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ABSTRACT

Article History Precipitation simulation models are crucial for understanding, decision-making, and
gec?i"zd: ”bNO"e'E:ber 2025 responding to phenomena related to hydrological, agricultural, and water resource

r1sed: 22 C 2025 .. . . .. . .
Ai;;ied: o1 D s management. This is particularly true for these climate-sensitive sectors in countries
Published: 81 December 2025 with high average annual rainfall, as well as those that depend on rainfall for food security

d and economic resilience. The application of precipitation simulation models in Guyana

E(eywor s remains largely unexplored, despite the country’s high average annual precipitation and
yuyana . . .« oqe . . . .
Ma‘zkov chain application its population residing mainly along the low-elevation coastal zone. This study aimed to
Rainfall distribution fitting develop and evaluate a stochastic precipitation model capable of simulating daily rainfall
Rainfall variability f li icallv disti . £G Dail infall
Stochastic precipitation modeling. ~ Patterns or two climatically distinct regions ot Guyana. Daily rainfall occurrence was
Black Bush Polder modeled using a first-order Markov chain, while wet-day rainfall amounts were fitted to

Ebini Gamma, Weibull, and Lognormal probability distributions. The analysis used daily

rainfall records from 1981 to 2022, with monthly stratification applied to capture
Guyana’s bimodal rainfall regime. The model accurately reproduced key precipitation
characteristics, showing high agreement between observed and simulated data.
Projections for 2028-2030 closely align with established seasonal patterns, replicating
the primary wet season (May—August) and the secondary wet season (November—
January). The Gamma and Weibull distributions provided superior fits for most months,
reflecting the skewed nature of daily rainfall. This study provides the first empirical
framework for stochastic rainfall modeling in Guyana, offering a foundation for
hydrological forecasting, climate risk assessment, and agricultural planning. The
modeling framework also holds transferability for other Caribbean and South American
regions facing comparable climatic variability and limited observational data.

Contribution/Originality: This study presents the first empirical application of stochastic precipitation modeling
for Guyana. It integrates Markov chain rainfall occurrence and probabilistic distribution fitting. It establishes a
transferable methodological framework for data-scarce tropical regions, enhancing rainfall simulation, hydrological

forecasting, and climate risk assessment across the Caribbean and South America.

1. INTRODUCTION

The significance of precipitation in the context of global climate dynamics and environmental stability is
profound. As a fundamental component of the Earth's hydrological cycle, precipitation directly affects hydrological,
agricultural, and ecological systems, particularly in regions where rainfall strongly determines food security and
water availability. However, paradoxically, precipitation also serves as a principal driver of disasters: floods,

landslides, droughts, waterborne disease outbreaks, and widespread economic losses, which, combined, can lead to
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severe socioeconomic and environmental impacts [ 1, 27]. Furthermore, with current evidence and forecasts of extreme
weather patterns associated with climate change [87, this duality of precipitation becomes sharply focused for both
scholars and practitioners. In particular, the central role of precipitation across many societal domains and the rising
risks associated with its variability have led to heightened interest in understanding and predicting it. Modelling has
become indispensable for anticipating hazards, planning infrastructure, managing water resources, and enhancing
resilience.

Historically, modeling precipitation has attracted considerable research attention due to its complex and variable
nature, influenced by geographic, atmospheric, climatic, and anthropogenic factors [4, 5. Moreover, as various
modeling techniques evolve, the necessity for accurate precipitation predictions continues to grow. Traditional
deterministic models often struggle to account for the inherent uncertainty in precipitation events. This has led to a
shift towards more sophisticated probabilistic or stochastic models to capture the uncertainty, dependence structure,
temporal dynamics, and randomness inherent in precipitation processes, thereby enhancing the reliability and
applicability of rainfall forecasts [67]. The incorporation of stochastic elements into precipitation modeling has
emerged as a robust approach, enriching traditional methodologies with improved adaptability and predictive power,
which are essential for effective resource management and risk assessment [7, 87].

Recent decades have seen significant advancements in precipitation modeling technology and methodology. A
particular focus has been on probabilistic and stochastic models, which have proven effective for temporal and spatial
rainfall modeling. One of the most widely applied approaches is the two-step stochastic framework, in which a Markov
chain models rainfall occurrence and probability distributions are fitted to wet-day rainfall amounts. This framework
has been successfully applied across a range of climatic zones, including Asia, Europe, and Africa [9-117. The first-
order Markov chain can model precipitation occurrences based on previous states, enabling the construction of rainfall
data for hydrological simulations [127. Such models capture the dependency of rainfall events not only on their
immediate predecessors but also on broader patterns, providing a nuanced understanding of precipitation dynamics.
Moreover, increased computational resources facilitate the application of more complex statistical methods, including
Bayesian models that support intricate probabilistic inference and parameter estimation [137]. Because of these
properties, first-order Markov chain models remain widely used in rainfall modeling and generation exercises across
diverse climates [14].

First-order Markov chain models are not without issues. They tend to underestimate the duration of dry spells,
and as a result, subsequent refinements have been made [15, 167. To address these shortcomings, scholars introduced
higher-order Markov chain models that extended the ‘memory’ of previous wet and dry days, thereby improving
simulation fidelity. For example, optimization of model order and structure was employed to determine the most
suitable Markov chain order for daily precipitation occurrence in the United States [17] and for pairing a Markov
chain with a gamma distribution to enhance rainfall intensity modeling in Argentina [187. Additionally, scholars
have leveraged the flexibility of stochastic methods to model precipitation and other phenomena across diverse
geographical and climatic conditions [11, 19, 207].

Aside from precipitation occurrence, stochastic models are also used to model wet-day rainfall amounts. These
include the Gamma, Weibull, Lognormal, and Exponential distributions. Research has consistently highlighted the
Gamma distribution as particularly effective for daily rainfall in tropical climates [8, 217 while alternative heavy-
tailed distributions have been suggested for capturing extremes [227]. The integration of probability distributions
with Markov chain—based occurrence models allows for the generation of synthetic rainfall series that accurately
replicate both the frequency and intensity of observed rainfall. These models are highly valuable for hydrological
planning, crop yield modeling, runoff estimation, and climate risk assessment. Despite their more advanced
forecasting adaptations, first-order Markov chain models remain widely used and applicable, particularly for baseline

studies.
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Despite these substantial global advances, significant disparities exist in where precipitation modelling research
is conducted. Much of the empirical literature is concentrated in North America, Europe, Asia, and parts of Africa.
More proximate to Guyana, a growing body of research across the Caribbean continues to develop, highlighting
regional differences and the need for localized studies to improve understanding and predictive capabilities in
precipitation modelling [2387 Central America [24, 257 and parts of South America [26, 277 demonstrates the value
of stochastic rainfall simulation for hydrological planning, flood risk assessment, agricultural modelling, and climate-
change impact studies. However, while countries within these regions share many climatic, geographic,
socioeconomic, and environmental characteristics with their neighbors, precipitation variability means models are
context-specific. Therefore, the absence of stochastic modelling in a particular context not only constitutes a gap in
the global literature but also hampers local capacity to prepare for and manage the impacts of climatic variability

A thorough literature search proved the scarcity of precipitation modeling within the Guyana context. Moreover,
while there is evidence of descriptive climatology and deterministic modeling in Guyana [297, there are no peer-
reviewed studies of stochastic precipitation modelling. This represents a meaningful gap in the literature. Without
stochastic rainfall models calibrated to local data, decision-makers must rely on general hydrological assumptions,
foreign models, or climate-model outputs that may not reflect local rainfall behaviour. This creates challenges for
national planning, including water resource management, agricultural scheduling and irrigation planning, urban
drainage design, flood risk assessment, drought preparedness, and climate adaptation policy.

To bridge this gap, the present study develops the first stochastic precipitation model tailored for Guyana. It
focuses on two ecologically distinct regions: ‘Black Bush Polder” in the low coastal plain and ‘Ebini’ in the hinterland.
Rainfall occurrence is modeled using a first-order Markov chain, while wet-day rainfall amounts are characterized
through probability distribution fitting. Monthly stratification is employed to capture Guyana's bimodal rainfall
regime, and model performance is evaluated against observed data from 1981-2022, with simulations extended to
2030. By integrating occurrence and intensity modeling, this research establishes a foundational stochastic rainfall
framework for Guyana, one that complements previous trend-based investigations and equips water managers,
agricultural planners, and climate scientists with a robust tool for scenario generation, resource optimization, and

risk-informed decision-making.

2. METHODOLOGY
2.1. Study Area and Data

The study areas for this research are Black Bush Polder, Guyana, specifically at coordinates 6°4'58" N and
57°15'57" W, and Ebini, Latitude 5°3839.26" N and Longitude 57°46'17.51"W. A hybrid dataset, combining both
observed and reanalysis data, was used due to limited historical data availability for the Black Bush Polder area and
the specific requirements of the precipitation model. This dataset merged information from local stations and
reanalysis data from the Climate Engine's CHIRPS dataset, spanning from 1981 to 2022. The CHIRPS dataset,
offering the highest resolution among the available options (4.8 km, 4800 m, 1/20-deg), was used to extract data from
1981 to 2000. Data from 2001 to 2022 primarily stemmed from weather stations. Approximately 3.4% of the data for
the years 2001 to 2022 were identified as missing for the Black Bush Polder region. A direct imputation method was
employed to address the absence of this data. This method utilized corresponding data retrieved from the CHIRPS
dataset.

Due to the lack of precipitation data for the Ebini area, reanalysis data from the Climate Engine for the period
1981-2022 were used in the precipitation simulations. All analyses were performed using a combination of R and
Microsoft Excel. The stochastic rainfall model, including the Markov chain simulation and probability generation
processes, was developed and executed in R, while the distribution fitting and graphical evaluations were conducted

in Excel using an add-on package designed for probability distribution analysis.
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2.2. Modeling Framework
2.2.1. Precipitation Model

Here, we present a precipitation model designed to simulate rainfall patterns from 1981 to 2030, drawing on
historical precipitation data from Black Bush Polder and Ebini. The simulation uses a Markov chain to determine
precipitation events, while a probability distribution is used to estimate precipitation amounts on wet days. To
determine the precipitation amounts, we explore four distinct probability distributions: Lognormal, Weibull, and
Gamma (2 and 8 parameters). These proposed distributions serve as tools for quantifying precipitation amounts.

Given the influence of seasonal shifts on rainfall patterns, we fit distributions for each month. This analysis helps
identify the most appropriate distribution that accurately aligns with the precipitation characteristics for that specific
month.

Our selection of suitable distribution models for each month is guided by a combination of criteria, including the
Akaike Information Criterion (AIC), and the prevalence of these distributions within the existing literature. These

methodologies collectively contribute to determining the optimal distribution for estimating precipitation amounts.

2.2.2. Precipitation Occurrence Model
In this two-step precipitation model, precipitation occurrence is modeled using a first-order Markov chain. This
is achieved by categorizing the data into two states: "ones" representing wet days and "zeroes" representing dry days.

The transitions between these states are then counted to determine transition probabilities and final states.

2.2.8. Markov Chain
In hydrology, modelling precipitation data at appropriate times for various purposes has been an important issue
over the past 30 years [307]. Using a higher-order Markov chain can improve the model's performance in replicating
precipitation occurrences. However, parameter estimation becomes more computationally intensive as the order
increases, requiring more computations. In numerical analysis, the improvements in model performance achieved by
higher-order methods are relatively minimal. As a result, it is more advantageous to utilize a first-order approach. A
first-order Markov chain is a type of stochastic process characterized by the fact that the value of the process at time
t, X, is solely determined by its value at the previous time step t — 1, X;_; . The value of X; does not depend on the
specific sequence of values that the process went through to reach X,_; . This means that the likelihood of precipitation
occurring tomorrow is contingent solely upon the current weather conditions, namely, whether it is currently raining
or not. The explanation can be attributed to the Markov property, which can be described as follows:
P(Xev1 = Sear | Xp = 56, Xe1 = Se—1,, Xo = 50) = P(Xpaq = Seaa | Xe =50) (1)
Where the time variable, denoted as t, takes on values from the set {0, 1, 2, - - -, T}. The state space, denoted as
s, consists of elements from the set {1, 2, 3, - - -, S}. The Markov property in a first-order Markov chain states that
the previous state is irrelevant for the next state. The present value is the sole significant value for determining future
values. In the context of a Markov chain, a transition matrix is essential for specifying the probability of each event.
In this context, the composition of transition probabilities refers to the conditional probability of state j given state i.

The transition matrix is given as:

P11 0 Dij
P=|i{ ™~ i fori,jeES (2
Pir " Dy
Where P = "~ = P(X,,; =j1 X, = ). The transition matrix has the property that each row sums to 1.

iy
s — VS — i — = ¥vS =) =
Yi=1Py =Xz PXepr =j 1 Xy =) = Xjo1 Px=aXee1 =) =1 (8)
Precipitation incidence may be classified into two states: dry and wet. Hence, the transition matrix is determined
by two conditional probabilities, which are

P;y = P(dry onday t+ 1| dry on day t).
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Py, = P(wetonday t+ 1 |dry on day t).

Pyq = P(dryonday t+ 1| wet on day t).

B,w = P( wet on the day t + 1 | wet on the day t).

Given that only two states exist, the transition probabilities within a given state are complementary. It is optional
to estimate all four transition probabilities; instead, it suffices to estimate a single probability for each transition pair.
Given this, we can define the transition probability matrix as follows:

Paa Paw

P = [pwd Pww

] 0<p; <1 ij={dw} (4

Using the transition matrix allows computation of the stationary state vector. The stationary state vector 7, has
the unique property of m = mP. It gives the long-run relative frequency of being in a wet and dry state. It has the
property: Yi_,m; = 1, where 7r; > 0 for all i. property: 7;, d probability of being in state i.

m=(Tqg My)
(T[d nw) — (T[d T[w) 1- Paw Paw
Pwa 1—"Pwa

For a two-state Markov chain, the stationary probabilities T4y and  m,, are given as follows:

Pwd

Mg =— — 6
a PwdtPdw ( )
Pdw
n,=———— 7

w PwdtPdw ( )

2.2.4.. Determining Precipitation Amount

The second part of the stochastic precipitation model aims to determine the precipitation amount. This is achieved
by identifying a suitable generalized probability distribution that fits the wet-day counts in the precipitation data
stratified by month. According to existing literature, the two-parameter gamma distribution is the most widely used
distribution for fitting precipitation data on wet days [17, 317. Insights can be drawn from density plots and
histograms presented in Figures 1, 2, 3, and 4. Distributions skewed to the right will be considered for modeling
precipitation quantities. In this study, the following distributions will be tested: Weibull, two-parameter gamma,
three-parameter gamma, and lognormal. Log-likelihood estimation was used to estimate the parameters of these

distributions.
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Figure 1. Overall Density plot of precipitation over Black Bush Polder (1981-2022).

20
© 2025 Conscientia Beam. All Rights Reserved.



International Journal of Hydrology Research, 2025, 10(1): 16-38

14000

12000

10000

8000

Frequency

6000

4000

2000 1

0 = T T T T
0 50 100 150 200 250

Precipitation amount (mm)
Figure 2. Precipitation histogram for Black Bush Polder (1981-2022).

0.08 1

0.07 +

0.06 +

0.05 +

0.04 +

Density

0.03 1

0.02 -

0.01 1

0.00 T T T T
0 50 100 150 200

Figure 3. Overall Density plot of precipitation over Ebini (1981-2022).
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Figure 4. Precipitation histogram for Ebini (1981-2022).
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2.2.5. Probability Distributions

Four probability distributions, namely the lognormal, Weibull, gamma, and three-parameter gamma
distributions, will be evaluated to identify the one that best fits the monthly precipitation data. The selection of these
distributions was motivated by the pronounced positive skewness evident in both the histograms and kernel density
plots of the rainfall data, as illustrated in Figures 1, 2, 3, and 4 for the study locations. Such right-skewed behavior is
characteristic of precipitation data and aligns with the underlying assumptions of these distributions, which have also

been widely applied and shown to perform effectively in the literature.

2.2.6. Lognormal Distributions

The lognormal distribution is a continuous probability distribution that exhibits right skewness, with elongated
tails to the right. It can be generated through a variable-method transformation from the normal distribution. As a
result, if the random variable X follows a lognormal distribution, then Y = In(X) follows a normal distribution. This
distribution is widely used in modeling various socio-economic and natural processes, including but not limited to
revenue distributions and precipitation levels.

The standard lognormal distribution has two parameters: location and scale. This can be expanded by
introducing a third parameter corresponding to a threshold value. This expansion is termed the three-parameter
lognormal distribution. The three-parameter lognormal distribution is a refinement of the two-parameter version,
incorporating a shift in location. The probability density function (PDF) and parameter estimations are given below:

[In (x—y)—u)?
Reen=il) ()

202

1
fOm0,Y) = o7 OXP {—

Where 0 <y <x, —o0o<pu<,0>0.u0 and y are the parameters of the distribution. When y = 0, the

distribution becomes the two-parameter lognormal distribution:

. _ 1 —(In x—p)?
fasno) = ——exp () (9)

20
In these equations, the parameters u, 0 and y are referred to as the location, scale, and threshold parameters,
respectively. The mean of the lognormal distribution is given by exp (/1 +%02), and its variance is given by
(exp (62) — 1)exp (2u + 0%) The maximum likelihood estimate of the two parameters of the lognormal

distribution is given below.

A=t =7 (10)
and
1 1 2
s =1iyrme i -p-[xr e -n] oy

Where 7 is assumed to be zero for the two parameters log normal. The value of ¥ is are often estimated using

numerical means.

2.2.7. Generalized Gamma Distribution (Two and Three Parameters)
The generalized gamma distribution is a continuous probability distribution characterized by two shape and scale
parameters. In the literature, the gamma distribution is one of the most popular distributions for modeling

precipitation amounts. The probability density of the generalized gamma distribution (GG (&, T, 1)) is given by

-1 T
flartd) = Mza) G)m e_(%) y=0,1,a1>0 (12

where I'(\) is the gamma function, « and T are shape parameters, and A is the scale parameter.
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2.2.8. Weibull Distribution

The Weibull distribution is a widely used continuous probability distribution that has been applied to examine
product dependability, analyze life statistics, and model failure times across several fields, such as biology, economics,
and engineering [327].

The probability density function of a Weibull random variable is:

k (x k-1 k

(x —(x/2)
f(x;l,k):[l(a) e » x20, (g

0, x <0,

where k > 0 is the shape parameter and A > 0 is the scale parameter of the distribution.

The mean and variance of the Weibull distribution are given as:

Mean= AI'(1 + 1/k).
Variance = A2 [F (1 + %) - <F (1 + %))2]

2.8. Model Evaluation
2.8.1. Validation of Distribution F'it

When modeling precipitation amounts, choosing the distribution that best fits the data for days with precipitation
is crucial. This process is commonly known in the literature as goodness-of-fit testing and is extensively employed
to determine distribution fitting. This research uses the Akaike Information Criterion to assess the fit of the

distribution.

2.8.2. Akaike Information Criterion (AIC-Hirotugu Akaike [33])

The Akaike Information Criterion (AIC) was among the first model selection criteria to gain widespread
recognition in the statistical community as a method for evaluating the effectiveness of linear regression models. The
fundamental concept of the Akaike Information Criterion (AIC) is to identify a model that minimizes the loss of
information in the given data. The formulation for the AIC is given as: AIC = —2In (L) + 2K.

Where L represents the log-likelihood function in this equation, commonly used in statistical modeling, K denotes
the number of parameters in the model being analyzed. A penalty term, represented as K, is associated with the

number of parameters. When deciding on distribution fit, smaller AIC values are preferred.

2.8.8. Simulation of Precipitation

The subsequent steps are used to simulate precipitation for the periods 1981-2022 and 2023-2030. The initial
three steps encompass the processes required to generate precipitation occurrences. The final step involves the
procedure needed for generating precipitation amounts. The combination of these steps is essential to the formulation
of the precipitation model.

Step 1: Transform your data into a binary representation of wet and dry states (0 for dry, 1 for wet). Employ this
binary state to construct a transition probability matrix, which outlines the transitions from a present state to a future
state.

Step 2: Use the transition probability matrix results to construct the final state vector.

Step 3: For generating precipitation occurrences throughout the projected period, employ a random number
generator sourced from a uniform distribution with a range of 0 to 1. If the generated random number is smaller than
T4, the state is considered dry; otherwise, it is deemed wet. Next, produce another random number within the range
of 0 to 1 and compare it to the transition probability for transitioning from the current state to an alternative state.
If the number is equal to or less than the probability of transitioning to the next state, the subsequent state will be

that state. Otherwise, you will be in the other state.
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Step 4: Repeat step 3 until you have generated all the days required.
Step 5: Once the precipitation occurrence has been determined, random values are generated from the probability
distribution fitted to the precipitation amount on wet days. These values correspond to the projected amount of rain

expected on days identified as wet, as obtained from the precipitation occurrence model.

3. RESULTS
3.1. Results of the Precipitation Occurrence Model

Tables 1 and 2 present the transition matrix results for each month from 1981 to 2022 across the Black Bush
Polder and Ebini regions. As indicated by the transition matrix and consistent with traditional seasonal rainfall
patterns, May, June, and July exhibited the lowest transition probabilities from a wet day to a dry day at both study
locations, with values below 0.3. Conversely, these three months also showed the highest likelihood of transitioning
from a wet day to another wet day, with probabilities exceeding 0.7. Throughout this time span, January, February,
September, and October consistently demonstrated the least likelihood of transitioning from a wet day to a dry day,

with probabilities ranging from 0.48 to 0.64.

Table 1. Transition probability matrix for each month over Black Bush Polder from 1981-2022.

State Dry Wet Month State Dry Wet Month
Dry 0.760 0.240 January Dry 0.563 0.437 July

Wet 0.360 0.640 Wet 0.283 0.717

Dry 0.742 0.258 February Dry 0.696 0.304 August
Wet 0.368 0.632 Wet 0.359 0.641

Dry 0.776 0.224 March Dry 0.784 0.216 September
Wet 0.372 0.628 Wet 0.475 0.525

Dry 0.736 0.264 April Dry 0.778 0.222 October
Wet 0.353 0.647 Wet 0.496 0.50%

Dry 0.670 0.330 May Dry 0.750 0.250 November
Wet 0.259 0.741 Wet 0.350 0.650

Dry 0.528 0.472 June Dry 0.729 0.271 December
Wet 0.261 0.739 Wet 0.291 0.709

Table 2. Transition probability matrix for each month over Ebini from 1981-2022.

State Dry Wet Month State Dry Wet Month
Dry 0.754 0.246 January | Dry 0.442 0.558 July

Wet 0.509 0.491 Wet 0.287 0.713

Dry 0.780 0.220 February | Dry 0.510 0.490 August
Wet 0.518 0.482 Wet 0.380 0.620

Dry 0.811 0.189 March Dry 0.666 0.334 September
Wet 0.503 0.497 Wet 0.445 0.555

Dry 0.761 0.239 April Dry 0.681 0.319 October
Wet 0.389 0.611 Wet 0.471 0.529

Dry 0.570 0.430 May Dry 0.708 0.292 November
Wet 0.293 0.707 Wet 0.424 0.576

Dry 0.378 0.624 June Dry 0.749 0.251 December
Wet 0.261 0.739 Wet 0.443 0.556

From the transition probabilities reported in Tables 1 and 2, the likelihood of transitioning from a wet day to
another wet day is consistently greater than the probability of transitioning from a dry day to a wet day. Figure 5
visually presents this relationship for Black Bush Polder, while Figure 6 visually exhibits the same behaviour for

Ebini, with P(W — W) remaining larger than P(D — W) throughout the year. Hence, ppy < Ty < Py
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Monthly Transition Probabilities - Black Bush Polder
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Figure 5. Line graph showing transition states (DW-dry to wet, WW- wet to wet) over Black Bush Polder.
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Figure 6. Line graph showing transition states (DW-dry to wet, WW- wet to wet) over Ebini.

3.1.1. Steady State Vector

The transition probability matrix provides essential data for computing the steady-state vector, which offers
insights into the long-term average occurrence of precipitation events. Analysis of the steady-state vectors reveals
that May, June, and July consistently showed probabilities exceeding 0.55 for encountering wet conditions across
both study locations. These values suggest that these months experienced wet days at least 55% of the time over an
extended period. This observation aligns with Guyana's established seasonal rainfall pattern, which occurs in May-
June/July. Furthermore, noticeable indications of increased likelihood of wet conditions are evident in Black Bush

Polder during August and December, and in Ebini, specifically during August.
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Table 3. Final state probability vectors over Black Bush Polder from 1981-2022.

January February March April
[0.600, 0.4007] [0.588, 0.413] [0.624, 0.376] [ 0.572,0.428]
May June July August
[0.489, 0.561] [ 0.856, 0.644] [0.398, 0.607] [0.542, 0.458]
September October November December
[0.687,0.3137 [0.691, 0.3107] [0.588, 0.417] [0.518, 0.482]

Table 4. Final state probability vectors over Ebini from 1981-2022.

January February March April
[0.675, 0.325] [0.702, 0.298] [0.726, 0.274] [ 0.620,0.881]
May June July August
[0.405, 0.595] [ 0.295,0.706] [0.340, 0.660]] [0.487, 0.563]
September October November December

[0.5701, 0.4297]

[0.596, 0.404]

[0.591, 0.4097]

[0.639, 0.3617]

Table 5. Descriptive statistics of observed precipitation over Black Bush Polder 1981-2022.

Months Maximum Mean Std. Deviation Variance Rain days
January 244.590 10.480 20.120 404.900 520
February 160.870 9.670 16.650 277.360 489
March 187.900 9.090 17.460 304.890 490
April 90.000 11.180 15.490 239.800 539
May 154.600 18.5620 15.450 238.620 782
June 131.100 13.200 15.8370 236.070 827
July 107.100 13.240 15.880 252.180 789
August 200.000 11.920 18.100 327.410 596
September 72.000 7.070 10.540 111.100 396
October 144.800 6.690 12.100 146.340 402
November 72.000 7.850 8.900 79.270 525
December 221.480 10.490 18.720 350.250 631
Total 6936
Table 6. Descriptive statistics of observed precipitation over Ebini, 1981-2022.
Month Maximum Mean Std. Deviation Rain days
January 236.900 17.200 28.440 423
February 76.820 10.360 12.440 353
March 127.810 13.610 17.170 357
April 83.890 14.320 14.790 481
May 74.110 14.200 10.840 775
June 86.010 18.5690 10.540 890
Ju]y 116.770 15.480 12.840 859
August 61.090 11.850 9.5620 734
September 51.490 9.670 8.360 542
October 45.910 8.280 7.850 525
November 59.240 9.540 9.590 514
December 94.120 16.250 18.850 471
Total 6924

The final-state probability vectors in Table 3 show that, for Black Bush Polder, the steady-state probabilities of

a dry and a wet day were 0.6867 and 0.3131, respectively, during the 1981-2022 period. These values indicate that,

on average, approximately 69 percent of days were dry, while 81 percent were wet. Such a distribution is characteristic

of coastal Guyana’s rainfall regime, which alternates between extended dry periods and concentrated wet spells. The
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relatively high persistence of dry days also suggests that rainfall events tend to occur in short bursts rather than
evenly throughout time, emphasizing the importance of temporal clustering in stochastic modeling.

The monthly transition behavior for Ebini is summarized in Table 4 and provides further insight into the seasonal
dynamics of rainfall occurrence. During the first four months of the year (January to April), the probability of
remaining dry ranged from 0.62 to 0.73, with corresponding wet-day probabilities below 0.40.

This dry dominance reflects the secondary dry season typically observed along Guyana’s coast. In contrast, from
May to August, the likelihood of a wet day exceeded 0.50, peaking at 0.7055 in June. These months coincide with the
primary rainy season, when the Intertropical Convergence Zone (ITCZ) reaches its northernmost position, bringing
increased convection and moisture inflow.

A gradual decline in wet-day probability is seen from September onward, with December (0.3609) marking a
return to drier conditions. The bimodal pattern in the data closely corresponds to the well-documented double wet
season across much of the country.

Descriptive statistics of observed precipitation for Black Bush Polder, presented in Table 5, reinforce these
findings. The mean monthly rainfall ranged from 6.69 mm in October to 13.52 mm in May, while the standard
deviation ranged from 8.90 mm to 20.12 mm, indicating notable variability within each month. The highest monthly
maximum (244.59 mm) occurred in January, reflecting occasional intense rainfall even during the relatively dry
season.

Rain-day frequencies also showed strong seasonality, peaking in June (827) over the 42-year period, followed by
July (789), and declining sharply in September (396). The coeflicient of variation (standard deviation divided by the
mean) exceeded 1.0 in most months, indicating high dispersion and supporting the suitability of skewed distributions,
such as the gamma and lognormal, for modeling rainfall amounts.

In contrast, rainfall characteristics at Ebini (Table 6) show a slightly wetter but more irregular regime. Mean
monthly rainfall ranged from 8.28 mm in October to 17.20 mm in January, and standard deviations were generally
higher than those observed at Black Bush Polder. The maximum recorded rainfall of 286.90 mm in January indicates
occasional heavy events even outside the peak rainy season.

The total number of rainy days (6,924) was comparable to that of Black Bush Polder (6,936), but with greater
month-to-month variation. This pattern reflects the influence of localized convection and interior climatic dynamics,
which the I'TCZ influences less than coastal regions. The rainfall regime at Ebini is therefore characterized by more
frequent but less predictable rainfall events, consistent with inland tropical climates.

These results underscore the seasonal rainfall distribution in Ebini over the past four decades and highlight the

advantage of fitting distributions to model the frequency of rainy days within each documented month.

3.1.2. Parameter Estimates of Each Distribution

Maximum Likelihood Estimation (MLE) is employed to estimate the distribution's parameters. The parameter
estimation for each month is shown in Tables 4 and 5.

The most suitable distribution for fitting the data on wet days in each month was determined using the AIC
method. Lower AIC values are considered optimal. Tables 7 and 8 present the selected distributions for each month
are based on the dual criteria of low AIC values.

Good fits were obtained for almost all months in Ebini; however, this was not the case in New Amsterdam, where
some months had moderate fits (September, October, January, February). As a result, multiple simulations had to be

run to achieve alignment with observed data.
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Table 7. Best fitting distributions by months over Black Bush Polder from 1981-2022.

Month Distribution Parameters
Location Shape Scale Threshold
January log normal 1.293 1.649
February log normal 1.184 1.618
March log normal 1.006 1.634
April log normal 1.423 1.583
May Gamma (3P) 0.672 19.980 0.099
June Gamma (3P) 0.693 18.920 0.099
July Gamma (3P) 0.730 18.090 0.046
August Weibull 0.785 9.720
September Weibull 0.694 5.456
October Log normal 0.860 1.596
November Weibull 0.805 6.491
December lognormal 1.264 1.598
Table 8. Best fitting distributions by months over Ebini from 1981-2022.
Month Distribution Parameters
Location Shape Scale Threshold
January lognormal 1.846 1.541
February Gamma (3P) 0.721 14.170 0.141
March Weibull 0.787 11.870
April Gamma (3P) 0.848 16.840 0.035
May Weibull 1.263 15.220
June Weibull 1.807 14.700
July Weibull 1.195 16.410
August Weibull 1.214 12.600
September Weibull 1.119 10.060
October Gamma 1.088 7.612
November Gamma (3P) 0.889 10.680 0.045
December Gamma (3P) 0.736 22.070 0.008

3.2. Simulation Results

Simulation data spanning 50 years (1981-2030) was generated using the Stochastic Precipitation Model

employing a Markov chain approach across both study locations. This data was divided into two periods: simulated

data from 1981 to 2022 and from 2023 to 2030. Figures 7 and 8 compare simulated data with the observed number

of rainy days from 1981 to 2022 across both study locations.

The figures indicate that the first-order Markov chain model effectively generates precipitation occurrences in

Black Bush Polder and Ebini regions. Remarkably, the simulation of precipitation occurrences demonstrated high

accuracy for most months, with May, June, July, and November showing the highest accuracy for Black Bush Polder,

and June, July, August, and October showing high accuracy for Ebini.
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Qbserved vs Simulated Monthly Wet Days - Black Bush Polder
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Figure 7. Line graph showing the number of observed vs simulated wet days over Black Bush from 1981-2022.
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Figure 8. Line graph showing the number of observed vs simulated wet days over Ebini from 1981-2022.
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Figure 9. Violin plot showing observed rainfall distribution by months over Black Bush Polder 1981-2022.
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Figure 10. Violin plot showing simulated rainfall distribution by months over Black Bush Polder 1981-2022.
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Figure 11. Violin plot showing observed rainfall distribution by months over Ebini 1981-2022.
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Figure 12. Violin plot showing simulated rainfall distribution by months over Ebini 1981-2022.
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3.8. Comparison Between Observed and Stmulated Precipitation Occurrence and Amount

Various descriptive measures have been computed to analyze the simulated and observed data. These measures
include the mean, median, maximum, minimum, and the lower and upper quartiles. The outcomes of these descriptive
measures for both simulated and observed data are presented in the analysis are presented in Tables 9 & 10.

Comparing observed and simulated precipitation data from 1981 to 2022 in the Black Bush Polder and the Ebini
observed and simulated data, except for September and October in New Amsterdam. The overall alignment in average
precipitation demonstrates the simulation model's ability to represent it accurately. This suggests that, on average,
the simulated data captures the central tendency of precipitation for both regions reasonably well. Moreover, in the
Ebini region, the simulated data displays closer proximity to observed mean and median values across months,

highlighting a potentially more accurate representation compared to the Black Bush Polder.

Table 9. Descriptive statistics for Observed and simulated precipitation over Black Bush Polder 1981-2022.

Month Mean Median Minimum Maximum 01 03

January_sim 12.370 3.890 0.010 265.440 1.100 11.460
January_obs 11.810 4.260 0.100 244.590 1.000 11.500
February_sim 10.230 3.110 0.040 155.950 1.160 9.420
February_obs 9.670 3.840 0.070 160.870 1.000 10.950
March_sim 9.290 3.110 0.020 204.820 1.100 8.640
March_obs 9.090 2.880 0.100 187.900 0.700 9.130
April_sim 12.880 4.660 0.050 188.510 1.730 18.690
April_obs 11.170 4.720 0.100 90.000 1.200 15.300
May_sim 18.930 6.910 0.100 118.490 2.360 18.120
May_obs 18.520 8.660 0.100 154.600 2.460 19.500
June_sim 18.220 8.000 0.100 185.830 2.540 18.480
June_obs 18.200 7.930 0.100 181.100 2.530 18.140
July_sim 14.030 8.980 0.050 93.740 3.080 19.460
July_obs 13.240 7.240 0.050 107.100 2.050 18.810
August_sim 11.780 5.970 0.000 109.160 1.800 15.280
August_obs 11.920 5.400 0.100 200.00 1.440 16.150
September_sim 5.500 3.550 0.020 38.980 1.540 7.640
September_obs 7.070 3.00 0.010 72.000 0.700 9.710
October_sim 8.740 2.280 0.020 205.390 0.700 6.030
October_obs 6.690 3.000 0.030 144.800 0.700 8.220
November_sim 7.520 3.980 0.000 60.060 1.220 9.900
November_obs 7.340 3.800 0.100 72.000 1.000 10.550
December_sim 12.410 3.270 0.020 291.590 1.110 9.860
December obs 10.490 4.020 0.100 221.480 1.000 11.250

Table 10. Descriptive statistics for Observed and simulated precipitation over Ebini from 1981-2022.

Month Mean Median Minimum Maximum 01 Q2 03

January_sim 17.230 6.060 0.030 208.230 2.110 6.060 17.720
January_obs 17.200 7.850 0.050 236.900 2.160 7.850 17.710
February_sim 10.520 5.580 0.140 95.090 1.620 5.580 14.000
February_obs 10.360 6.560 0.140 76.820 1.660 6.560 13.000
March_sim 14.640 7.370 0.010 127.380 2.240 7.370 20.220
March_obs 13.610 6.930 0.060 127.810 2.420 6.930 19.290
April_sim 14.080 9.170 0.030 117.000 3.240 9.170 19.300
April_ObS 14.820 9.910 0.030 83.890 3.500 9.910 19.520
May_sim 14.500 11.770 0.050 71.630 5.640 11.770 20.840
May_ObS 14.200 11.710 0.140 74.100 6.320 11.710 19.830
June_sim 13.600 10.860 0.050 62.078 5.850 10.860 19.220
June_obs 13.570 11.140 0.140 86.010 6.230 11.140 18.250
July_sim 15.910 12.150 0.110 95.380 5.910 12.150 21.540
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Month Mean Median Minimum Maximum 01 Q2 03

July_obs 15.480 12.450 0.130 116.770 6.540 12.450 21.410
August_sim 12.100 9.560 0.020 60.720 4.078 9.560 17.230
August_obs 11.850 10.080 0.110 61.090 5.320 10.080 15.960
September_sim 9.500 7.120 0.060 48.930 3.410 7.120 13.140
September_obs 9.670 8.090 0.070 51.490 3.470 8.090 13.760
October_sim 8.220 5.960 0.000 46.480 2.720 5.960 11.680
October_obs 8.280 6.610 0.090 45.910 2.730 6.610 11.870
November_sim 9.950 6.800 0.050 61.540 2.240 6.800 13.910
November_obs 9.540 6.830 0.050 59.240 2.550 6.830 13.720
December_sim 16.520 10.010 0.010 126.350 3.860 10.010 23.480
December obs 16.250 9.760 0.010 94.120 2.680 9.760 23.120

This alignment indicates that the simulation model better predicts average precipitation in this region.

Quartile analyses show consistent distributions in both the observed and simulated sets, underscoring the
simulation model's ability to capture the central 50% of precipitation values. Despite occasional variations in extreme
values, which may indicate outliers or model limitations, the overall consistency of quartile ranges suggests a degree
of reliability in representing typical precipitation patterns.

Figures 9—12 present violin plots of observed and simulated monthly rainfall distributions at Black Bush Polder
and Ebini. At Black Bush Polder, months such as May, June, and July exhibit broader distributions and higher upper
tails, consistent with elevated means (=15—16 mm) and large maxima reported in Table 9. In contrast, September and
October show more concentrated distributions at lower rainfall values, reflecting reduced means and quartiles. At
Ebini, the violin plots indicate consistently wetter conditions, particularly during January, May—-July, and December,
where higher means, medians, and extreme values are observed (Table 10). Across both locations, the elongated upper
tails visible in several months confirm the presence of extreme rainfall events and the strongly right-skewed nature
of the rainfall distributions.

These findings indicate that the simulation model performs well in approximating average precipitation trends
in both regions. This supports the potential utility of these models for forecasting and environmental management

but requires continued validation and refinement to improve accuracy during extreme precipitation events.

3.4. Precipitation Projections for 2023-2030

The two-step precipitation model was employed to simulate precipitation from 2023 to 2030 over both study
locations. The descriptive measures are presented in Table 11 and Table 12. As observed in the previous simulation
and consistent with historical data, the months of May, June, and July had the highest number of wet days across
both locations, recording 138, 150, and 126 wet days for Black Bush Polder, and 139, 180, and 177 days for the Ebini
region (See Figures 13 and 14 ). Over this period, September and October once again had the fewest wet days for

Black Bush Polder, while February and March had the lowest number of wet days for Ebini.

32
© 2025 Conscientia Beam. All Rights Reserved.



International Journal of Hydrology Research, 2025, 10(1): 16-38

160
:Number of Wet days

50

40 4
140 38

126 -
N7
1
€04
100 4
\96 /98
o1
80 +
76
60 4 1

T T T

T T T T T T T T T
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month
Figure 13. Line graph showing the simulated number of wet days from 2023-2030 over Black Bush Polder.
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Figure 14. Line graph showing the simulated number of wet days from 1981-2022 for Ebini.

Table 11. Descriptive statistics for simulated precipitation over Black Bush Polder from 2023-2030.

Month Mean Median | STD deviation Maximum o1 Perce"“lesgz

January 14.250 2.640 26.000 117.300 0.650 12.010
February 6.100 2.830 10.210 74.780 0.690 7.300
March 7.920 2.810 15.790 124.830 0.840 6.980
April 8.790 2.970 18.870 67.610 1.130 8.330
May 18.160 7.490 16.410 88.050 3.270 15.890
June 14.480 8.760 15.300 90.620 2.790 22.850
July 13.180 7.670 14.700 84.850 3.110 18.880
August 13.042 8.060 16.380 105.790 1.600 17.170
September 7.760 2.930 11.112 64.310 1.180 10.020
October 6.350 2.550 8.790 51.100 1.190 9.070
November 7.870 4.040 8.440 40.530 1.450 10.840
December 9.830 2.570 15.640 101.850 1.180 11.880
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Table 12. Descriptive statistics for simulated precipitation over Ebini from 2023-2030.

Month Mean Median Std. Deviation Maximum Percentiles
o1 Q3

January 16.860 5.280 29.460 169.150 2.290 15.530
February 8.870 4.730 11.340 43.390 1.440 10.470
March 15.250 8.310 19.950 95.990 2.040 20.830
April 14.580 8.820 17.180 83.700 3.010 19.210
May 13.850 10.110 11.870 66.680 5.330 19.780
June 14.630 12.620 9.680 58.280 7.720 20.200
July 15.000 12.220 11.780 63.590 5.840 22.280
August 12.820 10.240 9.710 46.010 4.380 17.590
September 9.680 7.080 8.510 38.110 2.590 14.170
October 6.870 4.290 6.980 29.250 1.950 9.170
November 9.640 6.250 8.840 35.550 2.640 16.270
December 15.730 8.310 18.600 86.660 3.560 21.410
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Figure 15. Violin plot of Simulated precipitation over Black Bush Polder from 2023-2030.
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Figure 16. Violin with box plot of precipitation over Ebini from 2023-2030.

Table 11 and Table 12 provide insight into the simulated precipitation patterns over Black Bush Polder and Ebini
from 2023 to 2030. In Black Bush Polder, the simulated precipitation from 2023 to 2030 shows notable variations
across months. January and June had higher mean precipitation, indicating potential periods of increased rainfall.
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Moreover, January showed substantial variability, with a higher standard deviation (25.997), suggesting significant
fluctuations in precipitation levels. In contrast, October and November display lower variability, indicating more
consistent precipitation during these months, which aligns with historical trends.

On the other hand, Ebini exhibited slightly different precipitation patterns over the 2023-2030 simulation period.
During this timeframe, January, March, and December stood out for higher mean precipitation. While January and
March exhibit greater variability, October and February show lower fluctuations in simulated precipitation.

Quartile analyses emphasize differences in data spreads between these regions. Ebini showed wider interquartile
ranges in June and July, indicating more significant precipitation variability than the Black Bush Polder.

The distributional characteristics of the projections are further illustrated in Figures 15 and 16, which present violin
plots of the projected monthly precipitation over Black Bush Polder and Ebini for the period 2028—2030. The plots
visually highlight the seasonal contrasts identified in Tables 11 and 12, with broader distributions during the mid-
year months and more concentrated rainfall during drier periods. In addition, the presence of elongated upper tails in
several months reflects the occurrence of intense rainfall events within the projection period. Overall, the violin plots
complement the tabulated statistics by emphasizing the variability and seasonal structure of projected precipitation

at both locations.

4. DISCUSSION

The results of this study demonstrate that the first-order Markov chain model, combined with probability
distribution fitting, is effective in capturing rainfall occurrence and intensity across the two selected regions in
Guyana. The transition probabilities revealed clear seasonal patterns, with higher wet-to-wet transition probabilities
during the rainy seasons, consistent with known climatic behavior in the country. The fitted probability distributions,
particularly the Gamma and Exponential families, successfully reproduced the statistical properties of daily rainfall
amounts, supporting the suitability of these models for rainfall simulation in tropical climates. Together, these
findings indicate that stochastic rainfall models can serve as valuable tools for generating synthetic rainfall series to
support agricultural planning, hydrological studies, and climate risk assessment in Guyana.

A key contribution of this research is addressing a gap in the existing literature: although rainfall variability and
trends have been studied in Guyana [297, no prior work has applied stochastic simulation methods to generate
synthetic rainfall sequences. By establishing a framework for rainfall simulation, this study not only advances local
rainfall research but also provides a methodological foundation for future applications, such as runoff modeling,
drought analysis, and crop yield forecasting.

Despite these contributions, several limitations must be acknowledged. First, the use of a first-order Markov
chain, while effective, may underestimate the duration of prolonged dry or wet spells, as observed in other contexts
[16]. Future research could explore higher-order models or hidden Markov models to better capture the persistence
of rainfall patterns. Second, although multiple probability distributions were tested, extreme rainfall events remain
challenging to model accurately, suggesting a potential role for heavy-tailed or mixed distributions in future studies.

Another limitation relates to data availability. Long-term, high-quality observed rainfall data were not available
for all study locations. To address this, reanalysis data obtained through Climate Engine were used as a
supplementary source. While reanalysis products are valuable for filling gaps, they rely on model assimilation. They
may not always reflect localized rainfall extremes, especially in regions with sparse gauge networks such as Guyana.
This reliance introduces some uncertainty into the simulations. Expanding the observational network in Guyana and
validating reanalysis products against ground-based measurements should therefore be a priority for future work.

In summary, the study demonstrates the feasibility and utility of stochastic rainfall simulation for Guyana and
identifies methodological and data-related limitations. By refining models and improving data availability, future
research can further enhance the accuracy and applicability of rainfall simulations, providing more substantial support

for water resource management and agricultural decision-making in the face of climate variability.
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5. CONCLUSION

This study represents the first attempt to apply a stochastic rainfall simulation framework in Guyana, combining
a first-order Markov chain for rainfall occurrence with probability distribution fitting for rainfall amounts. The results
demonstrate that this approach effectively reproduces the seasonal variability and statistical characteristics of rainfall
in two distinct regions: Black Bush Polder and Ebini. Transition probabilities captured the persistence of wet and dry
spells, while fitted probability distributions, particularly the Gamma distribution, provided a good representation of
daily rainfall intensity.

By filling a critical gap in the literature, this work establishes a methodological foundation for the use of stochastic
rainfall simulations in Guyana. The ability to generate synthetic rainfall series has direct applications for hydrological
modeling, agricultural planning, and climate risk assessment, offering decision-makers valuable tools for managing
water resources under uncertain future conditions.

At the same time, limitations remain, including reliance on reanalysis data when long-term observed records are
unavailable and challenges in accurately capturing extreme rainfall events. Future research should therefore focus on
expanding observational networks, validating reanalysis datasets, and exploring higher-order or hybrid stochastic
models that can better represent persistence and extremes.

Overall, this study highlights the feasibility and importance of stochastic rainfall modeling in data-sparse regions
and provides a stepping stone for further research that can strengthen climate resilience and support sustainable

agricultural and water resource management in Guyana.
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