
 

 
85 

† Corresponding author  
© 2016 Conscientia Beam. All Rights Reserved. 

UNSTEADY PLANE COUETTE FLOW OF AN INCOMPRESSIBLE COUPLE STRESS 
FLUID WITH SLIP BOUNDARY CONDITIONS 

 

Hikmat S. Saad1† --- E. A. Ashmawy2 
1,2Department of Mathematics and Computer Science, Faculty of Science, Beirut Arab University, Beirut, Lebanon 

 

ABSTRACT 

In this work, the unsteady flow of an incompressible couple stress fluid between two parallel plates is studied. Slip boundary 

conditions are applied on the two plates and vanishing couple stress condition at the boundaries is assumed. The upper plate is 

suddenly moved with time dependent velocity while the other plate is fixed. The problem is solved analytically in the Laplace 

domain through the use of Laplace transform technique. The inverse transform of the fluid velocity is obtained numerically. The 

velocity profiles for different times and different physical parameters are plotted and the numerical results are discussed. 
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Contribution/ Originality 

This paper contributes to the field of couple stress fluids by applying the more realistic slip condition to 

Couette flow of an incompressible couple stress fluid. It is found that the time, the couple stress coefficient and the 

slip parameters have significant effect on the flow field. 

 

1. INTRODUCTION 

After many studies acknowledged the inadequacy of the classical Navier-Stokes theory for describing 

rheological complex fluids, researchers attempt to develop several theories related to non-Newtonian fluids. The 

studies of non-Newtonian fluids have gained great momentum recently because of the belief of various researchers 

that such theories can have widespread contributions and applications in an array of scientific, technological, and 

industrial fields. One new branch of the non-Newtonian fluids which has witnessed a growing interest in the last 

five decades is namely the couple stress fluid. 

The couple stress fluid theory, introduced first in 1966 by Stokes [1] is one kind of the various polar fluid 

theories which consider not only the classical Cauchy stress but also couple stresses. Couple stress fluids are fluids 

that contain rigid randomly oriented particles suspended in a viscous medium. Stokes developed this theory which 

preserves the presence of couple stresses and body couples and represents the simplest generalization of the 

classical fluid theory. An excellent introduction to the couple stress fluid theory is described elaborately by Stokes 

[2] himself in his treatise. The theory entirely sheds lights on the potential effects of couple stresses assuming that 

the fluid has no microstructure at the kinematical level, and it’s the velocity field that determines the kinematics of 

motion. What characterizes the concept of couple stresses is the way in which the mechanical interactions in the 

fluid medium are represented and the stress tensor is not symmetric. The essential equations associated with the 

couple stress fluid flow are aligned by those of the classical Navier-Stokes equations, yet the order of the differential 

equations in the couple stress fluid is increased by two. 
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This couple stress theory has been broadly used due to its relative mathematical simplicity in comparison to the 

previous models developed for the polar fluids. Numerous applications have been recorded in the theory of 

lubrication by Naduvinamani, et al. [3] in addition to modeling the flow of synthetic fluid, polymer thickened oils, 

liquid crystals, animal blood, and synovial fluid present in synovial joints [4, 5]. 

The Navier-Stokes equations of fluid flow are typically solved assuming the validity of the no-slip boundary 

conditions where all the three components of the fluid velocity on a solid surface are equal to the respective velocity 

components of the surface. The no-slip boundary condition, applicable when a viscous fluid flows over a solid 

surface, was an inevitable consequence in the early development of fluid mechanics. Under normal conditions, the 

no slip boundary appeared to provide realistic explanations and experimental evidence for those who incorporated 

such an assumption. However, in the studies that were conducted during the previous century, this assumption has 

become much less clear and it was shown that such condition might not always hold. In fact, going back to 1823, 

Navier [6] proposed a slip boundary condition which suggests that the tangential velocity of fluid relative to the 

solid boundary at a point on its surface is proportional to the tangential stress acting at that point. Neto, et al. [7] 

have made a review of experimental studies on the boundary slip of Newtonian liquids. In view of this, several 

researchers have studied different flow problems in various configurations while using the slip boundary condition. 

Lately, Ashmawy [8]  studied the unsteady plane Couette flow of micropolar fluid with slip condition. Neill, et al. 

[9] used the Basset type linear slip boundary conditions to remove the contact-line singularity. More recent studies 

and researches discussing the effect of slip conditions in viscous and micropolar fluid flows were conducted. Ellahi 

[10]  studied the effect of the slip boundary condition on non-Newtonian flows in a channel, Yang and Zhu [11] 

investigated the analytical solution for squeeze flow of the Bingham fluid with slip, Sherief, et al. [12] discussed the 

slip flow between two confocal rotating spheroids. The fully developed natural convective micropolar fluid flow in a 

vertical channel with slip and the unsteady slip flow of a micropolar fluid between parallel plates were solved by 

[13, 14]. 

Devakar and Iyengar [15] obtained the solution of the flow of couple stress fluid between concentric cylinders with 

slip boundary conditions. These same authors have already conducted a thorough investigation of the flow of 

incompressible couple stress fluid between two parallel plates using the slip boundary condition [16]. Recently, 

Shantha, et al. [17] studied the unsteady Plane Couette flow of a couple stress fluids with no slip conditions. To the 

best knowledge of the author, the study of the unsteady plane Couette flow of an incompressible couple stress fluid 

have not been solved subject to slip boundary condition. 

The focus of this work is the unsteady couple stress fluid flow between two infinite horizontal parallel plates 

distant 2h apart, where the upper plate is moving with a time dependent velocity and the lower plate is kept 

stationary. The effects of time, slip and couple stress parameters are studied. The Laplace transform technique and 

differential equation methods are used to obtain the analytical expression of the velocity in the Laplace domain. A 

standard numerical inversion technique is used to invert the Laplace transform of the velocity. The numerical 

results are presented graphically and discussed. 

 

2. GOVERNING EQUATIONS, PROBLEM FORMULATION AND SOLUTION 

The flow of an incompressible couple stress fluid, in the absence of body forces and body couples, is described 

by the following differential equations: 

0 q


 (1) 

qηqμp
dt

qd
ρ




 , (2) 

Where  and q


 are the density and the velocity of the fluid respectively, p is the fluid pressure at any point, 

 denotes the viscosity coefficient and  is the couple stress viscosity coefficient. 

The constitutive equation connecting the force stress tensor and the rate of deformation tensor is given by: 
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 
rrkkijkijijij wmdpt ,, 4

2

1
2   , (3) 

Where the deformation tensor is given by 

 
ijjiij qqd ,,

2

1
  (4) 

The couple stress tensor is represented as follow 

ijjiijij wwmm ,, 44
3

1
   , (5) 

Where qw



2

1
 is the spin vector, jiw ,  is the spin tensor, m is the trace of the couple stress tensor ijm and '  

is the couple stress viscosity coefficient. ij , ijk represent respectively the Kronecker delta and the alternating 

tensor.  

Note that, as 0 , equation (2) reduces to the Navier-Stokes equation of motion for classical viscous fluid. 

Also, the viscosity parameters satisfy the inequalities   ' ,0 ,0 .         

Consider the unsteady flow of an incompressible couple stress fluid between two infinite horizontal plates 

separated by a distance h2 . Assume that the two plates are initially at rest. At time  0t , the upper plate is 

suddenly moved with an arbitrary velocity )(0 tfvU  , setting the fluid into motion, where 
0v  is a constant with 

dimensions of velocity, while )(tf is an arbitrary function of time t. 

This is the case of an unsteady unidirectional flow described in Cartesian coordinate  zyx ,, , where the x-axis is 

parallel to the flow direction, the origin of the Cartesian system is on the plane of symmetry of the flow, the y-axis 

is normal to the plates and the z-axis is perpendicular to the plane of the flow. 

For unsteady unidirectional flow, the only non-zero component of the velocity of the fluid is the x-component, 

the velocity field is   0,0,, tyuq 


, which satisfies the equation of continuity (1) automatically. 

While the equation of conservation of momentum (2) reduces to 

4
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


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







 . (6) 

The initial and the slip boundary conditions applied to the problem are assumed to be of the form 

  yallforyu 00,  , (7) 
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2 0,  , (9) 

  21  and  are respectively the slip parameters of the upper and the lower plate such that  21,0  . These 

parameters depend only on the material of the plates and on the nature of the fluid. As a special case, when 

21,  we obtain the classical no-slip case. 

The boundary conditions of vanishing couple stresses are of the form 

0
2

2



















hy
y

u
, (10) 
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Now, we introduce the following non-dimensional variables                                                 

t
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In view of these variables, equation (6) can be written in the form 
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Where  3

0 hvR    and  2ha  . 

After dropping the hats, equation (12) becomes 
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In terms of the non-dimensional variables, equations (8) and (9) are reduced, after dropping the hats for convenience 
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Such that 2,1,  ih ii  . 

Also, equations (7), (10) and (11) become after applying the non-dimensional variables and dropping the hats 
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Introducing the Laplace transform defined by the formula 

   




0

,, dttyFesyF st , 

The partial differential equation (13) can be reduced to 
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The vanishing couple stresses and slip boundary conditions (14), (15), (17) and (18), after applying the Laplace 

transform, take the form 
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The solution of equation (19), in the Laplace domain, is given by 

  ymymymym
eAeAeAeAsyu 2211

4321,


  , (24) 

Where 1m and 2m are the roots of the characteristic equation  

 0224  Rsmam . 

Substituting equation (24) into equations (20), (21), (22) and (23), we get a system of four equations in four 

unknowns
4321 ,, AandAAA . 

The expressions of 
4321 ,, AandAAA as follows 
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3. THE NUMERICAL INVERSION OF LAPLACE TRANSFORM 

By adopting a numerical inversion technique developed by Honig and Hirdes [18] the expression of the 

velocity  tyu ,  is obtained. An outline of this method is mentioned below. 

The inverse Laplace transform of the function  sg  denoted by  )()( 1 sgLtg   is approximated by 
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where N is a sufficiently large integer chosen such that 
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 The quantity  is a small positive number that corresponds to the degree of accuracy required. The parameter 

b is a positive free parameter that must be greater than real parts of all singularities of  sg . 

 

4. DISCUSSION OF THE NUMERICAL RESULTS 

In this section, we present the obtained numerical results graphically for the variation of the velocity through 

the mean of the inversion numerical technique outlined above. Two different cases are considered. 

 

Case1: Flow due to the sudden constant motion of the upper plate 

In this case, we assume that the upper plate is moving with a constant velocity  tHv0
, where  tH  is the 

Heaviside unit step function, defined by 

  









00

01

tif

tif
tH  

Fig.1 shows the distribution of the velocity versus the distance y between the two plates for different times 

when the no-slip at the boundaries is assumed and the couple stress coefficient is kept fixed. It can be observed that, 

for any fixed y, the velocity increases as the time increases and the steady state case is obtained when the parameter 

t is very large. Fig.2 represents the behavior of the velocity with respect to the distance y as the dimensionless slip 

velocity parameter of the upper plate 1 increases, for a fixed t=0.5, couple stress coefficient =0.01and very large 

slip parameter 2  of the stationary plate (No-slip at the lower plate).It can be seen that the increase of α1 increases 

the value of the velocity. Also, the classical case of no-slip can be obtained when the slip parameter α1 tends to 

infinity.  From fig.3, the variation of the velocity for diverse values of slip velocity parameter 2 of the lower plate is 

plotted when t=0.5, =0.01 and large 1 . It can be observed that as the slip velocity parameter of the stationary 

plate increases there is a decrease in the velocity. Fig.4 depicts the velocity profile for different values of the couple 

stress parameter when the other parameters are fixed. The graph shows that as the couple stress parameter 

increases the velocity increases too.      

     

  

Figure-1. Velocity variation versus distance at ƞ= 0.01.α1 α2 =∞ and at 
different times for case 1 

Figure-2. Velocity variation versus distance at ƞ= 0.01.α1 α2 =∞ t=5 

and at different α1 for case 1 

 
 

Figure-3. Velocity variation versus distance at ƞ= 0.01.α1 α2 =∞ t=5 

and at different α2 for case 1 

Figure-4. Velocity variation versus distance at ƞ= 0.01.α1 α2 =∞ t=5 

and at different ƞ for case 1 
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Case2: Flow due to the sudden oscillatory motion of the upper plate 

In this case, we assume that the upper plate is oscillating with a velocity tv sin0
. In the figures 5-8, we study the 

variation of the velocity for different times and for different slip and couple stress viscosity parameters. The effects 

of these parameters are similar to the earlier one. 

 

  

Figure-5. Velocity variation versus distance at ƞ= 0.01.α1 α2 =∞. and 
at different times for case 2 

Figure-6. Velocity variation versus distance at ƞ= 0.01.α1 α2 =∞. 

t=0.5 and at different α1 for case 2 

 
 

Figure-7. Velocity variation versus distance at ƞ= 0.01.α1 =∞. t=0.5 

and at different α2 for case 2 

Figure-8. Velocity variation versus distance at ƞ= 0.01.α1 α2 =∞. 0.5  

and at different ƞ for case 2 

 

5. CONCLUSION  

The unsteady motion of an incompressible couple stress fluid confined between two parallel horizontal plates of 

infinite dimensions is investigated, in the absence of the pressure gradient and under the application of the slip 

condition on the surfaces of both plates. The fluid’s flow is due to the sudden motion of the upper plate. The study is 

carried out for two cases; the first case allows the upper plate to move with a constant velocity in the positive 

direction of the x-axis, while the second one assumes that the upper plate oscillates tangentially along the x-axis. 

The analytical expression of the fluid velocity is found in the Laplace domain using the condition that the couple 

stresses are absent on the boundaries. The velocity field is obtained in the real domain using a standard numerical 

inversion procedure. 

The study showed that the increase of time enhances the magnitude of the fluid velocity and the steady state 

solution is obtained from the first case when the time takes large values. In addition, it is of interest to see that, near 

the upper plate, the raise in the slip parameter amplifies the velocity considerably, whereas, at the stationary plate, 

this trend is reversed, and the decrease is not significant. Besides, the classical case of no-slip is recovered as a 

special case when the slip parameters tend to infinity. Furthermore, the presence of couple stress parameter causes 

notable increase in the velocity field, and the case of classical viscous fluid can be obtained from this work when the 

couple stress coefficient is taken zero. 
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