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ABSTRACT 

In this work, the advection diffusion equation is solved in two dimensional space (x, z) which depends on 

time using Laplace transform technique to evaluate crosswind integrated of pollutant concentration per 

emission rate. Two schemes of the eddy diffusivities to get two models (1&2) were applied to evaluate 

crosswind integrated concentration per emission rate according to boundary layer parameterization. 

Terabassi et al model was taken as a reference model.  Comparison between these two models, reference 

model and observed data were carried out. The observed Copenhagen data set is composed of SF6 tracer due 

to dispersion experiments carried out in Northern Copenhagen, 20 minutes averaged measured 

concentrations were used.One finds all models were inside a factor of two. Model 2 and reference model 

were better when compared with the observed data than model 1 with respect to NMSE. The two models 

are better with respect to FB than reference model. All models were good with respect to the correlation 

coefficient except model 1.Finally, we can conclude that predicted (Cp) crosswind-integrated concentration 

normalized with the emission source rate for all models were inside a factor of two with observed data (Co).  

Crosswind- integrated concentration normalized with the emission source rate for all models were good 

when compared with observed data via downwind distances.  

Keywords: Laplace transform technique, Crosswind concentration, Advection equation, Downwind distance, 

Analytical solution, Eddy diffusivities. 

 

Contribution/ Originality 

This study contributes in the existing literature with solving the advection diffusion equation 

in two dimensional spaces (x, z) which depends on time using Laplace transform technique to 

evaluate crosswind integrated of pollutant concentration per emission rate. Two schemes of the 

eddy diffusivities to get two models (1&2) were applied to evaluate crosswind integrated 

concentration per emission rate according to boundary layer parameterization. Terabassi et al 

model was taken as a reference model.  Comparison between these two models, reference model 
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and observed data were carried out. This study uses new modeling proposal for estimation of 

crosswind-integrated concentration normalized with the emission source rate. 

 

1. INTRODUCTION  

Atmospheric dispersion modeling refers to the mathematical description of contaminant 

transport in the atmosphere. The term dispersion in this context was used to describe the 

combination of diffusion (due to turbulent eddy motion) and advection (due to wind) that occurs 

within the earth’s surface air. The concentration of a contaminant released into the air may 

therefore be described by the advection – diffusion equation, which is a second –order partial 

differential equation (PDE) of parabolic type.  Analytical and approximate solutions for the 

atmospheric dispersion problem have been derived under wide range of simplifying assumptions, 

as well as various boundary conditions and parameter dependencies. These analytical solutions 

are especially useful to engineers and environmental scientists who study pollutant transport, 

since they allow parameter sensitivity and source estimation studies to be performed [1].  

Both our scientific understanding and technical developments have been greatly increased by 

the use of empirical, analytical and numerical models to predict air pollution concentration in the 

atmosphere. For this purpose, the advection – diffusion equation has been largely applied in 

operational atmospheric dispersion models. In principal, from this equation it is possible to 

predict mean concentrations of contaminants in the planetary boundary layer due to a continuous 

point source by given appropriate boundary and initial conditions plus knowledge of the mean 

wind velocity and concentration turbulent fluxes [2]. 

Many turbulent dispersion studies are related to the specification of these turbulent fluxes to 

allow the solution of the averaged advection –diffusion equation. 

The main objective of this work is to derive the advection diffusion equation in two 

dimensional spaces (x, z) which depends on time using Laplace transform technique to evaluate 

crosswind integrated of pollutant concentration per emission rate. Boundary parameterizations 

were applied in two models of the eddy diffusivity coefficient. Comparison between these two 

models, reference model [3] and observed data were carried out. The observed Copenhagen data 

set is composed of SF6 tracer from dispersion experiments carried out in northern Copenhagen, 

20 minutes averaged measured concentrations were used. 

 

1.1. Analytical Solution 

A typical problem in air pollution is to seek the solution for the cross-wind (y direction) 

integrated of pollutant concentration for a continuous source of pollution in the from Tiziano, et 

al. [3]:- 

     , , , , , ,C x z t C x z t C x z t
u K

t x z z

   
   

    

                                          (1) 
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where C denotes the crosswind integrated of pollutant concentration, Kis the vertical 

turbulent eddy diffusivity coefficient of the PBL into N sub- intervals [3] and u is the mean wind 

oriented in the x direction. 

Equation (1) is subjected to the following boundary condition 

u C(x, z, t) =Q δ (z-hs)  at x=0                                                                                                      (i)    

C(x, z, t) = 0          at t = 0                                                                                                            (ii) 

C(x, z, t) = 0         at z → ∞                                                                                                         (iii) 

K ∂ C(x, z, t)/ ∂ z = 0     at z=0,h                                                                                                 (iv) 

Q is the emission rate, hs is the stack height, h is the height of PBL and δ is the Dirac Delta 

function. Bearing in mind the dependence of the Kz coefficient , h is the height of PBL  is 

discretized in N sub- intervals  in such a manner that inside each interval Kz  assume average 

value [3]:- 

 1

1

1
n

n

z
n zz

n n

K K z dz
z z





 


                                               (2) 

Therefore the solution (1) is reduced to the solution of N problems of the type:  

     2

2

, , , , , ,n
n

C x z t C x z t C x z t
u K

t x z

  
 

  

                                        (3) 

For n=1,2,3 .., N-1, where C =C n denotes the concentration at the nth sub-interval [3]. 

Applying the Laplace transform on equation (3) to x, t, we get that:- 

 
   

2

2

, ,
, ,

n
n s

n n

C s z p p us Q
C s z p z h

K Kz


  
    

  

                             (4) 

where  , ,C s z p  = Lp{C  (x, z, t); x→s, t→p}, and Lp is the operator of the Laplace 

transform. 

The Equation (4) nonhomogeneous partial differential equation, the general solution of this 

equation consists of two solutions, the first solution is homogeneous equation and the second is 

special solution, to solve the homogeneous solution from equation (4), Let: 

- (Q / k) δ (z- hs) has a solution in the from Spiegel [4]: 

  1 2, ,

p u s p u s
z z

K KC s z p c e c e

 


                                        (5) 

Substituting from (iii) on equation (3), we get that:- 

c1=0 

  2, ,

p u s
z

KC s z p c e




                                                                           (6) 

Applying the Laplace transform on equation (i) to x, t, we get that:- 
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, , 1
s

C s z p
z h

Q u s p
                                                                                    (7) 

Compared between (6) and (7), we get:- 

 2

p
z

K
s

Q
c e z h

u s p
                                                    (8) 

Substituting from equation (8) on equation (7), we get that:- 

   

 

, ,

, , exp

p p us
z z

K K
s

s s

Q
C s z p z h e e

u s p

Q p us p
C s z p h h

u s p K K




 

  

 
    

 

                                  (9) 

Where, 

2

1 ,
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                                  (10) 

Applying the Laplace inverse transform on equation (10), we get that:- 

 
2

, , 1n s

n

C x z t h t

Q u x t K 
                                                                         (11) 

where 
 

 
1

1 1 11 1
, 0 1

n
n

n

t
L L s and L

n ss


     

     
   

 

To solve the second special solution from equation (4) have that:- 

   

2

, , sn

n

n

z hC s z p

Q p u s
K D

K

 


  
  
  

                                                              (12) 

Then, the general solution to this form is given by: 

 

Where: D =
z





 
( )

R z
y z

D m



 

 ( )m z m ze e R z dz
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Then, the general solution to this form is given by: 

The solution to equation (12) is given by: 

 

 

 

 

2, , 1
exp

2

s

s

z h h
n

z h
n

C s z p

Q K p u s

 



  
   

     

                                 (13) 

Substituting from equation (8) on equation (12) and applying the Laplace inverse transform 

on equation (13), we get that 

   

 

2, , 1
exp

2

s

s

z h h
n

z h
n

C x z t

Q K t

 



  
  

  
  

                                                (14) 

Summation the equations (14) and (11) we have the general solution of equation (2) on the form: 

   

 

2

2

, , 1 1
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z h h
n s
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                          (15) 

 

1.2. Boundary Layer Parameterization 

We applied a parameterization proposed by Troen and Marth [5] as presented in Pleim and 

Chang [6]. 

The vertical eddy diffusivity (in model 1) [7] in near and stable conditions ( 10iZ

L
  ), in the 

form:  

 

 

2

*

1
2

1

161

i
z

h

h

ku zz
z

K
z

L

zwhere
L








  
 

 

 

Where k is the Von Karman constant (k~0.4), Zi is the boundary layer height, z is the height 

at 115 m and w* is the convective velocity scale. The vertical eddy diffusivity (in model 2) during 

convective ( 10iz

L
  ) the frication velocity ( u ) as scaling velocity in the form: 

1
z

i

K k w zz
z

  
 

 

1.3. Validation and Experimental Data 

A preliminary evaluation of the performances of the two models (with the boundary layer 

parameterization proposed), using the Copenhagen data set were applied [7, 8]. The Copenhagen 

data set is composed of tracer SF6 data from dispersion experiments carried out in northern 

Copenhagen. .In practical, we used 20 minutes averaged measured concentration. In Table (1) 

Comparison between the predicted and observed crosswind- integrated concentration normalized 
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with the emission source rate at different boundary layer height, distance, wind speed and scaling 

convection velocity for the different runs.  

In figure (1) scatter plot of observed (Co) versus predicted (Cp) crosswind- integrated 

concentration normalized with the emission source rate. Points between dashed lines are in a 

factor of two. Figure (2), shows comparison between distance and crosswind- integrated 

concentration normalized with the emission source rate, we find most points inside factor of two.  

In Table (2) Comparison between three models according to standard statistical performance 

were applied. 

 

Table-1. Comparison between predicted and observed crosswind- integrated concentration normalized with the emission 

source rate at different boundary layer height, downwind distance, wind speed, scaling convection velocity and distance for 

different runs. 

Run no. 

Zi (m) U 
(m/s) 

X(m) w* 

(m/s) 
C/Q(10-4s/m2) 

observed Model 1 Model 2 Ref. model [3]: 

1 1980 3.34 1900 1.8 6.48 5.8 5.4 5.50 

1 1980 3.34 3700 1.8 2.31 1.3 2.0 3.10 

2 1920 3.82 2100 1.8 5.38 5.7 6.2 3.60 

2 1920 3.82 4200 1.8 2.95 3.2 3.4 1.20 

3 1120 3.82 1900 1.3 8.2 1.3 6.2 6.20 

3 1120 4.93 3700 1.3 6.22 4.4 4.1 5.40 

3 1120 4.93 5400 1.3 4..3 6.3 2.2 3.30 

5 820 4.93 2100 0.7 6.72 6.7 7.7 5.80 

5 820 6.52 4200 0.7 5.84 4.1 5.5 3.60 

5 820 6.52 6100 0.7 4.97 3.2 3.2 2.30 

6 1300 6.52 2000 2 3.96 3.1 4.2 2.80 

6 1300 6.68 4200 2 2.22 2.1 3.6 1.20 

6 1300 6.68 5900 2 1.83 2.5 2.3 1.40 

7 1850 6.68 2000 2.2 6.7 5.1 5.7 6.40 

7 1850 7.79 4100 2.2 3.25 2.8 4.0 5.20 

7 1850 7.79 5300 2.2 2.23 3.5 3.1 2.10 

8 810 8.11 1900 2.2 4.16 4.4 5.4 3.20 

8 810 8.11 3600 2.2 2.02 1.2 1.1 2.01 

8 810 8.11 5300 2.2 1.52 1.3 2.7 1.40 

9 2090 11.45 2100 1.1 4.58 2.8 6.1 2.20 

9 2090 11.45 4200 1.9 3.11 2.8 4.3 3.00 

9 2090 11.45 6000 1.9 2.59 3.5 3.7 1.62 
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Fig-1. Scatter plot of observed (Co) and predicted (Cp) crosswind – integrated concentration normalized with the emission 
source rate 

 

Fig-2. Comparison between downwind distance and concentration crosswind - integrated concentration normalized with 
the emission source rate 

 

1.4. Statistical Method 

Now, the statistical method is presented and comparison among analytical, statically and 

observed results will be applied [9]. The following standard statistical performance measures 

characterizes the agreement between models predictions (Cp=Cpred/Q) and observations 

(Co=Cobs/Q): 

                             (    )  
(     ) 

(    )
 



Journal of Atmosphere, 2015, 1(1): 8-16 
 

 
15 

© 2015 Conscientia Beam. All Rights Reserved. 

                (  )  
(     )

[   (     )]
 

 

                        (   )  
 

  
∑(      )  

(      )

(    

  

   

 

              (    )      
  
  
     

Where σp and σo are the standard deviations of Cp and Co respectively. Here the over bars 

indicate the average over all measurements (Nm). A perfect model would have the following 

idealized performance: 

NMSE = FB = 0 and COR = FAC2 = 1.0 

Table-2. Comparison between different models according to standard statistical performance measure 

Models NMSE FB COR FAC2 

Model 1 0.23 0.17 0.54 0.91 
Model  2 0.08 -0.01 0.77 1.08 
Ref. model  0.13 0.23 0.83 0.81 

      From the statistical, we find that all models are within a factor of two. Model (2) and Ref. 

model were better when compared with observed data than model (1) with respect to NMSE. The 

two models are better with respect to FB than Ref. model. All models were good with respect to 

the correlation coefficient except model1. 

2. CONCLUSION 

We solve the advection diffusion equation in two dimensional spaces (x, z) depending on 

time. Using Laplace transform technique to find crosswind integrated of pollutant concentration 

per emission rate, we applied two schemes of the eddy diffusivities to get two models. Terabassi et 

al model was taken as a reference model.  Comparison between these two models, reference model 

and observed data were carried out. The observed Copenhagen data set is composed of SF6 tracer 

due to dispersion experiments carried out in Northern Copenhagen, 20 minutes averaged 

measured concentrations were used.  

One finds all models were inside a factor of two. Model 2 and reference model were better 

when compared with the observed data than model 1 with respect to NMSE. The two models are 

better with respect to FB than reference model. All models were good with respect to the 

correlation coefficient except model 1. 

Finally, we can conclude that predicted (Cp) crosswind-integrated concentration normalized 

with the emission source rate for all models were inside a factor of two when compared with 

observed data (Co).  Crosswind- integrated concentration normalized with the emission source 

rate were good for all models when compared with observed data via downwind distances.  
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