
  

                                                                                                                    (2) 
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where constraint ,il iua a  gives the lower and upper bound for the parameters 
ia . 

Definition 4.(p–Pareto optimal solution): *x X  is said to be a p–Pareto optimal solution to the (I-VMP), if and 

only if there does not exist another 1,  ,  [0,1]p p

i il iux X a a a p    such that * *( , ) ( , )  1,2,..., ,i if x a f x a i m    

with strictly inequality holding for at least one i, where the corresponding values of parameters *

ia  are called p-

level optimal parameters. 

In real life applications, input data or related parameters are frequently imprecise, so the concept of Pareto 

stability is introduced for the Pareto optimal solutions of a vector valued problem. 

Definition 5. (Stable Pareto optimality): A Pareto optimal solution x of the I-VMP is said to be stable if and only 

if there exists a real number [0,1]p  such that x is still Pareto optimal if a is replaced by any a  satisfying the 

following requirement: 

1{ | },  [0,1].p p

l ua a a a a p                                                                                                                                          (3) 

Such a solution x is said to be a stable Pareto optimal solution.
 

 

4. MULTIOBJECTIVE IMPRECISE CEED PROBLEM
 

The imprecise CEED involves the simultaneous optimization of fuel cost and produced emission objectives, 

which is presented as follows. 

 

4.1. Objectives  

 Fuel Cost Objective.  

The fuel cost objective can be described as follows: 

2

1

1 1

( ) ( ) ( )$ /
n n

t i Gi i i Gi i Gi

i i

f C C P a b P c P hr
 

                                                                                                              (4) 

where tC : total fuel cost ($/hr), iC : fuel cost of generator i, , ,i i ia b c : interval value fuel cost coefficients of 

generator i, GiP : power generated (p.u.) by generator i and n: number of generators. 

 Emission Objective 

The produced emission objective can be stated as the sum of produced emission, such as xNO , 2SO , thermal 

emission, etc., with suitable pricing or weighting on each pollutant emitted. In this study, only emission xNO  is 

taken into account. The amount of xNO
 
emission is presented as a function of power generator output, that is, the 

sum of a quadratic and exponential function: 

   2 2

2

1

( )  10 exp  /
x

n

NO i i Gi i Gi i i Gi

i

f E P P P ton hr    



      
                                                                         (5) 

where ,  ,  ,  ,  i i i i i     : interval value coefficients of the ith generator's emission characteristic. 

 

4.2. Nonlinear Constraints  

There are many restrictions of the CEED problem which are described in the following:  

 Power Generation Balance Constraint: 

The total power generated must supply the total load demand and the transmission losses [32]. 
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1

0;
n

Gi D Loss

i

P P P


                                                                                                                                                     (6) 

where 
DP : total load demand (p.u.), and 

LossP : transmission losses (p.u.).  

The transmission losses are given by    
1 1

n n

Loss ij i j i j ij i j i j

i i

P A P P Q Q B Q P PQ
 

    
  : 

where    ,  ,  cos ,  sin
ij ij

i Gi D i i Gi D i ij i j ij i j

i j i j

R R
P P P Q Q Q A B

V V V V
            and 

n: Number of buses, 
i : Voltage-angle at bus i, 

ijR : Series-resistance connecting buses i and j, 
iP : Real power injection at bus i, and 

iV : Voltage magnitude at bus i, 
iQ : Reactive power injection bus i. 

 Minimum and Maximum Limits of Power Generation: 

The power generated
GiP by each generator is constrained between its minimum and maximum limits, i.e., 

min max min max

min max

,          ,  

,              1,......,

Gi Gi Gi Gi Gi Gi

i i i

P P P Q Q Q

V V V i n

   

  
 

where 
minGiP : minimum power generated, and 

maxGiP : maximum power generated. 

 Line Security Constraints: 

The CEED problem should consider only the small proportion of lines in violation, or near violation of their 

respective security, which are marked as the critical lines. We consider only the critical lines that are binding in the 

optimal solution. The detection of such critical lines is assumed done by the experiences of the decision maker. An 

improvement in the security can be obtained by minimizing the following function.  

max

1

( ) (| ( ) | / );
k

Gi j G j

j

S f P T P T


                                                                                                                                  (7) 

where  j GT P  is the real power flow max

jT  is the maximum limit of the real power flow of the jth line and k is the 

number of monitored lines. The line flow of the jth line is expressed in terms of the control variables, by utilizing 

the generalized generation distribution factors (GGDF) [3] and is given below. 

1

( ) ( );
n

J G ji Gi

i

T P D P


                                                                                                                                                     (8) 

where, 
jiD is the generalized GGDF for line j, due to generator i. 

For secure operation, the transmission line loading lS is restricted by max , 1,...., ;S S n   where n
 
is the 

number of transmission line. 

 

5. THE PROPOSED APPROACH 

In this section, we propose a new methodology to solve imprecise CEED problem, which combining PSO and 

GA to integrate the merits of both them. In addition, to control the velocity of each particle in the swarm, PSO has 

been enriched with a new evolution scheme (chaotic constriction factor). Furthermore, LS technique is applied to 

enhance the results quality; where it intends to scan the less-crowded region and obtain more solutions. In the 

proposed approach, three phases (PSO, GA and LS) are described as follows: 
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Phase I: PSO 

Step 1: Initialization: A population of N particles with random positions 
0

i

tX 
 and velocities 

0

i

tV 
 on n-dimensions 

is initialized in the problem space; where t is the time counter and 1,....,i N . 

1- For each particle i, identify the local set  0 0  1,...,
i i

t tL X i N  
 

and the local preferred element 

 0 0 0

i i

t t t

iLP X L    . All local sets  0

i

tL 
 for each particle are collected in a pool C such that 0

1
i

N
t

i

C L 



 .  

2- A global set  0tG ND C   is defined as the nondominated solutions in the pool C; where  ND   refers to the 

function which has the ability to determine the nondominated solutions. 

3- For each particle, the distances between 
0

i

tX 
and the members in 

0tG 
are measured using the 

2L as follows: 

   
2

, ,2
1

d , .
D

i j i j i d j d

d

x x x x x x


                                                                                                                     (9)  

The preferred global element 
i

tGP  is defined as the nearest member in 0tG 

 to the i-th particle. Set the external set 

0 0t tE G  . 

Step 2: Update particles: Update the particle velocity and position as follows: 

   1

1 1 2 2i

t t t t t t

i i i i iV wV c r LP x c r GP x                                                                                                                (10)  

1 1t t t

i i iX X V                                                                                                                                                            (11) 

Step 3: Velocity restriction: To restrict the velocity and control it during evolution of particles and enhance the 

performance of PSO, some authors [33-35] use a constant/dynamic constriction factor  . In our algorithm, chaotic 

constriction factor is merged into the PSO to enrich the searching behaviour and avoid being trapped into the 

infeasible region. A well-known logistic equation is employed, where it exhibits chaotic dynamics. 

6

1 0(1 ),  10 , 4,  0,1,2....;n n n n     

                                                                                                         (12) 

where, n is the age of the infeasible particle (How long it's still unfeasible?). 

The new position 
1t

iX 
 depends on the velocity 

1t

iV 
 as in equation (11). Then, 

1t

iV 
 makes the particle i to 

lose its feasibility, so we introduce a chaotic constriction factor   such that new modified position of the particle is 

computed as: 

1 1 t t t

i i iX X V                                                                                                                                                       (13) 

Interested readers could refer to Liu, et al. [35] for more details. The pseudo code of the chaotic constriction 

factor is shown in Fig 1. 
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Procedure make    , : ( 1,2,..., )i i iPOPULATION P X V i N    

While  i N  Do 

6

0 10   

While  ,i i iP X V  unfeasible 

1 1 t t t

i i iX X V    

Check feasibility 

1 (1 ),  n n n        

End  
End 

Fig-1. Chaotic constriction factor Pseudo code. 

Step 4: Update 
i

tL : The new position of each particle 
1

i

tX 
 is added to 

i

tL , to form 
1

i

tL 
 which is updated 

according to algorithm 2 in Fig. 2. 

Step 5: Update G : Update G  as 
1 1

1
i

N
t t

i

G ND L 



 
  

 
. 

Step 6: Update 
tE : Update 

tE  by copying the elements of 
1tG 
 to tE  and dominance criteria is applied to delete 

all dominated elements from tE  (i.e., three probabilities of each element in 1tG   according to algorithm 3 in Fig. 

3). 

 

 

Algorithm 2: Update local set t

iL  

 

   

1

1 1

1

1

1 1

1

Input ,   

       If     (   dominate  ) then  

           

       Else if      then

           /

       Else if    then

         

i i

i i i

i i

i i

i i i

i i

t t

t t t

t t

t t

t t t

t t

L X

X L X X X X

L L

X L X X

L L X X

X L X X



 





 



 



  



 

 

 

1 1

1

  

       End

Output

i i i

i

t t t

t

L L X

L

 





 

Fig-2. Algorithm 2: Evolution of particles 

 

Algorithm 3: Update external set 
tE  

 

   

 

 

1Input ,  

       If     then  

           

       Else if      then

           /

       Else if    then

          

       End

Output

t t

t

t t

t

t t

t

t t

t

E X G

Y E Y X

E E

Y E X Y

E E X Y

Y E Y X

E E X

E



 



  



 



 

Fig-3. Algorithm 3: Update external set 
            

Step 7: Updating 
1

i

tLP 

 
and 

1

i

tGP 
: For each particle i, the distances between 

1

i

tX 

 
and members in 

1

i

tL 

 
and 

1tG 

 are measured using equation (9). The nearest member in 
1

i

tL 
 and 

1tG 
 to the i-th particle is defined as 

1

i

tLP 
 

and 
1

i

tGP 
 respectively.  

Phase 2: GA 

Step 8: Ranking: Ranks individuals (particles) in 
tE according to their objectives value, and returns a column 

vector containing the corresponding individual fitness value, in order to establish the probabilities of survival which 

are necessary for the selection process. 

Step 9: Selection: Two parents are selected to generate new strings (i.e., offspring). Parents are selected from the 

population based on its rank.  The selected parents generate new offspring using GA operator [36]. 
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Step 10: Crossover: In GAs, crossover is used to vary chromosomes from one generation to the next; where it 

combines two chromosomes to yield new offspring. The new offspring may be better than both of the parents if it 

takes the best features from both parents [37].  

Step 11: Mutation: By using mutation, the solution is changed entirely from the previous solution; hence GA can 

go to better solution [38]. 

Step 12: Repairing: The infeasible individual is repaired to be feasible. The repairing approach is applied to the set 

of infeasible individuals up to they become feasible [39]. 

Step 13: Elitist strategy (Replacing): Since evolution in GAs depends on stochastic operators, GAs does not 

guarantee a monotonic improvement in the solutions of the problem unless deterministic overlapping systems are 

used. So, elitist strategy is applied; where some of the best individuals are copied into the next population without 

applying any GA operators.  

 

Phase 3: LS 

To improve the solution quality a modified local search (MLS) is implemented, where it aims to reconnoiter the 

solution space near the best population (particles) and discover the less-crowded areas in the external set to possibly 

obtain more solutions. In this subsection, the MLS is presented, which is a modification of Hooke and Jeeves [40] 

to handle MOP and it is described by the following steps: 

Step 14: Start with the point  n t

mX R E  ; where m is the size of tE . Set the prescribed step lengths
ix in 

each of the coordinate directions ,  1,2,....,iu i n  and 1k   where k is number of trial (s.t., max1,...,k k ) to obtain 

preferred solution than mX . 

Step 15: A perturbation about mX
 
is implemented to obtain the new base point 

'

mX
 
as: 

 

      

      

'

            

           1,2,..., ;

                         

m

m i i

m i i

m

X x u if f f

X X x u if f f f i n

X if f f f



 

 

   
 
 

        
 

     

                                                                       (14) 

where,        ,  m m i if f X f f X x u      and    m i if f X x u    . Assume  f 
 
is the evaluation of the 

objective functions at the new point.
 

Step 16: If the point mX  unchanged and the number of trial k not satisfied, reduce ix  using the dynamic 

equation   max1
k k

i ix x r    ; where r is a random number  0,1r  , and go to step 15.   

Step 17: Else, if 
'

mX  is better than mX
 
i.e.,    '

m mf X f X , then the new base point is 
'

mX  and go to step 18. 

Step 18: With the help of the base points mX
 
and 

'

mX , establish a pattern search direction S as 
'

m mS X X  . 

Find a new point ''

mX  by the equation '' '

m mX X S  ; where  is the step length, which can be taken as 1  . 

Step 19: If    '' '

m mf X f X  set 
'

m mX X , 
' ''

m mX X , and go to step 18. 

Step 20: If    '' '

m mf X f X  set 
'

m mX X , and  go to step 16. 

These steps are applied to all solutions in tE . Fig. 4 shows the pseudo code of the proposed algorithm. 

 

http://en.wikipedia.org/wiki/Genetic_algorithm
http://en.wikipedia.org/wiki/Chromosome_%28genetic_algorithm%29
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Initialization:   , , , , , , : ( 1,2,..., _  ( ))i i i i i iPOPULATION P X V L LP G GP E i pop size N  
 

While (navigation not completed) do
 

Phase 1: 

While (swarm navigation< N1←PSO iteration) Do 

Update    1 1 1, , , , ,t t t t t t t t

i i t i i i i tV X V LP GP X X V     , for all particles 

Velocity restriction 

Update  , , , ,t t t t

i i iL G E LP GP  

End 
Phase 2: 

While (GA generation< N2←GA generation) Do 
Ranking 
Selection 
Recombine (crossover-mutation) 
Repair  
Elitist strategy (Replacing) 

End 
End

 

Phase 3: 

Start with t

mX E Generate '

mX  

While (    '

m mf X f X
 
stopping criterion satisfied) DO 

If '

m mX X  

Reduce ix Generate '

mX  

End 

Set a pattern direction S Generate ''

mX  

If    '' '

m mf X f X , set ' ' '',  m m m mX X X X   

Set S Generate ''

mX  

Else if    '' '

m mf X f X  

'

m mX X  

Fig-4. The pseudo code of the proposed algorithm 

 

6. NUMERICAL SIMULATION 

The described algorithm has been applied to the standard IEEE-30-bus-6-generator test system. The single-

line diagram of this system is shown in Fig. 5, while the detailed data are given in [13, 41]. The values of fuel cost 

($/h) and emission (ton/h) coefficients are given in Table 1. The proposed algorithm used in this study were 

developed and implemented on dual-core processor PC using MATLAB environment. We have kept the parameters 

of the proposed approach as is shown in Table 2. 

 
Fig-5. Single line diagram of IEEE 30 bus-6-
generator test system 
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Naturally, the input data shown in Table 1 involve many controlled parameters whose values are vague and 

uncertain. Consequently each numerical value in the domain can be assigned by a specific "grade of membership" 

where 0 represents the smallest possible grade of membership, and 1 is the largest possible value. Thus every 

interval value parameter a  can be represented by p-grade membership function between 0 and 1 where [0,1]p
 
as 

follows: 

  1

1,

(0,1),

0

u

p p

l ua

l

a a

p grade a a a

a a






  
 

                                                                                                                       (15) 

By using p-grade membership function, these interval parameters can be transformed to  1 ,  [0,1] p p

l ua a p   

having lower bound 
la  and upper bound 

ua , which declared in equation (15). More clearly, if the parameter 10a   

and the variation of this parameter is about 10%  of its value, then its interval value is defined as 0.9(10) 9,la  
 

1.1(10) 11ua   , by taking 0p  , its value equal to its lower bound 
la , 1p  , its value equal to its upper bound 

ua  and for  0,1p  , its value retain in 1 p p

l ua a , while by taking    ln ln ln lnl u lp a a a a    its value is changed 

to become a as in the following equation: 
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                                                                                     (16) 

 

Table-1. Generator cost and emission coefficients 

  G1 G2 G3 G4 G5 G6 

Cost($/h) a 10 10 20 10 20 10 

 b 200 150 180 100 180 150 

 c 100 120 40 60 40 100 

Emission(ton/h)   4.091 2.543 4.258 5.426 4.258 6.131 

   -5.554 -6.047 -5.094 -3.550 -5.094 -5.555 

   6.490 4.638 4.586 3.380 4.586 5.151 

   2.0E-4 5.0E-4 1.0E-6 2.0E-3 1.0E-6 1.0E-5 

   2.857 3.333 8.000 2.000 8.000 6.667 

 

Table-2. The parameter adopted in the implementation of the proposed algorithm 

Parameters Value 

Cognitive parameter (c1) 2.8 

Social parameter (c2) 1.3 

Inertia  weight (w) 0.6 

Crossover probability (Pc) 0.9 

Mutation probability (Pm) 0.02 

Selection operator  roulette wheel selection  
Crossover operator Single point  
Mutation operator Real-value  

Initial constriction factor 0  navigation  3

0 10   

PSO iteration (N1) 5 
GA generation (N2) 5 

 

7. RESULTS AND DISCUSSION  

In order to efficiently obtain the results, the search process is carried out in two steps. Firstly, a set  of 

eficient solutions (nondominated) is obtained at different values of the parameters by using different p  cut 
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level, all the range of the parameter fluctuation were scanned, two bounds of p-grade value have been 

considered 0, 1p p  , and also we take some values between these bounds 0.2,0.4,0.6,0.8p  . Secondly, the 

problem is solved at the standard value of the parameters at    grade ln ln ln lnl u lp a a a a    . Graphical 

presentations of the experimental results for seven instances problems are presented in Figs. 6-12. 
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Fig. 6-c. Best Emission versus generation 
for p-grade = 1 
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Fig-6-b. Best Cost versus generation for p-
grade = 1 
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Fig-6-a. Pareto optimal set for p-grade = 1 
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Fig-7-c. Best Emission versus generation 
for p-grade = 0.8 
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Fig-7-b. Best Cost versus generation for p-
grade = 0.8 
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Fig-7-a. Pareto optimal set for p-grade = 0.8 
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Fig-8-c. Best Emission versus generation 
for p-grade = 0.6 
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Fig-8-b. Best Cost versus generation for p-
grade = 0.6 
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Fig-8-a. Pareto optimal set for p-grade = 0.6 
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Fig-9-c. Best Emission versus generation 
for p-grade = 0.4 
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Fig-9-b. Best Cost versus generation for p-
grade = 0.4 
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Fig-9-a. Pareto optimal set for p-grade = 0.4 
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Fig-10-c. Best Emission versus generation 
for p-grade = 0.2 
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Fig-10-b. Best Cost versus generation for p-
grade = 0.2 
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Fig-10-a. Pareto optimal set for p-grade = 0.2 
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Fig-11-c. Best Emission versus generation 
for p-grade = 0 
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Fig-11-b. Best Cost versus generation for p-
grade = 0 
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Fig-11-a. Pareto optimal set for p-grade = 0 
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Fig-12-c. Best Emission versus generation 

for p-grade =    ln ln ln lnl u la a a a 
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Fig-12-b. Best Cost versus generation for p-

grade =    ln ln ln lnl u la a a a 
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Fig-12-a. Pareto optimal set for p-grade 

=    ln ln ln lnl u la a a a 
 

 

The results show that our algorithm is effective to solve CEED optimization where in one run the Pareto 

optimal solutions can be found. In addition, the optimal Pareto front is well distributed and has satisfactory 

diversity features. The proposed algorithm does not impose any limitation on the number of objectives and it is can 

be extended to include more objectives is a straight forward process. 

For comparison purposes with the recorder results, Table 3 and 4 show the best fuel cost and best 

xNO emission obtained by proposed algorithm for the initial value of the parameters (i.e., 

 

 

ln ln
0.525041

ln ln

l

u l

a a
p

a a


 


) as compared to No NSGA [42] NPGA [43] SPEA [44] and epsilon dominance 

approach [13]. It is quite evident that our approach gives comparable minimum fuel cost and comparable minimum 

emission or better than those obtained by other EAs. 

Also Figs.13, 14 give best cost and best emission versus p-grade. We concluded that the change of the best cost 

is linearly proportional with the p-grade; also the change of the best emission is linearly proportional with the p-

grade which enables us to predict the best cost and emission for any price fluctuation without solving the problem 

again. By other words, if the value p-grade is increased the values of best cost and best emission are increased and 

vice versa. On the other hand, Fig. 15 declares all the Pareto set for all cases (different p-grade). From the figure, 

we can see that when p increased from 0 to 1 the Pareto curve is transformed in the direction of increasing the cost 

and emission. 

 

Table-3. Best fuel cost 

 
NSGA 
[42] 

NPGA 
[43] 

SPEA 
[44] 

ε-dominance [13] Proposed 

Best cost 608.245 608.147 607.807 606.4533 596.3087 
Corresponding Emission 0.21664 0.22364 0.22015 0.2028 0.2173 
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Table-4. Best xNO Emission 

 
NSGA 
[42] 

NPGA 
[43] 

SPEA 
[44] 

ε-dominance [13] Proposed 

Best Emission. 0.19432 0.19424 0.19422 0.1882 0.19420 

CorrespondingCost 647.251 645.984 642.603 642.8976 632.1844 
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Fig-13. Best Cost versus p-grade 
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Fig-14. Best Emission versus p-grade 
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Fig-15. Pareto optimal set for different p-grade 

 

8. CONCLUSIONS 

In this paper we present a new methodology, chaos based enriched swarm optimization, for solving imprecise 

CEED. In the proposed approach, PSO has been enriched with a new evolution scheme, such that the movement of 

each particle is controlled using chaotic constriction factor to enhance the search engine visibility. In addition, the 

quality of the obtained solutions is improved by applying LS technique; where it aims to explore the less-crowded 

area and obtain more solutions. Also, we introduced p-grade function using to solve the CEED problem under 

imprecision. Moreover, the proposed approach is applied to the standard IEEE 30-bus 6-generator test system to 

illustrate its capability to generate true Pareto front of the CEED with well distribution. The main features of our 

approach could be summarized as follows: 

(a) The results show that our approach is effective for solving CEED optimization where in one run the Pareto 

optimal solutions can be found.  

(b) The obtained Pareto fronts have satisfactory diversity features with good distribution. 

(c) Our algorithm does not levy any limitation on the number of objectives. 

(d) the proposed approach gives comparable minimum fuel cost and comparable minimum xNO  emission or better 

than those obtained by other EAs that reported in the literature 

(e) Implementation of chaotic constriction factor improve search engine visibility by controlled the movement 

velocity of each particle and accelerate the convergence of our approach. 

(f) Using p-grade function concluded that the change of both the best cost and the best emission is linearly 

proportional with the p-grade; which enables us to predict the best cost and emission for any price fluctuation 

without solving the problem again.  
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(g) The change of the value of p from 0 to 1 show that the Pareto curve is transformed in the direction of increasing 

the cost and emission which enables us to forecast the place of Pareto curve for any changeable of the 

parameters. 

Generally speaking, the improvement of our algorithm performance still remains in the experimental stage for 

lack of solid theoretical support; thus, for further work, we aim to test it on more real-life applications that have 

more than two objectives. 
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