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Precipitation simulation models are crucial for understanding, decision-making, and 
responding to phenomena related to hydrological, agricultural, and water resource 
management. This is particularly true for these climate-sensitive sectors in countries 
with high average annual rainfall, as well as those that depend on rainfall for food security 
and economic resilience. The application of precipitation simulation models in Guyana 
remains largely unexplored, despite the country’s high average annual precipitation and 
its population residing mainly along the low-elevation coastal zone. This study aimed to 
develop and evaluate a stochastic precipitation model capable of simulating daily rainfall 
patterns for two climatically distinct regions of Guyana. Daily rainfall occurrence was 
modeled using a first-order Markov chain, while wet-day rainfall amounts were fitted to 
Gamma, Weibull, and Lognormal probability distributions. The analysis used daily 
rainfall records from 1981 to 2022, with monthly stratification applied to capture 
Guyana’s bimodal rainfall regime. The model accurately reproduced key precipitation 
characteristics, showing high agreement between observed and simulated data. 
Projections for 2023–2030 closely align with established seasonal patterns, replicating 
the primary wet season (May–August) and the secondary wet season (November–
January). The Gamma and Weibull distributions provided superior fits for most months, 
reflecting the skewed nature of daily rainfall. This study provides the first empirical 
framework for stochastic rainfall modeling in Guyana, offering a foundation for 
hydrological forecasting, climate risk assessment, and agricultural planning. The 
modeling framework also holds transferability for other Caribbean and South American 
regions facing comparable climatic variability and limited observational data. 
 

Contribution/Originality: This study presents the first empirical application of stochastic precipitation modeling 

for Guyana. It integrates Markov chain rainfall occurrence and probabilistic distribution fitting. It establishes a 

transferable methodological framework for data-scarce tropical regions, enhancing rainfall simulation, hydrological 

forecasting, and climate risk assessment across the Caribbean and South America. 

 

1. INTRODUCTION 

The significance of precipitation in the context of global climate dynamics and environmental stability is 

profound. As a fundamental component of the Earth's hydrological cycle, precipitation directly affects hydrological, 

agricultural, and ecological systems, particularly in regions where rainfall strongly determines food security and 

water availability. However, paradoxically, precipitation also serves as a principal driver of disasters: floods, 

landslides, droughts, waterborne disease outbreaks, and widespread economic losses, which, combined, can lead to 
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severe socioeconomic and environmental impacts [1, 2]. Furthermore, with current evidence and forecasts of extreme 

weather patterns associated with climate change [3], this duality of precipitation becomes sharply focused for both 

scholars and practitioners. In particular, the central role of precipitation across many societal domains and the rising 

risks associated with its variability have led to heightened interest in understanding and predicting it. Modelling has 

become indispensable for anticipating hazards, planning infrastructure, managing water resources, and enhancing 

resilience. 

Historically, modeling precipitation has attracted considerable research attention due to its complex and variable 

nature, influenced by geographic, atmospheric, climatic, and anthropogenic factors [4, 5]. Moreover, as various 

modeling techniques evolve, the necessity for accurate precipitation predictions continues to grow. Traditional 

deterministic models often struggle to account for the inherent uncertainty in precipitation events. This has led to a 

shift towards more sophisticated probabilistic or stochastic models to capture the uncertainty, dependence structure, 

temporal dynamics, and randomness inherent in precipitation processes, thereby enhancing the reliability and 

applicability of rainfall forecasts [6]. The incorporation of stochastic elements into precipitation modeling has 

emerged as a robust approach, enriching traditional methodologies with improved adaptability and predictive power, 

which are essential for effective resource management and risk assessment [7, 8]. 

Recent decades have seen significant advancements in precipitation modeling technology and methodology. A 

particular focus has been on probabilistic and stochastic models, which have proven effective for temporal and spatial 

rainfall modeling. One of the most widely applied approaches is the two-step stochastic framework, in which a Markov 

chain models rainfall occurrence and probability distributions are fitted to wet-day rainfall amounts. This framework 

has been successfully applied across a range of climatic zones, including Asia, Europe, and Africa [9-11]. The first-

order Markov chain can model precipitation occurrences based on previous states, enabling the construction of rainfall 

data for hydrological simulations [12]. Such models capture the dependency of rainfall events not only on their 

immediate predecessors but also on broader patterns, providing a nuanced understanding of precipitation dynamics. 

Moreover, increased computational resources facilitate the application of more complex statistical methods, including 

Bayesian models that support intricate probabilistic inference and parameter estimation [13]. Because of these 

properties, first-order Markov chain models remain widely used in rainfall modeling and generation exercises across 

diverse climates [14]. 

First-order Markov chain models are not without issues. They tend to underestimate the duration of dry spells, 

and as a result, subsequent refinements have been made [15, 16]. To address these shortcomings, scholars introduced 

higher-order Markov chain models that extended the ‘memory’ of previous wet and dry days, thereby improving 

simulation fidelity. For example, optimization of model order and structure was employed to determine the most 

suitable Markov chain order for daily precipitation occurrence in the United States [17] and for pairing a Markov 

chain with a gamma distribution to enhance rainfall intensity modeling in Argentina [18]. Additionally, scholars 

have leveraged the flexibility of stochastic methods to model precipitation and other phenomena across diverse 

geographical and climatic conditions [11, 19, 20].  

Aside from precipitation occurrence, stochastic models are also used to model wet-day rainfall amounts. These 

include the Gamma, Weibull, Lognormal, and Exponential distributions. Research has consistently highlighted the 

Gamma distribution as particularly effective for daily rainfall in tropical climates [8, 21] while alternative heavy-

tailed distributions have been suggested for capturing extremes [22]. The integration of probability distributions 

with Markov chain–based occurrence models allows for the generation of synthetic rainfall series that accurately 

replicate both the frequency and intensity of observed rainfall. These models are highly valuable for hydrological 

planning, crop yield modeling, runoff estimation, and climate risk assessment. Despite their more advanced 

forecasting adaptations, first-order Markov chain models remain widely used and applicable, particularly for baseline 

studies. 
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Despite these substantial global advances, significant disparities exist in where precipitation modelling research 

is conducted. Much of the empirical literature is concentrated in North America, Europe, Asia, and parts of Africa. 

More proximate to Guyana, a growing body of research across the Caribbean continues to develop, highlighting 

regional differences and the need for localized studies to improve understanding and predictive capabilities in 

precipitation modelling [23] Central America [24, 25] and parts of South America [26, 27] demonstrates the value 

of stochastic rainfall simulation for hydrological planning, flood risk assessment, agricultural modelling, and climate-

change impact studies. However, while countries within these regions share many climatic, geographic, 

socioeconomic, and environmental characteristics with their neighbors, precipitation variability means models are 

context-specific. Therefore, the absence of stochastic modelling in a particular context not only constitutes a gap in 

the global literature but also hampers local capacity to prepare for and manage the impacts of climatic variability 

[28].  

A thorough literature search proved the scarcity of precipitation modeling within the Guyana context. Moreover, 

while there is evidence of descriptive climatology and deterministic modeling in Guyana [29], there are no peer-

reviewed studies of stochastic precipitation modelling. This represents a meaningful gap in the literature. Without 

stochastic rainfall models calibrated to local data, decision-makers must rely on general hydrological assumptions, 

foreign models, or climate-model outputs that may not reflect local rainfall behaviour. This creates challenges for 

national planning, including water resource management, agricultural scheduling and irrigation planning, urban 

drainage design, flood risk assessment, drought preparedness, and climate adaptation policy. 

To bridge this gap, the present study develops the first stochastic precipitation model tailored for Guyana. It 

focuses on two ecologically distinct regions: ‘Black Bush Polder’ in the low coastal plain and ‘Ebini’ in the hinterland. 

Rainfall occurrence is modeled using a first-order Markov chain, while wet-day rainfall amounts are characterized 

through probability distribution fitting. Monthly stratification is employed to capture Guyana’s bimodal rainfall 

regime, and model performance is evaluated against observed data from 1981–2022, with simulations extended to 

2030. By integrating occurrence and intensity modeling, this research establishes a foundational stochastic rainfall 

framework for Guyana, one that complements previous trend-based investigations and equips water managers, 

agricultural planners, and climate scientists with a robust tool for scenario generation, resource optimization, and 

risk-informed decision-making. 

 

2. METHODOLOGY 

2.1. Study Area and Data 

The study areas for this research are Black Bush Polder, Guyana, specifically at coordinates 6°4'58" N and 

57°15'57" W, and Ebini, Latitude  5∘38′39.26′′N and Longitude  57∘46′17.51′′W. A hybrid dataset, combining both 

observed and reanalysis data, was used due to limited historical data availability for the Black Bush Polder area and 

the specific requirements of the precipitation model. This dataset merged information from local stations and 

reanalysis data from the Climate Engine's CHIRPS dataset, spanning from 1981 to 2022. The CHIRPS dataset, 

offering the highest resolution among the available options (4.8 km, 4800 m, 1/20-deg), was used to extract data from 

1981 to 2000. Data from 2001 to 2022 primarily stemmed from weather stations. Approximately 3.4% of the data for 

the years 2001 to 2022 were identified as missing for the Black Bush Polder region. A direct imputation method was 

employed to address the absence of this data. This method utilized corresponding data retrieved from the CHIRPS 

dataset. 

Due to the lack of precipitation data for the Ebini area, reanalysis data from the Climate Engine for the period 

1981-2022 were used in the precipitation simulations. All analyses were performed using a combination of R and 

Microsoft Excel. The stochastic rainfall model, including the Markov chain simulation and probability generation 

processes, was developed and executed in R, while the distribution fitting and graphical evaluations were conducted 

in Excel using an add-on package designed for probability distribution analysis. 
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2.2. Modeling Framework 

2.2.1. Precipitation Model 

Here, we present a precipitation model designed to simulate rainfall patterns from 1981 to 2030, drawing on 

historical precipitation data from Black Bush Polder and Ebini. The simulation uses a Markov chain to determine 

precipitation events, while a probability distribution is used to estimate precipitation amounts on wet days. To 

determine the precipitation amounts, we explore four distinct probability distributions: Lognormal, Weibull, and 

Gamma (2 and 3 parameters). These proposed distributions serve as tools for quantifying precipitation amounts. 

Given the influence of seasonal shifts on rainfall patterns, we fit distributions for each month. This analysis helps 

identify the most appropriate distribution that accurately aligns with the precipitation characteristics for that specific 

month. 

Our selection of suitable distribution models for each month is guided by a combination of criteria, including the 

Akaike Information Criterion (AIC), and the prevalence of these distributions within the existing literature. These 

methodologies collectively contribute to determining the optimal distribution for estimating precipitation amounts. 

 

2.2.2. Precipitation Occurrence Model 

In this two-step precipitation model, precipitation occurrence is modeled using a first-order Markov chain. This 

is achieved by categorizing the data into two states: "ones" representing wet days and "zeroes" representing dry days. 

The transitions between these states are then counted to determine transition probabilities and final states. 

 

2.2.3. Markov Chain 

In hydrology, modelling precipitation data at appropriate times for various purposes has been an important issue 

over the past 30 years [30]. Using a higher-order Markov chain can improve the model's performance in replicating 

precipitation occurrences. However, parameter estimation becomes more computationally intensive as the order 

increases, requiring more computations. In numerical analysis, the improvements in model performance achieved by 

higher-order methods are relatively minimal. As a result, it is more advantageous to utilize a first-order approach. A 

first-order Markov chain is a type of stochastic process characterized by the fact that the value of the process at time 

𝑡, 𝑋𝑡 , is solely determined by its value at the previous time step 𝑡 − 1, 𝑋𝑡−1 . The value of 𝑋𝑡 does not depend on the 

specific sequence of values that the process went through to reach 𝑋𝑡−1 . This means that the likelihood of precipitation 

occurring tomorrow is contingent solely upon the current weather conditions, namely, whether it is currently raining 

or not. The explanation can be attributed to the Markov property, which can be described as follows: 

𝑃(𝑋𝑡+1 = 𝑠𝑡+1 ∣ 𝑋𝑡 = 𝑠𝑡 , 𝑋𝑡−1 = 𝑠𝑡−1, ⋯ , 𝑋0 = 𝑠0) = 𝑃(𝑋𝑡+1 = 𝑠𝑡+1 ∣ 𝑋𝑡 = 𝑠𝑡)    (1) 

Where the time variable, denoted as t, takes on values from the set {0, 1, 2, · · ·, T}. The state space, denoted as 

s, consists of elements from the set {1, 2, 3, · · ·, S}. The Markov property in a first-order Markov chain states that 

the previous state is irrelevant for the next state. The present value is the sole significant value for determining future 

values. In the context of a Markov chain, a transition matrix is essential for specifying the probability of each event. 

In this context, the composition of transition probabilities refers to the conditional probability of state j given state i. 

The transition matrix is given as: 

𝐏 = [

𝑝11 ⋯ 𝑝1𝑗

⋮ ⋱ ⋮
𝑝𝑖1 ⋯ 𝑝𝑖𝑗

]   for 𝑖, 𝑗 ∈ 𝑆     (2) 

Where 𝑃𝑖𝑗 =
𝑛𝑖𝑗

∑𝑗=1
𝑛  𝑛𝑖𝑗

 =  𝑃(𝑋𝑡+1 = 𝑗 ∣ 𝑋𝑡 = 𝑖).  The transition matrix has the property that each row sums to 1. 

∑𝑗=1
𝑆  𝑃𝑖𝑗 = ∑𝑗=1

𝑆  𝑃(𝑋𝑡+1 = 𝑗 ∣ 𝑋𝑡 = 𝑖) = ∑𝑗=1
𝑆  𝑃{𝑋𝑡=𝑖}(𝑋𝑡+1 = 𝑗) = 1   (3) 

Precipitation incidence may be classified into two states: dry and wet. Hence, the transition matrix is determined 

by two conditional probabilities, which are  

𝑃𝑑𝑑 = 𝑃( dry on day t + 1 ∣ dry on day t). 
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𝑃𝑑𝑤 = 𝑃( wet on day t + 1 ∣ dry on day t). 

𝑃𝑤𝑑 = 𝑃( dry on day t + 1 ∣ wet on day t). 

𝑃𝑤𝑤 = 𝑃( wet on the day t + 1 ∣ wet on the day t). 

Given that only two states exist, the transition probabilities within a given state are complementary. It is optional 

to estimate all four transition probabilities; instead, it suffices to estimate a single probability for each transition pair. 

Given this, we can define the transition probability matrix as follows: 

𝐏 = [
𝑝𝑑𝑑 𝑝𝑑𝑤

𝑝𝑤𝑑 𝑝𝑤𝑤
]  0 ≤ 𝑝𝑖𝑗 ≤ 1        𝑖, 𝑗 = {𝑑, 𝑤}    (4) 

Using the transition matrix allows computation of the stationary state vector. The stationary state vector  𝜋, has 

the unique property of  𝜋 = 𝜋P. It gives the long-run relative frequency of being in a wet and dry state. It has the 

property:  ∑𝑖=1
𝑆  𝜋𝑖 = 1, where 𝜋𝑖 ≥ 0 for all 𝑖.  property: 𝜋𝑖 , d probability of being in state 𝑖. 

𝜋 = (𝜋𝑑 𝜋𝑤)   

(𝜋𝑑 𝜋𝑤) = (𝜋𝑑 𝜋𝑤) [
1 − 𝑝𝑑𝑤 𝑝𝑑𝑤

𝑝𝑤𝑑 1 − 𝑝𝑤𝑑
]   (5) 

For a two-state Markov chain, the stationary probabilities 𝜋𝑑  𝑎𝑛𝑑 𝜋𝑤 are given as follows:  

𝜋𝑑 =
𝑝𝑤𝑑

𝑝𝑤𝑑+𝑝𝑑𝑤
    (6) 

𝜋𝑤 =
𝑝𝑑𝑤

𝑝𝑤𝑑+𝑝𝑑𝑤
     (7) 

2.2.4. Determining Precipitation Amount  

The second part of the stochastic precipitation model aims to determine the precipitation amount. This is achieved 

by identifying a suitable generalized probability distribution that fits the wet-day counts in the precipitation data 

stratified by month. According to existing literature, the two-parameter gamma distribution is the most widely used 

distribution for fitting precipitation data on wet days [17, 31]. Insights can be drawn from density plots and 

histograms presented in Figures 1, 2, 3, and 4. Distributions skewed to the right will be considered for modeling 

precipitation quantities. In this study, the following distributions will be tested: Weibull, two-parameter gamma, 

three-parameter gamma, and lognormal. Log-likelihood estimation was used to estimate the parameters of these 

distributions. 

 

 
Figure 1. Overall Density plot of precipitation over Black Bush Polder (1981-2022). 
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Figure 2. Precipitation histogram for Black Bush Polder (1981-2022). 

 

 
Figure 3. Overall Density plot of precipitation over Ebini (1981-2022). 

 

 
Figure 4. Precipitation histogram for Ebini (1981-2022). 
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2.2.5. Probability Distributions 

Four probability distributions, namely the lognormal, Weibull, gamma, and three-parameter gamma 

distributions, will be evaluated to identify the one that best fits the monthly precipitation data. The selection of these 

distributions was motivated by the pronounced positive skewness evident in both the histograms and kernel density 

plots of the rainfall data, as illustrated in Figures 1, 2, 3, and 4 for the study locations. Such right-skewed behavior is 

characteristic of precipitation data and aligns with the underlying assumptions of these distributions, which have also 

been widely applied and shown to perform effectively in the literature. 

 

2.2.6. Lognormal Distributions 

The lognormal distribution is a continuous probability distribution that exhibits right skewness, with elongated 

tails to the right. It can be generated through a variable-method transformation from the normal distribution. As a 

result, if the random variable X follows a lognormal distribution, then Y = ln(X) follows a normal distribution. This 

distribution is widely used in modeling various socio-economic and natural processes, including but not limited to 

revenue distributions and precipitation levels. 

The standard lognormal distribution has two parameters: location and scale. This can be expanded by 

introducing a third parameter corresponding to a threshold value. This expansion is termed the three-parameter 

lognormal distribution. The three-parameter lognormal distribution is a refinement of the two-parameter version, 

incorporating a shift in location. The probability density function (PDF) and parameter estimations are given below: 

𝑓(𝑥; 𝜇, 𝜎, 𝛾) =
1

(𝑥−𝛾)𝜎√2𝜋
exp {−

[ln (𝑥−𝛾)−𝜇]2

2𝜎2 }     (8) 

Where 0 ≤ 𝛾 < 𝑥,  − ∞ < 𝜇 < ∞,  𝜎 > 0.  𝜇, 𝜎 and 𝛾 are the parameters of the distribution. When 𝛾 = 0, the 

distribution becomes the two-parameter lognormal distribution: 

𝑓(𝑥; 𝜇, 𝜎) =
1

𝑥𝜎√2𝜋
exp (

−(ln 𝑥−𝜇)2

2𝜎2 )    (9) 

In these equations, the parameters 𝜇, 𝜎 and 𝛾 are referred to as the location, scale, and threshold parameters, 

respectively. The mean of the lognormal distribution is given by exp (𝜇 +
1

2
𝜎2), and its variance is given by  

(exp (𝜎2) − 1)exp (2𝜇 + 𝜎2) The maximum likelihood estimate of the two parameters of the lognormal 

distribution is given below. 

𝜇̂ =
1

𝑛
∑  𝑛

1 ln (𝑋𝑖 − 𝛾̂)     (10) 

                                       and 

𝜎̂2 =
1

𝑛
∑  𝑛

1 ln2 (𝑋𝑖 − 𝛾̂) − [
1

𝑛
∑  𝑛

1   (𝑋𝑖 − 𝛾̂)]
2

     (11) 

Where 𝛾̂ is assumed to be zero for the two parameters log normal. The value of 𝛾̂ is are often estimated using 

numerical means.  

 

2.2.7. Generalized Gamma Distribution (Two and Three Parameters) 

The generalized gamma distribution is a continuous probability distribution characterized by two shape and scale 

parameters. In the literature, the gamma distribution is one of the most popular distributions for modeling 

precipitation amounts. The probability density of the generalized gamma distribution (GG (𝛼, 𝜏, 𝜆)) is given by 

𝑓(𝑦 ∣ 𝛼, 𝜏, 𝜆) =
𝜏

𝜆Γ(𝛼)
(

𝑦

𝜆
)

𝛼𝜏−1

𝑒−(
𝑦

𝜆
)

𝜏

 𝑦 ≥ 0,  𝜏, 𝛼, 𝜆 > 0    (12) 

where Γ(.) 𝑖𝑠 𝑡ℎ𝑒 𝑔𝑎𝑚𝑚𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝛼 and 𝜏 are shape parameters, and 𝜆 is the scale parameter. 
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2.2.8. Weibull Distribution 

The Weibull distribution is a widely used continuous probability distribution that has been applied to examine 

product dependability, analyze life statistics, and model failure times across several fields, such as biology, economics, 

and engineering [32]. 

The probability density function of a Weibull random variable is: 

𝑓(𝑥; 𝜆, 𝑘) = {
𝑘

𝜆
(

𝑥

𝜆
)

𝑘−1

𝑒−(𝑥/𝜆)𝑘
, 𝑥 ≥ 0,

0, 𝑥 < 0,
     (13) 

where 𝑘 > 0 is the shape parameter and 𝜆 > 0 is the scale parameter of the distribution. 

The mean and variance of the Weibull distribution are given as: 

Mean=  𝜆Γ(1 + 1/𝑘). 

Variance =  𝜆2 [Γ (1 +
2

𝑘
) − (Γ (1 +

1

𝑘
))

2

]. 

 

2.3. Model Evaluation 

2.3.1. Validation of Distribution Fit 

When modeling precipitation amounts, choosing the distribution that best fits the data for days with precipitation 

is crucial. This process is commonly known in the literature as goodness-of-fit testing and is extensively employed 

to determine distribution fitting. This research uses the Akaike Information Criterion to assess the fit of the 

distribution. 

 

2.3.2. Akaike Information Criterion (AIC-Hirotugu Akaike [33]) 

The Akaike Information Criterion (AIC) was among the first model selection criteria to gain widespread 

recognition in the statistical community as a method for evaluating the effectiveness of linear regression models. The 

fundamental concept of the Akaike Information Criterion (AIC) is to identify a model that minimizes the loss of 

information in the given data. The formulation for the AIC is given as: 𝐴𝐼𝐶 = −2ln (𝐿) + 2𝐾. 

Where L represents the log-likelihood function in this equation, commonly used in statistical modeling, K denotes 

the number of parameters in the model being analyzed. A penalty term, represented as K, is associated with the 

number of parameters. When deciding on distribution fit, smaller AIC values are preferred. 

 

2.3.3. Simulation of Precipitation  

The subsequent steps are used to simulate precipitation for the periods 1981-2022 and 2023-2030. The initial 

three steps encompass the processes required to generate precipitation occurrences. The final step involves the 

procedure needed for generating precipitation amounts. The combination of these steps is essential to the formulation 

of the precipitation model. 

Step 1: Transform your data into a binary representation of wet and dry states (0 for dry, 1 for wet). Employ this 

binary state to construct a transition probability matrix, which outlines the transitions from a present state to a future 

state. 

Step 2: Use the transition probability matrix results to construct the final state vector.  

Step 3: For generating precipitation occurrences throughout the projected period, employ a random number 

generator sourced from a uniform distribution with a range of 0 to 1. If the generated random number is smaller than 

𝜋𝑑 , the state is considered dry; otherwise, it is deemed wet. Next, produce another random number within the range 

of 0 to 1 and compare it to the transition probability for transitioning from the current state to an alternative state. 

If the number is equal to or less than the probability of transitioning to the next state, the subsequent state will be 

that state. Otherwise, you will be in the other state. 
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Step 4: Repeat step 3 until you have generated all the days required.  

Step 5: Once the precipitation occurrence has been determined, random values are generated from the probability 

distribution fitted to the precipitation amount on wet days. These values correspond to the projected amount of rain 

expected on days identified as wet, as obtained from the precipitation occurrence model. 

 

3. RESULTS 

3.1. Results of the Precipitation Occurrence Model 

Tables 1 and 2 present the transition matrix results for each month from 1981 to 2022 across the Black Bush 

Polder and Ebini regions. As indicated by the transition matrix and consistent with traditional seasonal rainfall 

patterns, May, June, and July exhibited the lowest transition probabilities from a wet day to a dry day at both study 

locations, with values below 0.3. Conversely, these three months also showed the highest likelihood of transitioning 

from a wet day to another wet day, with probabilities exceeding 0.7. Throughout this time span, January, February, 

September, and October consistently demonstrated the least likelihood of transitioning from a wet day to a dry day, 

with probabilities ranging from 0.48 to 0.64. 

 

Table 1. Transition probability matrix for each month over Black Bush Polder from 1981-2022. 

State Dry Wet Month State Dry Wet Month 

Dry 0.760 0.240 January Dry 0.563 0.437 July 

Wet 0.360 0.640  Wet 0.283 0.717  
Dry 0.742 0.258 February Dry 0.696 0.304 August 

Wet 0.368 0.632  Wet 0.359 0.641  
Dry 0.776 0.224 March Dry 0.784 0.216 September 
Wet 0.372 0.628  Wet 0.475 0.525  
Dry 0.736 0.264 April Dry 0.778 0.222 October 
Wet 0.353 0.647  Wet 0.496 0.504  
Dry 0.670 0.330 May Dry 0.750 0.250 November 

Wet 0.259 0.741  Wet 0.350 0.650  
Dry 0.528 0.472 June Dry 0.729 0.271 December 

Wet 0.261 0.739  Wet 0.291 0.709  

 

Table 2. Transition probability matrix for each month over Ebini from 1981-2022. 

State Dry Wet Month State Dry Wet Month 

Dry 0.754 0.246 January Dry 0.442 0.558 July 

Wet 0.509 0.491  Wet 0.287 0.713  
Dry 0.780 0.220 February Dry 0.510 0.490 August 

Wet 0.518 0.482  Wet 0.380 0.620  
Dry 0.811 0.189 March Dry 0.666 0.334 September 
Wet 0.503 0.497  Wet 0.445 0.555  
Dry 0.761 0.239 April Dry 0.681 0.319 October 
Wet 0.389 0.611  Wet 0.471 0.529  
Dry 0.570 0.430 May Dry 0.708 0.292 November 

Wet 0.293 0.707  Wet 0.424 0.576  
Dry 0.378 0.624 June Dry 0.749 0.251 December 

Wet 0.261 0.739  Wet 0.443 0.556  

 

From the transition probabilities reported in Tables 1 and 2, the likelihood of transitioning from a wet day to 

another wet day is consistently greater than the probability of transitioning from a dry day to a wet day. Figure 5 

visually presents this relationship for Black Bush Polder, while Figure 6 visually exhibits the same behaviour for 

Ebini, with 𝑃(𝑊 → 𝑊) remaining larger than 𝑃(𝐷 → 𝑊) throughout the year. Hence, 𝑝𝐷𝑊 < 𝜋𝑊 < 𝑝𝑊𝑊 . 
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Figure 5. Line graph showing transition states (DW-dry to wet, WW- wet to wet) over Black Bush Polder. 

 

 
Figure 6. Line graph showing transition states (DW-dry to wet, WW- wet to wet) over Ebini. 

 

3.1.1. Steady State Vector 

The transition probability matrix provides essential data for computing the steady-state vector, which offers 

insights into the long-term average occurrence of precipitation events. Analysis of the steady-state vectors reveals 

that May, June, and July consistently showed probabilities exceeding 0.55 for encountering wet conditions across 

both study locations. These values suggest that these months experienced wet days at least 55% of the time over an 

extended period. This observation aligns with Guyana's established seasonal rainfall pattern, which occurs in May-

June/July. Furthermore, noticeable indications of increased likelihood of wet conditions are evident in Black Bush 

Polder during August and December, and in Ebini, specifically during August. 
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Table 3. Final state probability vectors over Black Bush Polder from 1981-2022. 

January February  March April 

[0.600, 0.400]  [0.588, 0.413] [0.624, 0.376] [ 0.572, 0.428] 

May June July August 

[0.439, 0.561] [ 0.356, 0.644] [0.393, 0.607] [0.542, 0.458] 

September October  November  December 

[0.687, 0.313] [0.691, 0.310] [0.583, 0.417] [0.518, 0.482] 

 

Table 4. Final state probability vectors over Ebini from 1981-2022. 

January  February March April 

[0.675, 0.325]  [0.702, 0.298] [0.726, 0.274] [ 0.620, 0.381] 

May  June July August 

[0.405, 0.595] [ 0.295,0.706] [0.340, 0.660] [0.437, 0.563] 

September   October November December 

[0.5701, 0.429] [0.596, 0.404] [0.591, 0.409] [0.639, 0.361] 

 

Table 5. Descriptive statistics of observed precipitation over Black Bush Polder 1981-2022. 

Months Maximum Mean Std. Deviation Variance Rain days 

January 244.590 10.480 20.120 404.900 520 
February 160.870 9.670 16.650 277.360 489 
March 137.900 9.090 17.460 304.890 490 
April 90.000 11.180 15.490 239.800 539 
May 154.600 13.520 15.450 238.620 732 
June 131.100 13.200 15.370 236.070 827 
July 107.100 13.240 15.880 252.180 789 
August 200.000 11.920 18.100 327.410 596 
September 72.000 7.070 10.540 111.100 396 
October 144.800 6.690 12.100 146.340 402 
November 72.000 7.350 8.900 79.270 525 
December 221.480 10.490 18.720 350.250 631 

Total     6936 

 

Table 6. Descriptive statistics of observed precipitation over Ebini, 1981-2022. 

Month Maximum Mean Std. Deviation Rain days 

January 236.900 17.200 28.440 423 

February 76.820 10.360 12.440 353 

March 127.810 13.610 17.170 357 

April 83.890 14.320 14.790 481 

May 74.110 14.200 10.840 775 

June 86.010 13.590 10.540 890 

July 116.770 15.480 12.840 859 

August 61.090 11.850 9.520 734 

September 51.490 9.670 8.360 542 

October 45.910 8.280 7.350 525 

November 59.240 9.540 9.590 514 

December 94.120 16.250 18.350 471 

Total    6924 

 

The final-state probability vectors in Table 3 show that, for Black Bush Polder, the steady-state probabilities of 

a dry and a wet day were 0.6867 and 0.3131, respectively, during the 1981–2022 period. These values indicate that, 

on average, approximately 69 percent of days were dry, while 31 percent were wet. Such a distribution is characteristic 

of coastal Guyana’s rainfall regime, which alternates between extended dry periods and concentrated wet spells. The 
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relatively high persistence of dry days also suggests that rainfall events tend to occur in short bursts rather than 

evenly throughout time, emphasizing the importance of temporal clustering in stochastic modeling. 

The monthly transition behavior for Ebini is summarized in Table 4 and provides further insight into the seasonal 

dynamics of rainfall occurrence. During the first four months of the year (January to April), the probability of 

remaining dry ranged from 0.62 to 0.73, with corresponding wet-day probabilities below 0.40.  

This dry dominance reflects the secondary dry season typically observed along Guyana’s coast. In contrast, from 

May to August, the likelihood of a wet day exceeded 0.50, peaking at 0.7055 in June. These months coincide with the 

primary rainy season, when the Intertropical Convergence Zone (ITCZ) reaches its northernmost position, bringing 

increased convection and moisture inflow.  

A gradual decline in wet-day probability is seen from September onward, with December (0.3609) marking a 

return to drier conditions. The bimodal pattern in the data closely corresponds to the well-documented double wet 

season across much of the country. 

Descriptive statistics of observed precipitation for Black Bush Polder, presented in Table 5, reinforce these 

findings. The mean monthly rainfall ranged from 6.69 mm in October to 13.52 mm in May, while the standard 

deviation ranged from 8.90 mm to 20.12 mm, indicating notable variability within each month. The highest monthly 

maximum (244.59 mm) occurred in January, reflecting occasional intense rainfall even during the relatively dry 

season.  

Rain-day frequencies also showed strong seasonality, peaking in June (827) over the 42-year period, followed by 

July (789), and declining sharply in September (396). The coefficient of variation (standard deviation divided by the 

mean) exceeded 1.0 in most months, indicating high dispersion and supporting the suitability of skewed distributions, 

such as the gamma and lognormal, for modeling rainfall amounts. 

In contrast, rainfall characteristics at Ebini (Table 6) show a slightly wetter but more irregular regime. Mean 

monthly rainfall ranged from 8.28 mm in October to 17.20 mm in January, and standard deviations were generally 

higher than those observed at Black Bush Polder. The maximum recorded rainfall of 236.90 mm in January indicates 

occasional heavy events even outside the peak rainy season.  

The total number of rainy days (6,924) was comparable to that of Black Bush Polder (6,936), but with greater 

month-to-month variation. This pattern reflects the influence of localized convection and interior climatic dynamics, 

which the ITCZ influences less than coastal regions. The rainfall regime at Ebini is therefore characterized by more 

frequent but less predictable rainfall events, consistent with inland tropical climates. 

These results underscore the seasonal rainfall distribution in Ebini over the past four decades and highlight the 

advantage of fitting distributions to model the frequency of rainy days within each documented month. 

 

3.1.2. Parameter Estimates of Each Distribution 

Maximum Likelihood Estimation (MLE) is employed to estimate the distribution's parameters. The parameter 

estimation for each month is shown in Tables 4 and 5.  

The most suitable distribution for fitting the data on wet days in each month was determined using the AIC 

method. Lower AIC values are considered optimal. Tables 7 and 8 present the selected distributions for each month 

are based on the dual criteria of low AIC values.  

Good fits were obtained for almost all months in Ebini; however, this was not the case in New Amsterdam, where 

some months had moderate fits (September, October, January, February). As a result, multiple simulations had to be 

run to achieve alignment with observed data. 
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Table 7. Best fitting distributions by months over Black Bush Polder from 1981-2022. 

Month Distribution Parameters 

  Location Shape Scale Threshold 

January log normal  1.293  1.649  

February log normal  1.184  1.618  

March log normal 1.006  1.634  

April log normal 1.423  1.583  

May Gamma (3P)  0.672 19.980 0.099 

June Gamma (3P)  0.693 18.920 0.099 

July Gamma (3P)  0.730 18.090 0.046 

August Weibull  0.735 9.720  

September Weibull  0.694 5.456  

October Log normal 0.860  1.596  

November Weibull  0.805 6.491  

December lognormal 1.264  1.593  

 

Table 8. Best fitting distributions by months over Ebini from 1981-2022. 

Month Distribution Parameters 

  Location Shape Scale Threshold 

January  lognormal 1.846  1.541  

February  Gamma (3P)  0.721 14.170 0.141 

March  Weibull  0.787 11.870  

April Gamma (3P)  0.848 16.840 0.035 

May Weibull  1.263 15.220  

June Weibull  1.307 14.700  

July Weibull  1.195 16.410  

August Weibull  1.214 12.600  

September Weibull  1.119 10.060  

October Gamma  1.088 7.612  

November Gamma (3P)  0.889 10.680 0.045 

December Gamma (3P)  0.736 22.070 0.008 

 

3.2. Simulation Results 

Simulation data spanning 50 years (1981-2030) was generated using the Stochastic Precipitation Model 

employing a Markov chain approach across both study locations. This data was divided into two periods: simulated 

data from 1981 to 2022 and from 2023 to 2030. Figures 7 and 8 compare simulated data with the observed number 

of rainy days from 1981 to 2022 across both study locations. 

The figures indicate that the first-order Markov chain model effectively generates precipitation occurrences in 

Black Bush Polder and Ebini regions. Remarkably, the simulation of precipitation occurrences demonstrated high 

accuracy for most months, with May, June, July, and November showing the highest accuracy for Black Bush Polder, 

and June, July, August, and October showing high accuracy for Ebini. 
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Figure 7. Line graph showing the number of observed vs simulated wet days over Black Bush from 1981-2022. 

 

 
Figure 8. Line graph showing the number of observed vs simulated wet days over Ebini from 1981-2022. 

   

 
Figure 9. Violin plot showing observed rainfall distribution by months over Black Bush Polder 1981-2022. 
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Figure 10. Violin plot showing simulated rainfall distribution by months over Black Bush Polder 1981-2022. 

 

 
Figure 11. Violin plot showing observed rainfall distribution by months over Ebini 1981-2022. 

 

 
Figure 12. Violin plot showing simulated rainfall distribution by months over Ebini 1981-2022. 
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3.3. Comparison Between Observed and Simulated Precipitation Occurrence and Amount 

Various descriptive measures have been computed to analyze the simulated and observed data. These measures 

include the mean, median, maximum, minimum, and the lower and upper quartiles. The outcomes of these descriptive 

measures for both simulated and observed data are presented in the analysis are presented in Tables 9 & 10.  

Comparing observed and simulated precipitation data from 1981 to 2022 in the Black Bush Polder and the Ebini 

observed and simulated data, except for September and October in New Amsterdam. The overall alignment in average 

precipitation demonstrates the simulation model's ability to represent it accurately. This suggests that, on average, 

the simulated data captures the central tendency of precipitation for both regions reasonably well. Moreover, in the 

Ebini region, the simulated data displays closer proximity to observed mean and median values across months, 

highlighting a potentially more accurate representation compared to the Black Bush Polder. 

 

Table 9. Descriptive statistics for Observed and simulated precipitation over Black Bush Polder 1981-2022. 

Month Mean Median Minimum Maximum Q1 Q3 

January_sim 12.370 3.890 0.010 265.440 1.100 11.460 
January_obs 11.810 4.260 0.100 244.590 1.000 11.500 
February_sim 10.230 3.110 0.040 155.950 1.160 9.420 
February_obs 9.670 3.840 0.070 160.870 1.000 10.950 
March_sim 9.290 3.110 0.020 204.820 1.100 8.640 
March_obs 9.090 2.880 0.100 137.900 0.700 9.130 
April_sim 12.880 4.660 0.050 133.510 1.730 13.690 
April_obs 11.170 4.720 0.100 90.000 1.200 15.300 
May_sim 13.930 6.910 0.100 118.490 2.360 18.120 
May_obs 13.520 8.660 0.100 154.600 2.460 19.500 
June_sim 13.220 8.000 0.100 135.330 2.540 18.480 
June_obs 13.200 7.930 0.100 131.100 2.530 18.140 
July_sim 14.030 8.980 0.050 93.740 3.080 19.460 
July_obs 13.240 7.240 0.050 107.100 2.050 18.810 
August_sim 11.780 5.970 0.000 109.160 1.800 15.230 
August_obs 11.920 5.400 0.100 200.00 1.440 16.150 
September_sim 5.500 3.550 0.020 38.980 1.540 7.640 
September_obs 7.070 3.00 0.010 72.000 0.700 9.710 
October_sim 8.740 2.280 0.020 205.390 0.700 6.030 
October_obs 6.690 3.000 0.030 144.800 0.700 8.220 
November_sim 7.520 3.980 0.000 60.060 1.220 9.900 
 November_obs 7.340 3.800 0.100 72.000 1.000 10.550 
December_sim 12.410 3.270 0.020 291.590 1.110 9.860 
December obs 10.490 4.020 0.100 221.480 1.000 11.250 

 

Table 10. Descriptive statistics for Observed and simulated precipitation over Ebini from 1981-2022. 

Month Mean Median Minimum Maximum Q1 Q2 Q3 

January_sim 17.230 6.060 0.030 208.230 2.110 6.060 17.720 

January_obs 17.200 7.350 0.050 236.900 2.160 7.350 17.710 

February_sim 10.520 5.580 0.140 95.090 1.620 5.580 14.000 

February_obs 10.360 6.560 0.140 76.820 1.660 6.560 13.000 

March_sim 14.640 7.370 0.010 127.380 2.240 7.370 20.220 

March_obs 13.610 6.930 0.060 127.810 2.420 6.930 19.290 

April_sim 14.080 9.170 0.030 117.000 3.240 9.170 19.300 

April_obs 14.320 9.910 0.030 83.890 3.500 9.910 19.520 

May_sim 14.500 11.770 0.050 71.630 5.640 11.770 20.840 

May_obs 14.200 11.710 0.140 74.100 6.320 11.710 19.830 

June_sim 13.600 10.860 0.050 62.078 5.350 10.860 19.220 

June_obs 13.570 11.140 0.140 86.010 6.230 11.140 18.250 

July_sim 15.910 12.150 0.110 95.380 5.910 12.150 21.540 
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Month Mean Median Minimum Maximum Q1 Q2 Q3 

July_obs 15.480 12.450 0.130 116.770 6.540 12.450 21.410 

August_sim 12.100 9.560 0.020 60.720 4.078 9.560 17.230 

August_obs 11.850 10.080 0.110 61.090 5.320 10.080 15.960 

September_sim 9.500 7.120 0.060 48.930 3.410 7.120 13.140 

September_obs 9.670 8.090 0.070 51.490 3.470 8.090 13.760 

October_sim 8.220 5.960 0.000 46.480 2.720 5.960 11.680 

October_obs 8.280 6.610 0.090 45.910 2.730 6.610 11.370 

November_sim 9.950 6.800 0.050 61.540 2.240 6.800 13.910 

November_obs 9.540 6.830 0.050 59.240 2.550 6.830 13.720 

December_sim 16.520 10.010 0.010 126.350 3.360 10.010 23.430 

December obs 16.250 9.760 0.010 94.120 2.680 9.760 23.120 

 

This alignment indicates that the simulation model better predicts average precipitation in this region. 

Quartile analyses show consistent distributions in both the observed and simulated sets, underscoring the 

simulation model's ability to capture the central 50% of precipitation values. Despite occasional variations in extreme 

values, which may indicate outliers or model limitations, the overall consistency of quartile ranges suggests a degree 

of reliability in representing typical precipitation patterns. 

Figures 9–12 present violin plots of observed and simulated monthly rainfall distributions at Black Bush Polder 

and Ebini. At Black Bush Polder, months such as May, June, and July exhibit broader distributions and higher upper 

tails, consistent with elevated means (≈15–16 mm) and large maxima reported in Table 9. In contrast, September and 

October show more concentrated distributions at lower rainfall values, reflecting reduced means and quartiles. At 

Ebini, the violin plots indicate consistently wetter conditions, particularly during January, May–July, and December, 

where higher means, medians, and extreme values are observed (Table 10). Across both locations, the elongated upper 

tails visible in several months confirm the presence of extreme rainfall events and the strongly right-skewed nature 

of the rainfall distributions. 

These findings indicate that the simulation model performs well in approximating average precipitation trends 

in both regions. This supports the potential utility of these models for forecasting and environmental management 

but requires continued validation and refinement to improve accuracy during extreme precipitation events. 

 

3.4. Precipitation Projections for 2023-2030 

The two-step precipitation model was employed to simulate precipitation from 2023 to 2030 over both study 

locations. The descriptive measures are presented in Table 11 and Table 12. As observed in the previous simulation 

and consistent with historical data, the months of May, June, and July had the highest number of wet days across 

both locations, recording 138, 150, and 126 wet days for Black Bush Polder, and 139, 180, and 177 days for the Ebini 

region (See Figures 13 and 14 ). Over this period, September and October once again had the fewest wet days for 

Black Bush Polder, while February and March had the lowest number of wet days for Ebini. 
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Figure 13. Line graph showing the simulated number of wet days from 2023-2030 over Black Bush Polder. 

 
Figure 14. Line graph showing the simulated number of wet days from 1981-2022 for Ebini. 

 

Table 11. Descriptive statistics for simulated precipitation over Black Bush Polder from 2023-2030. 

Month Mean Median STD deviation Maximum 
Percentiles 

Q1 Q3 

January 14.250 2.640 26.000 117.300 0.650 12.010 

February 6.100 2.830 10.210 74.780 0.690 7.300 

March 7.920 2.810 15.790 124.830 0.840 6.980 

April 8.790 2.970 13.870 67.610 1.130 8.330 

May 13.160 7.490 16.410 88.050 3.270 15.390 

June 14.480 8.760 15.300 90.620 2.790 22.850 

July 13.130 7.670 14.700 84.350 3.110 18.880 

August 13.042 8.060 16.380 105.790 1.600 17.170 

September 7.760 2.930 11.112 64.310 1.180 10.020 

October 6.350 2.550 8.790 51.100 1.190 9.070 

November 7.370 4.040 8.440 40.530 1.450 10.840 

December 9.330 2.570 15.640 101.350 1.180 11.330 

 

 

 



International Journal of Hydrology Research, 2025, 10(1): 16-38 

 

 
34 

© 2025 Conscientia Beam. All Rights Reserved. 

Table 12. Descriptive statistics for simulated precipitation over Ebini from 2023-2030. 

Month 
  

Mean Median Std. Deviation Maximum Percentiles 

Q1 Q3 

January 16.860 5.280 29.460 169.150 2.290 15.530 
February 8.870 4.730 11.340 43.390 1.440 10.470 
March 15.250 8.310 19.950 95.990 2.040 20.830 
April 14.580 8.820 17.180 83.700 3.010 19.210 
May 13.850 10.110 11.370 66.680 5.330 19.780 
June 14.630 12.620 9.680 58.280 7.720 20.200 
July 15.000 12.220 11.780 63.590 5.840 22.230 
August 12.320 10.240 9.710 46.010 4.380 17.590 
September 9.680 7.080 8.510 38.110 2.590 14.170 
October 6.870 4.290 6.980 29.250 1.950 9.170 
November 9.640 6.250 8.840 35.550 2.640 16.270 
December 15.730 8.310 18.600 86.660 3.560 21.410 

 

 
Figure 15. Violin plot of Simulated precipitation over Black Bush Polder from 2023-2030. 

 

 
Figure 16. Violin with box plot of precipitation over Ebini from 2023-2030. 

 

Table 11 and Table 12 provide insight into the simulated precipitation patterns over Black Bush Polder and Ebini 

from 2023 to 2030. In Black Bush Polder, the simulated precipitation from 2023 to 2030 shows notable variations 

across months. January and June had higher mean precipitation, indicating potential periods of increased rainfall. 
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Moreover, January showed substantial variability, with a higher standard deviation (25.997), suggesting significant 

fluctuations in precipitation levels. In contrast, October and November display lower variability, indicating more 

consistent precipitation during these months, which aligns with historical trends. 

On the other hand, Ebini exhibited slightly different precipitation patterns over the 2023-2030 simulation period. 

During this timeframe, January, March, and December stood out for higher mean precipitation. While January and 

March exhibit greater variability, October and February show lower fluctuations in simulated precipitation. 

Quartile analyses emphasize differences in data spreads between these regions. Ebini showed wider interquartile 

ranges in June and July, indicating more significant precipitation variability than the Black Bush Polder. 

The distributional characteristics of the projections are further illustrated in Figures 15 and 16, which present violin 

plots of the projected monthly precipitation over Black Bush Polder and Ebini for the period 2023–2030. The plots 

visually highlight the seasonal contrasts identified in Tables 11 and 12, with broader distributions during the mid-

year months and more concentrated rainfall during drier periods. In addition, the presence of elongated upper tails in 

several months reflects the occurrence of intense rainfall events within the projection period. Overall, the violin plots 

complement the tabulated statistics by emphasizing the variability and seasonal structure of projected precipitation 

at both locations. 

 

4. DISCUSSION 

The results of this study demonstrate that the first-order Markov chain model, combined with probability 

distribution fitting, is effective in capturing rainfall occurrence and intensity across the two selected regions in 

Guyana. The transition probabilities revealed clear seasonal patterns, with higher wet-to-wet transition probabilities 

during the rainy seasons, consistent with known climatic behavior in the country. The fitted probability distributions, 

particularly the Gamma and Exponential families, successfully reproduced the statistical properties of daily rainfall 

amounts, supporting the suitability of these models for rainfall simulation in tropical climates. Together, these 

findings indicate that stochastic rainfall models can serve as valuable tools for generating synthetic rainfall series to 

support agricultural planning, hydrological studies, and climate risk assessment in Guyana. 

A key contribution of this research is addressing a gap in the existing literature: although rainfall variability and 

trends have been studied in Guyana [29], no prior work has applied stochastic simulation methods to generate 

synthetic rainfall sequences. By establishing a framework for rainfall simulation, this study not only advances local 

rainfall research but also provides a methodological foundation for future applications, such as runoff modeling, 

drought analysis, and crop yield forecasting. 

Despite these contributions, several limitations must be acknowledged. First, the use of a first-order Markov 

chain, while effective, may underestimate the duration of prolonged dry or wet spells, as observed in other contexts 

[16]. Future research could explore higher-order models or hidden Markov models to better capture the persistence 

of rainfall patterns. Second, although multiple probability distributions were tested, extreme rainfall events remain 

challenging to model accurately, suggesting a potential role for heavy-tailed or mixed distributions in future studies. 

Another limitation relates to data availability. Long-term, high-quality observed rainfall data were not available 

for all study locations. To address this, reanalysis data obtained through Climate Engine were used as a 

supplementary source. While reanalysis products are valuable for filling gaps, they rely on model assimilation. They 

may not always reflect localized rainfall extremes, especially in regions with sparse gauge networks such as Guyana. 

This reliance introduces some uncertainty into the simulations. Expanding the observational network in Guyana and 

validating reanalysis products against ground-based measurements should therefore be a priority for future work. 

In summary, the study demonstrates the feasibility and utility of stochastic rainfall simulation for Guyana and 

identifies methodological and data-related limitations. By refining models and improving data availability, future 

research can further enhance the accuracy and applicability of rainfall simulations, providing more substantial support 

for water resource management and agricultural decision-making in the face of climate variability. 
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5. CONCLUSION  

This study represents the first attempt to apply a stochastic rainfall simulation framework in Guyana, combining 

a first-order Markov chain for rainfall occurrence with probability distribution fitting for rainfall amounts. The results 

demonstrate that this approach effectively reproduces the seasonal variability and statistical characteristics of rainfall 

in two distinct regions: Black Bush Polder and Ebini. Transition probabilities captured the persistence of wet and dry 

spells, while fitted probability distributions, particularly the Gamma distribution, provided a good representation of 

daily rainfall intensity. 

By filling a critical gap in the literature, this work establishes a methodological foundation for the use of stochastic 

rainfall simulations in Guyana. The ability to generate synthetic rainfall series has direct applications for hydrological 

modeling, agricultural planning, and climate risk assessment, offering decision-makers valuable tools for managing 

water resources under uncertain future conditions. 

At the same time, limitations remain, including reliance on reanalysis data when long-term observed records are 

unavailable and challenges in accurately capturing extreme rainfall events. Future research should therefore focus on 

expanding observational networks, validating reanalysis datasets, and exploring higher-order or hybrid stochastic 

models that can better represent persistence and extremes. 

Overall, this study highlights the feasibility and importance of stochastic rainfall modeling in data-sparse regions 

and provides a stepping stone for further research that can strengthen climate resilience and support sustainable 

agricultural and water resource management in Guyana. 
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