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ABSTRACT 

We study the Markovian process on parameterized approximate nonlinear one-dimensional double Morse potentials, used to 

describe the collective proton dynamics in one dimensional network of hydrogen bonds. Using Kramer’s method, the first and 

second moment of the proton’s dynamic is evaluated respectively in the case of over damping, intermediate damping and very 

low damping limit. We found out that in the case of an over damping limit and intermediate damping, the dynamics of the 

proton decrease when the curvature parameter increases. In the case of very low damping limit, the motion of the proton in the 

well became independent on the curvature parameter. 

Keywords: Brownian motion, Markovian process,Kramer’s theory, Over damping limit, Intermediate damping limit, Very low damping 
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Contribution/ Originality 

This study is one of very few studies which have investigated on the interaction between the heat bath and the 

hydrogen bonds chain subject to parameterized nonlinear one-dimensional double Morse potentials more precisely 

the dependence of some physicals quantities with the curvature parameter. 

 

1. INTRODUCTION 

Understanding the dynamic behavior of the models of linear chains of interconnected atoms, subjected to a 

substrate of 
4 like-potential (Sine-Gordon, double-sine-Gordon, double quartic, and double Morse potential), 

becomes the subject of many studies in recent years [1-4]. Among these models, hydrogen bonds (HB) chain 

subject to double Morse potential are shown as the more attracted model. In fact, the existence of rapid pathway in 

(HB) due to proton translocation from proton donor (ion with which proton in HB bridge is more tightly linked) to 

proton acceptor (ion with which proton in HB bridge is less tightly linked), is very important in many biological 

reactions such as  protection  against  mutation in genetic  coding of  DNA, stability  of the DNA helix structure, 

the reduction of temperature extremes in large bodies of water, ATP synthase, photosynthesis, metabolism and 

enzymatic processes [5, 6]. Moreover with the mechanism of the proton transfers from one molecule to another [5-

7] that allows the parallel arrangement of the cellulose polymer chain; HB has attracted many studies in the field of 

bioenergetics. Interested by the dynamic of the HB wave propagation, trough past studies [8-10] it has been 
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generalized that the protonic conductivity of HB is associated with two complementary processes: (1)The 

propagation of an ionic positive (or negative) defect when an excess of proton is transferred inside the bridge 

interchanging the role of the covalent and the hydrogen bonds with the adjacent groups X; (2)The propagation of a 

banding (Bjerrum) defect, according to which the additional degree of freedom allows the group X-H to rotate in 

such a way that the inter-bond proton transfer is possible along the HB chain. 

In Ref, Zolotaryuk, et al. [7] the considered model has been used to  investigate the proton transport by taking 

into account the degrees of freedom of the heavy-ion subsystem, where essential ingredients of the models are the 

realistic anharmonic ion-proton interaction in the HB, the harmonic coupling between the protons in adjacent 

hydrogen bonds, and thus the harmonic coupling between the nearest-neighbor heavy ions (an isolated diatomic 

chain with the lowest acoustic band) or instead a harmonic on-site potential for the heavy ions, both providing a 

bistability of the HB proton. Considering then the insufficiency of the coupled motion of the H and X atoms to 

lower the barrier enough to provide a free soliton regime, the work of ref [5] was carried out.  

In this paper, we consider the HB model as a chain of alternating masses m and M with Mm (where m is 

the mass of proton H+ and M an eventual ion mass X-) connected by massless springs subjected to double Morse 

potential  ,uV , surround by  the heat bath.  This model proceeds to investigate the thermal fluctuation where 

the ion forming the intra-bond proton potential is assumed to be fixed. With these considerations, we analyze the 

dependence of the escape rate, the first and the second moment of the proton (H+) as a function of the curvature 

parameter  from the case of over damping limit (ODL) to very low damping limit (VLDL) through the 

intermediated damping limit (IDL) regime. 

The paper is organized as follows: the Markovian process of the ODL for (HB) in approximate double Morse 

potential is investigated in section II. In section III, the IDL and VLDL of Kramer’s theory of HB in approximate 

double Morse potential are presented. The work ended in section IV by the conclusion. 

 

2. MARKOVIAN PROCESS OF OVER DAMPING LIMIT OF HYDROGEN-BONDS IN 

APPROXIMATE DOUBLE MORSE POTENTIAL 

Here, the system is constructed as a one dimensional chain model interacting with heat bath [11, 12] described 

by the following Hamiltonian. 

bS HHH 
          (2.1) 

where: 
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(2.2) 

Is the Hamiltonian of the HB in parameterizing double Morse potential.  tqn  represents the dimensionless 

displacement of the nth proton (H+) in the hydrogen bridge from middle of nth and (n+1)th ion (X-) when these ions 

are at the equilibrium position and  tQn being the displacement of the nth ion from its equilibrium position. 

subionp kkk ,, are interaction constants between nearest-neighbor protons, ions and the ions chain with substrate 

respectively.  The dots denote the differentiation with respect to time. The lattice variables nU are defined such 

that 
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and  nnn QQ  1

   (2.3)
 

The intra-bond proton energy  nnuV , is chosen as a pair of Morse potentials placed tail-to-tail [5-8]: 
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The parameter  is the measure of the curvature along the direction of the potential, taken at 0n . 0r is 

the distance at equilibrium. In this model we consider the one dimensional motion of  the proton (H+)  moving in an 

approximate double Morse potential (as showed in Fig.1) and coupled to a heat bath when the ions (X-) are fixed [6, 

7]. In these considerations, the Hamiltonian (2.1) can be rewritten in the simple form:  

 nns uVumH  2

2

1


          

(2.5) 

With the double Morse potential (4): 
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Fig-1.The shape of the intra-bond potential  uV with 
4

1
0 r and 2,1 and3 

 

Equation (2.5) represents the Hamiltonian of the proton (H+) in the potential well defined such that the mass 

m  of proton is smaller as compared to the mass M  of the ion 
X  moving in a double Morse potential well (2.6) 

as illustrated in Fig.1.     
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Equation (7) represents the heat-bath Hamiltonian with 
m the mass of the particle in a bath, 

x and
p  the 

coordinate and momentum operators’ force respectively.
k is the coefficient of interaction between the proton with 

each particle of the bath. To construct the dynamics of the system, the quantum Langevin equation is taken as the 

basis of the macroscopic description of the quantum particle linearly coupled to a heat bath [13-15]. Hence the 

Hamiltonian (2.1) is reduced to: 

 
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The corresponding quantum Langevin equation (QLE) associated with the dynamics of the system is given by 

[15-17]: 

         tA
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Where  tA  is the random force that represented the collisions between the system and the bath, with the 

following statistical properties:   0 tA and      '' ttTKtAtA B   . 

The damping kernel  t  describes the memory friction between the particle and the bath.  uV
 
the substrate 

potential. Focalizing our study on the particular case where the particle in motion is subjected to instantaneous 

friction due to heat bath, the diffusion coefficient  'tt  can be taken as: 

   tt                (2.10) 

With  t  
the Dirac delta function. The approximation (2.9) brings the QLE (2.8) in the form  
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In the over damping limit, the corresponding Langevin equation describing our system is:  
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Here  A  is the random force with the statistical properties   0 A  describes and kernel 

     sTksAA B     

The breakaway of a particle over a potential barrier due to thermal fluctuation is a process characterized in 

classical limit by the escape rate. From the transition state theory (TST), the escape rate of a particle over a 

potential barrier is exponentially dependent on the temperature [17]. We discuss the breakaway of the ion particle 

H+ through the potential barrier of the approximate double Morse-potential in HB due to thermal fluctuation. In 

the case of ODL, due to high friction, the proton will make a random motion inside the potential well. The 

breakaway of the proton will not able to deviate from the Boltzmann equilibrium the probability to find the particle 

at the top of the barrier; thus the particle would be able to do several oscillations at the top of the approximate 
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double Morse potential barrier. In this section, we are concerned with the breakaway of the ion particle H+ through 

the potential barrier of the approximate double Morse-potential in HB due to thermal fluctuation in the case of 

(ODL). 

To better illustrate our study, we mostly focus on the ODL and in the VLDL of the system with heat bath. The 

Fokker-Planck equation associated with the Langevin equation (2.10) is defined as Kelth and Chrlstlne [18]: 
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In order to investigate the thermal influence on the dynamics of the HB, we respectively evaluate the escape 

rate, the distribution probability, the first and second moment of the proton (H+) inside the substrate potential 

given by (2.7). In fact, due to the dependence of Eq. (11) on the curvature parameter    and with the help of  

Kramer’s method [18-21] the escape  rate  r of the proton in hydrogen-bonds is evaluated by: 
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Fig-2.Escape rate versus temperature in the case of ODL 

 

For this purpose, according to Kramer’s theory the probability density function of the residence time 

distribution function [22]is given by  
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(2.15) 

Where kr  is known as the Kramer’s escape rate. Following Eq.(2.13), with the help of the Langevin equation 

and the statistical physics, the probability density function of the residence time distribution function is obtained as: 
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With TKB
2

1
 the noise intensity. The first moment and the second moment associated with the residence 

time distribution are respectively defined by:  
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Hence by making use of equation (2.14), the first and second moment are given respectively [23, 24]by 

Eq.(2.19) and Eq.(2.20): 
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Fig-3. Density probability of residence time distribution function versus time in the case of ODL 

 

 
Fig-4. First moment versus noise intensity in the case of ODL 
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Fig-5. Second moment versus noise intensity in the case of ODL 

 

3. MARKOVIAN PROCESS OF INTERMEDIATED AND VERY LOWDAMPING LIMIT 

3.1. Markovian Process of IDL of Hydrogen-Bonds in Approximate Double Morse Potential 

Based on the model where the heat-bath coupling causes a frictional force proportional to the velocity of the 

particle, the Langevin equation describing our system in the phase space is:  
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The Klein-Kramers’ equation associated to Eq.(3.1) is: 
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From Eq(3.1) characterizing the model where the heat-bath coupling causes a frictional force proportional to 

the velocity of the particle, Kramer showed that the escape rate can be expressed in terms of the transition factor K 

[21, 22] as follows: 
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Where W is the oscillation frequency of the particle inside the well, and ΔV (u) the height of the potential 

barrier and the transition factor of approximated double Morse Potential is obtained as: 
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Fig-6.Kramer escape rate versus noise intensity in the case of IDL 

 

Considering also Eqs. (2.14),(2.16), (2.17) and (3.5), the probability density function of the residence time 

distribution function, the first moment and the second moment of hydrogen-ion in the case of IDL are respectively 

given by: 
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Figure-7. Probability density function of residence time distribution in the case of IDL 

 

 
Figure-8. First moment versus noise intensity in the case IDL 

 

 
Fig-9. Second moment versus noise intensity in the case of IDL. 
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3.2. Markovian Process VLDL of Hydrogen-Bonds in Approximate Double Morse Potential 

In this case, due to the very weak coupling to the heat bath, the fluctuating force is also weaken. That is, the 

hydrogen ion H+ oscillates inside the approximated double Morse potential. In the presence of very low damping, 

the fluctuating forces cause variation of energy during the time of an oscillation. Therefore, the assumption that the 

Maxwell-Boltzmann is valid to a high degree of accuracy in the well is not valid. The restriction of the escape rate 

is due to the depletion of the probability to find the particle at the top of the potential barrier. Kramer discovers 

another way for calculating the escape rate when TkI B (with    PduEI the action integral around the 

curve of constant energy at the saddle point). The corresponding Klein-Kramer equation is: 
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 Hence the 

escape rate, the probability density function of the residence time distribution function, the first moment and the 

second moment in approximate double Morse potential are respectively evaluated from Eqs (3.9), (2.14), (2.16) and 

(2.17): 
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Figure-10. Kramer escape rate in the case of VLDL 
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Fig-11. Probability density of residence time distribution in the case of VLDL 

 

 
Fig-12.First moment versus noise intensity in the case of VLDL 

 

 
Fig-13.Second moment versus noise intensity in the case of VLDL 
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4. CONCLUSION 

We have modeled the thermal activated process of hydrogen bonds by considering the one dimensional 

network of hydrogen bonds in interaction (from over to very low through intermediate damping limit) with a heat 

bath when the ions (
X ) are fixed. By means of Kramers’ method, we have analytically determined the escape rate, 

the time distribution function, the first and the second moment of the proton in all damping regime. In the case of 

over damping limit and intermediate damping limit, the above physical quantities strongly depend on the curvature 

parameter β and they decrease when the curvature parameter βincreases. Thus more the barrier is flat and the wells 

more narrow, it became easy for the proton (
H ) to break away from one well to another. In the case of very low 

damping limit the motion of the proton inside the well is independent β.  
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