
 

 

 
143 

© 2018 Conscientia Beam. All Rights Reserved. 

FEATURE ANALYSIS OF SHIP EMISSION UNDER CHINA’S ECA POLICY: A 
PERSPECTIVE FROM SHANGHAI   

 

 

 Yibing Zhu1 

 Jiawei Ge2+ 

 Xuefeng Wang3 

 Zhipeng Xu4 

 

1,3,4College of Transport and Communications, Shanghai Maritime 
University, Shanghai, China  

 
2Institute of Logistics Science & Engineering, Shanghai Maritime 
University, Shanghai, China 

 
 

 
(+ Corresponding author) 

 ABSTRACT 
 
Article History 
Received: 26 June 2018 
Revised: 31 July 2018 
Accepted: 27 August 2018 
Published: 12 September 2018 
 
 

Keywords 
Ship emission 
Feature analysis 
AIS 
Activity-based approach 
Policy 
ECA. 

 
The prosperity of maritime commerce brings economic benefits to port cities; however, 
the air pollution along with the calling of ships undermines the local environment. 
Being conscious of this, the Chinese government officially issued its agenda on emission 
control areas (ECA) along her coastal areas at the end of 2015. This paper measures the 
features of ship emission via an activity-based approach based on AIS data. The air 
pollutant emission from 24 filtered ocean-going vessels calling the port of Shanghai are 
calculated, where the emission reduction rates are identified and classified through ship 
type, engine model and sailing conditions. Findings show that the ECA scheme has an 
effective impact on reducing the ship emission. The average emission reduction rates of 
oil tankers/chemical ships, container ships, bulk carriers, liquefied gas ships, general 
cargo ships, cruise ships and roll-on-roll-off ships are 30.52%, 23.28%, 20.65%, 14.23%, 
13.84%, 12.66% and 12.30% respectively. Implications for the next phase of ECA Act 
are proposed in enacting stricter emission control standards and expanding the scope of 
ECA after 2020.  
 

Contribution/Originality: This study is one of few studies which analyze the feature of ship emission with AIS 

data. The primary contribution is combining ship activity with the implementation of China’s ECA Act, implying 

the formation of future ECA scheme.  

 

1. INTRODUCTION 

The prosperity of maritime commerce brings economic benefits to port cities; however, the air pollution along 

with the calling of ships undermines the local environment. As one of the largest ports in China, port of Shanghai is 

backed by the broad economic hinterland of Yangtze River Delta. In 2017, the cargo throughput reached 705 

million tons, with container throughput exceeding 40 million TEU. On the other hand, ships consuming HFO 

(Heavy Fuel Oil) emit large amounts of Green House Gases (GHG) such as SOx (Sulfur Oxides), NOx (Nitric 

Oxides), and PM (Particulate Matters) during marine navigation and berthing. These pollutants can invade 

hundreds of kilometers of inland areas under the action of Sea-Land Breeze (Eyring et al., 2010) While China’s 

coastal cities are densely populated, it will cause great harm to local air quality and public health. What’s more, the 

source of SOx and PM is closely related to the sulfur content from marine fuel. So even if the ship is not equipped 

with emission control devices, the replacement of low sulfur fuel can reduce the emission of SOx and PM from ships 

(Yao et al., 2011). In order to reduce the negative impacts of ship emission on global air quality and environment, 
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International Maritime Organization (IMO) added an Annex VI “Prevention of Air Pollution from Ships” to the 

“International Convention for the Prevention of Pollution from Ships” (MARPOL) in 1997. Coming into force in 

2014, it imposed strict restrictions on the emission of SOX, NOX and PM from ships calling the contracting states. 

Since 2006, four ECAs distributed in Baltic Sea, North Sea, North America and Caribbean Sea have been approved 

globally and more stringent emission limits have been imposed on ships sailing or berthing in the ECA (ICS, 2015; 

IMO, 2016b). In China, along with the rapid economic growth, pollution problems caused by ship emission have 

become increasingly serious, and most port cities fail to meet basic air quality standards. Therefore, the Ministry of 

Transport officially issued the ECA Act and decided to set up ECAs in the Pearl River Delta, Yangtze River Delta, 

and Bohai Sea Gulf to control emission from shipping and improve the air quality in China’s coastal areas. It is an 

important step for China to control the air pollution of ships comprehensively in the future. The act indicates that 

the sulfur content of ship’s bunker fuel should be limited to 0.5% m/m during berthing since 01/01/2017 in 

nominated ports of ECA and the scope is extended to the whole ECA after 01/01/2019, according to the Act. 

Maritime transport is an economic mode of cargo transportation, however the emission caused by shipping 

activities contribute significantly to the total emission in global transport, becoming the important sources of air 

pollution. Due to the large size, high engine power and adoption of poor quality residue fuel oil, the pollution caused 

by ocean-going vessels is much more severe than ordinary vessels. Statistics show that ocean-going vessels account 

for less than 6% of the total number of ships entering and leaving Port of Shanghai, while SOx and PM emission 

shared 72% and 92% of all ships in 2010 (Fu et al., 2012). Therefore, it is important to estimate the emission as 

accurate and detailed as possible in order to implement appropriate preventive measures. In doing so, we need to 

quantify the air pollutants emitted by ships and find out the characteristics of ship emission. In this way, we can 

better support the formulation and implementation of relevant policy set by the government. 

The remainder of this paper is structured as follows: The previous studies on the emission of air pollutants 

from ships are discussed in Section 2. Section 3 describes the methodology with details on study domain, data 

source and calculation model. The parameters of the mode are also determined. The emission characteristics of 

ships are analyzed in Section 4. Finally, Section 5 summarizes the major conclusions and political implications. 

 

2. LITERATURE REVIEW  

Significant progress has been made for estimating ship emission in different regions of the world. The main 

methods to calculate the ship emission inventories can be classified as fuel-based (top-down) and activity-based 

(bottom-up) approaches (Tzannatos, 2010). 

Based on the combination of data on marine fuel sales (e.g. fuel quantities and types) and fuel-related emission 

factors, the top-down method is popular among earlier researches (Song and Shon, 2011). The advantage of this 

method is that the statistics on fuel sales are recorded and can be calculated and applied to long-term, large-scale 

emission inventory calculations. Since the fuel statistics are not difficult to obtain, fuel consumption method is 

applicable to the calculation of global ship emission inventory (Miola and Ciuffo, 2011). However, further study 

found that the calculation depending on fuel consumption is not accurate enough. Without considering the location 

of each ship and distribution of fuel supply, it cannot reflect actual maritime traffic and the spatial-temporal features 

of ship emission.  

Jin et al. (2009) conducted a survey of ships at Port of Tianjin, and established an inventory of air pollutants 

with the top-down approach, providing a reference for the formulation of regulations and policies on ship pollution 

control at Port of Tianjin. The fuel-based approach is also applied to estimate the emission of pollutants from 

fishery vessels in Guangdong Province. (Jin et al., 2009; Ye et al., 2014) The calculation was based on the average 

fuel consumption coefficient of typical fishery vessels, which represented the average fuel consumption level of 

different types of fishery vessel. Corbett et al. (1999) and Ye et al. (2014) used the emission test data at that time and 

a fuel-based approach to estimate the global inventory of ship emission. They estimated the global annual NOx and 
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SOx emission in 1993, where NOx emission accounted for more than 14% of all NOx emission from fossil fuel 

combustion and SOx emission exceed 5%. A study for the North of Portugal was reported by the Commission for 

the Coordination and Development of the Northern Region (CCDR-N) (CCDR-N, 2014). The emission of CO2, SO2, 

NOx, VOCs and PM were calculated from ships at Leixoes Port. However, it only considered the emission during 

maneuvering, hotelling and loading/unloading.  

With the development of AIS (Automatic Identification System), a new method of emission measurement based 

on ship activity emerged, namely the bottom-up approach. This method uses detailed information on the vessel 

characteristic, such as ship size, type, engine power, fuel category, and the operating data combing with emission 

factor and load factors. It can estimate emission over different time periods and sailing conditions. The emission 

inventory obtained by bottom-up method can also show the spatial distribution characteristics of ship emission 

because AIS can obtain the real-time position of ships, which is suitable for the calculation of high spatial resolution. 

So far, AIS data seem to be the most reliable and accurate approach to describe shipping activities (Nunes et al., 

2017).  

What’s more, the United States ICF Advisory Agency published a report on the calculation method of mobile 

emission inventory for US ports (ICF International, 2009). It introduced the method of measuring emission based 

on ship engine power and activity time. It also detailed the calculation and acquisition of the emission factor, engine 

power ratio, load factor and fuel correction factor, and has important reference value, which had important reference 

value. The United States (Starcrest Consulting Group, 2009) has been acquiring the Port of Los Angeles’ annual 

ship activity data through AIS, and combining Lloyd’s Register’s ship characteristics information to estimate air 

pollutant (SCG, 2009). They found that the total amount of air pollution discharged by ocean going vessels is 39.5% 

of the total emission in port area. Perez et al. (2009) introduced how to use and process the data obtained from AIS 

to measure ship emission in detail, providing a technical reference to improve the accuracy of emission inventory 

(Perez et al., 2009; Entec UK Limited, 2010) used AIS data to establish a list of UK air pollutant emission of ocean-

going ships and inland river ships by estimating the engine power of different types of ships. They also calculated 

the emission of the ship engines and oil-fired boilers (Entec UK Limited, 2010). In addition, the uncertainty of the 

emission factors was also analyzed and evaluated. Berechman and Tseng (2012) conducted an emission inventory at 

Port of Kaohsiung in Taiwan to estimate the associated emission costs of ships and trucks that operate in that port 

during 2010 (Berechman and Tseng, 2012). Using a bottom-up methodology, they found that tankers, 

containerships and bulk ships were the major contributors to ship emission. Ng et al. (2013) obtained activity data 

and ship characteristics of 37152 ocean-going vessels which calling at Hong Kong in 2007 through AIS and 

statistical data of maritime bureau. The emission inventory showed that ocean-going vessels are the largest source 

of NOx, SOx and PM besides power plants in Hong Kong (Ng et al., 2013; Tan et al., 2014) calculated the emission 

of PM10、NOx、SOx, HC and CO2 from Port of Dalian based on AIS data and found that hoteling produced the 

largest amount of emission (Tan et al., 2014). They also proposed the establishment of an emission control area to 

control the speed and fuel sulphur content of ships entering to reduce emission. Maragkogianni and Papaefthimiou 

(2015) used sea-web to obtain the characteristic and AIS data of inbound and outbound cruise ships from five major 

cruise ports in Greece and calculated the emission of SOx, NOx and PM2.5 (Maragkogianni and Papaefthimiou, 

2015). The total amount of air pollutants discharged during the cruise ship’s arrival in Hong Kong accounted for 

88.5% of the total discharge of cruise ships in the vicinity of the port. They also estimated the economic loss 

including the impact on residents’ health and the diversity of species and crops. Song (2015) also used the activity-

based approach to establish the emission inventories of Qinhuangdao, Qingdao, Tianjin and Huanghua (Song, 

2015). The results showed that container ships and bulk carriers were the main types of ships discharged. The main 

engine was the primary source among the three engine types of ship discharge. 

From the spatial distribution map of ship pollutants, 15 miles away from the port was the most densely 

discharged area. Fan et al. (2016) obtained the ship activity level data in the Yangtze River Delta region within 400 
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km of the coastline, and ship parameters on main and auxiliary engine power, design speed and gross tonnage from 

the Lloyd’s Register of Shipping and CCS. The results showed that the emission in the Yangtze River Delta region 

within 100 km and 200 km of the coastline respectively accounted for 60% and 85% of the total ship emission (Fan 

et al., 2016; Li et al., 2016) indicated that SOx, NOx and PM10 emission from marine vessels in the Pearl River Delta 

accounted for 14.1%, 11.6 and 1.5% of the total amount (Li et al., 2016). They also proposed that the residents’ 

health effects and economic losses caused by ship discharge should be taken into consideration. Xing et al. (2016) 

stated that ship traffic in Bohai Sea was obtained based on AIS data and the marine emission inventory was 

calculated based on the determined model parameters (Xing et al., 2016).  

The bottom-up method based on AIS statistics is proved to be applicable for the calculation of regional 

maritime emission (Entec UK Limited, 2002; APA, 2016b).  

 

3. METHODOLOGY 

3.1. Study Domain 

As shown in Figure 1, the study domain in this paper is based on the scope of the Yangtze River Delta ECA. 

The connection between point A, B, C, D, E, and F is part of the boundary of ECA. The enclosed area in Figure 2 

covers the outer harbor channel waters of ocean-going vessels entering and leaving Port of Shanghai. Each dot 

represents a ship equipped with AIS.  

 

 
Fig-1. The scope of Yangtze River Delta ECA 

                                                                    Source: Ministry of Transport of PRC 
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Fig-2. The measurement area of this paper 

                    Source: Modified from www.shipxy.com 

 

3.2. Data Collection 

A certain number of ships are selected according to different types, sub conditions and emission sources. The 

classification of ship emission sources facilitates the establishment of ship emission source inventories and the study 

of feature analysis. In this paper, the main types of ocean-going vessels are classified into seven categories: oil 

tankers/chemical ships, container ships, bulk carriers, roll-on-roll-off ships, liquefied gas ships, general cargo ships 

and cruise ships. Since the AIS data is abundant, we select three vessels for each type of ship, thus 24 vessels’ 

statistics are collected from 01/01/2017 to 31/12/2017. The emission sources are subdivided into host, auxiliary 

and oil-fired boilers for a single vessel. 

A ship has different navigational status during a complete voyage, which generally based on its sailing speed. 

And it has different emission characteristics under different operational modes. The operation modes of ships near 

port area are divided into the following four categories based on Entec UK Limited (2010); Ng et al. (2013) etc.  

 
Table-1. Operation Modes of Ships 

Ship operational mode Speed 

Fairway cruise >12 knots 
Slow cruise  8-12 knots 
Maneuvering  1-8 knot (s) 
Hotelling  ＜1knot 

                                                       Source: Entec UK Limited (2010) and Ng et al. (2013) 

 

3.3. Emission Model  

This paper obtains the navigational trajectory data of target ships entering and leaving Port of Shanghai during the 

whole year of 2017 based on AIS data. And a ship emission estimation model is established according to the activity-based 

approach so as to measure the air pollutant emission of ships including SOx, NOx and PM. With reference to the emission 

estimation models of Starcrest (Ng et al., 2013) and Entec UK Limited (2010) the formula for calculating the total emission 

of a single vessel is as following: 

        (1) 
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Where E is the total emission of SOx, NOx, and PM of the target ship; MCRi (Maximum Continuous Rating)  is the 

installed engine power of engine i (kw); Actij is the operation time of engine i under operation mode j (h); LFij is the load factor 

of engine i under operation mode j; EFik is the emission factor of engine i for air pollutant k （g/kW·h）; FCF is the fuel 

correction factor; CF is an emission modifying factor; i (i=1, 2, 3) means the main engine (ME), auxiliary engine 

(AE) and oil-fired boiler (B) respectively; j (j = 1, 2, 3, 4) is the operation mode, which indicates fairway cruise, Slow 

cruise condition, maneuvering condition and hotelling condition; K (k=1, 2, 3) is the number of major air pollutants, 

namely SOx, NOx and PM.  

According to the target ships of this paper, the power of main and auxiliary engines can be found in the ship 

records of Clarkson SIN and China Classification Society (CCS) through its MMSI and IMO numbers. 

The function of boiler is to generate steam to meet the needs of marine oil heating and domestic water supply. 

When ocean going vessel is under cruise condition, fuel boiler is generally closed since the exhaust gas boiler can 

absorb a large amount of heat generated by the main engine to produce steam. When the ship is under hotelling and 

maneuvering conditions, the main engine is closed or operated at ultra-low load power, the fuel boiler is turned on 

to ensure adequate steam supply. Since neither IMO nor major classification societies require shipowners to provide 

data on the power of boiler, there is a lack of information on the boilers in ship archives. The average estimation 

data of boiler rated power are obtained from Entec UK Limited (2010) and ICF International (2009). (See Table 2) 

The formula of main engine’s load factor is SCG (2014): 

 

Table-2. Average Rated Power of Oil-fired Boiler（kW) 

Ship type Average rated power of oil-fired boiler（kW) 

Container ship 506 
Oil tanker / Chemical ship 371 

Bulk carrier 132 
Liquefied gas ship 371 
Ro-Ro ship 246 
Cruise ship 1393 
General cargo ship 137 

                          Source: Entec UK Limited (2010) and ICF International (2009) 

                      （2） 

Where LFm is the load factor of the ship’s main engine; AS stands for the actual speed (knot); DS is the design speed (knot). 

The auxiliary engine runs in all modes to generate electricity for lighting, cooking, heating, pumps, auxiliary 

blowers, bow propellers, etc. The main reasons that affect the load factor of the auxiliary engine are the ship 

operation modes and types. The estimated values obtained by the VBP in Port of Los Angeles and Long Beach are 

generally used (SCG, 2007). The average load factor under the slow cruise condition is referenced in the report of 

the ICF in 2009 (ICF International, 2009). See Table 3 for details. 

 
Table-3. Load Factor of Auxiliary Engine under Different Operation Mode 

Ship type Fairway cruise Slow cruise Maneuvering Hotelling 

Container ship 0.17 0.27 0.45 0.22 

Oil tanker/Chemical ship 0.13 0.25 0.48 0.19 
Bulk carrier 0.80 0.80 0.80 0.64 
Liquefied gas ship 0.24 0.28 0.33 0.26 
Ro -Ro ship 0.20 0.34 0.45 0.32 
Cruise ship 0.15 0.30 0.45 0.26 
General cargo ship 0.24 0.28 0.33 0.26 

        Source: ICF International (2009) 
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Since the fuel boiler is only turned on when the main engine is under low load rate or closed. It is considered 

that the boiler is in a high-load operating state during work and operates at its rated power during the working 

period to ensure sufficient steam supply on the ship. The load factor is assumed as 1 in this paper. 

The emission factor is one of the most important parameters for estimating air pollutant emission from ships. 

This paper assumes that the ships use marine residue oil with 2.7% m/m sulfur content during non-berthing period. 

Referring to the SOx and NOx emission factors provided by Entec UK Limited (2002) and IVL (David and Tomas, 

2004) the PM emission factors calculated by CARB (Sax and Alexis, 2007) and the NOx emission factor for ship 

diesel engines built in 2000 and 2011 is adjusted by Starcrest (SCG, 2007). The amended emission factors are 

shown in Table 4. 

Ocean-going ships generally use low-speed and medium-speed diesel engines (ICF International, 2009). The 

main engine power and rotational speed of 24 target ships are recorded in Clarkson SIN, so each ship has the 

corresponding date and type of the main engine emission factor. 

 

Table-4. Air pollutant emission factors of the main engines（g/kW·h） 

Type of diesel engine Year of manufacture SOx NOx PM10 

Low-speed diesel engine 2000-2010 10.5 17.0 1.5 
Medium-speed diesel engine 2000-2010 11.5 13 1.5 
Low-speed diesel engine ≥2011 10.5 15.3 1.5 
Medium-speed diesel engine ≥2011 11.5 11.2 1.5 

                     Source: SCG 

 

The emission factors of marine auxiliary engines and oil fired boilers also refer to the research data of Entec 

UK Limited (2002) IVL (David and Tomas, 2004) and CARB (Sax and Alexis, 2007) and adjustments have been 

made to the NOx emission factors based on TierI, TierII, and TierIII for NOx emission in MARPOL Annex VI. 

The specific data is shown in Table 5 and Table 6. 

 

Table-5. Air Pollutant Emission Factors of Auxiliary Engines（g/kW·h） 

Year of manufacture SOx NOx PM10 

2000-2010 12.3 13.0 1.5 
≥2011 12.3 11.2 1.5 

                       Source: Entec UK Limited, IVL and CARB 

 

Table-6. Air Pollutant Emission Factors of the Boiler（g/kW·h） 

SOx NOx PM10 
16.5 2.1 0.8 

                                          Source: Entec UK Limited, IVL and CARB 

 

Since the actual type and sulphur content of the fuel differ from the emission factors in the calculation formula, 

it is necessary to add fuel correction factors to adjust the emission factors. This paper uses the fuel correction 

factors based on the oil with 2.7% mm sulfur content, according to Starcrest (SCG, 2007) and IMO 2014 (Sax and 

Alexis, 2007). (See Table 7) 

 
Table-7. Fuel Correction Factors 

Fuel type Sulphur content SOx NOx PM 

RO 1.50% 0.820 1.000 0.560 
MDO/MGO 0.50% 0.185 0.940 0.250 
MDO/MGO 0.25% 0.093 0.940 0.200 
MDO/MGO 0.10% 0.040 0.940 0.170 

                  Source: SCG and IMO 
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4. RESULT AND DISCUSSION 

The air pollutant emission from 24 ships in the study domain are calculated by Matlab based on ship activity 

data and emission factors. As shown in Table 8, it includes the full use of heavy oil with 2.7% m/m sulfur content 

and low sulfur oil with 0.5% m/m sulfur content during berthing after the implementation of the ECA Act.  

 
Table-8. Air Pollutant Emission of Target Vessels 

  
2.7% m/m sulfur content 0.5% m/m sulfur content 

Ship type MMSI SOx NOx PM SOx NOx PM 

Container ship 
357747000 2.03  1.56  0.20  1.30  1.53  0.15  
477189200 1.57  0.90  0.13  0.68  0.88  0.07  
371218000 2.87  3.07  0.34  2.22  3.03  0.28  

Oil 
tanker/Chemical 
ship 

412380030 0.79  0.34  0.06  0.41  0.33  0.04  
413630120 0.79  0.54  0.08  0.41  0.52  0.05  
413303250 1.50  0.75  0.12  0.65  0.73  0.07  

Bulk carrier 
414775000 1.65  1.50  0.19  1.29  1.48  0.16  
477100600 1.79  1.46  0.19  0.81  1.41  0.11  
413440160 0.37  0.30  0.04  0.29  0.30  0.03  

Liquefied gas 
ship  

311000373 1.17  1.30  0.15  0.85  1.29  0.12  

477413600 1.55  1.78  0.19  1.21  1.76  0.16  
477348600 2.74  2.93  0.27  2.15  2.90  0.22  

Ro -Ro ship 
412381120 0.63  0.51  0.07  0.50  0.50  0.06  
538004759 1.29  1.33  0.16  0.91  1.31  0.12  
413378790 0.56  0.45  0.06  0.46  0.45  0.06  

Cruise ship 
249054000 1.54  1.72  0.18  1.24  1.70  0.15  
247187600 5.22  6.13  0.64  4.03  6.06  0.52  
311000267 4.53  4.68  0.55  3.70  4.63  0.47  

General cargo 
ship 

477040800 1.25  1.65  0.16  1.07  1.64  0.14  
413301680 1.28  1.13  0.14  1.11  1.12  0.13  
412408080 0.60  0.41  0.06  0.36  0.40  0.04  

    

It can be found that replacing low sulfur oil has a significant effect on reducing SOx and PM emission. And it 

has little effect on reducing NOx emission since they are almost independent of ship sulphur content.  

 
Table-9. Emission Reduction Rates of Target Vessels 

Ship type MMSI SOx NOx PM 

Container ship 
 

357747000 35.96% 1.92% 25.00% 
477189200 56.69% 2.22% 46.15% 
371218000 22.65% 1.30% 17.65% 

Oil tanker/ Chemical ship 
412380030 48.10% 2.94% 33.33% 
413630120 48.10% 3.70% 37.50% 
413303250 56.67% 2.67% 41.67% 

Bulk carrier 
414775000 21.82% 1.33% 15.79% 
477100600 54.75% 3.42% 42.11% 
413440160 21.62% 0.00% 25.00% 

Liquefied gas ship  
311000373 27.35% 0.77% 20.00% 
477413600 21.94% 1.12% 15.79% 
477348600 21.53% 1.02% 18.52% 

Ro-Ro ship  
412381120 20.63% 1.96% 14.29% 
538004759 29.46% 1.50% 25.00% 
413378790 17.86% 0.00% 0.00% 

Cruise ships 
249054000 19.48% 1.16% 16.67% 
247187600 22.80% 1.14% 18.75% 

311000267 18.32% 1.07% 14.55% 

General cargo ship 
 

477040800 14.40% 0.61% 12.50% 
413301680 13.28% 0.88% 7.14% 
412408080 40.00% 2.44% 33.33% 
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The current ECA in China is essentially a sulfur emission control area, which is different from the four major 

international emission control zones approved by IMO, and does not restrict the emission of marine NOx. 

Therefore, this is also a matter to consider when formulating the next stage of emission control zone standard. 

The average emission reduction rates of the seven types are 30.52%, 23.28%, 20.65%, 14.23%, 13.84%, 12.66% 

and 12.30% respectively. Oil tanker/chemical ship ranks the first in emission reduction, followed by container ship, 

bulk carrier, liquefied gas ship, general cargo ship, cruise ship and ro-ro ship. 

Figure 3 shows the emission reduction rate of air pollutants. As can be seen, oil tanker/chemical ship and 

container ship have the highest reduction in pollutant emission. Probably because that they have longer berthing 

time in comparison with other types of ships. SOx and PM emitted from auxiliary engines and boilers during the 

berth period account for a large proportion of the total emission. Therefore, the use of low-sulfur oil during 

berthing has a significant reduction in emission. 

 

 
Fig-3. Average emission reduction rate of air pollutants when using 0.5% low sulfur oil 

 

4.1. Emission Sharing Rate of Different Ship Type  

Due to different purpose, actual sailing speed, port berthing time and engine power, the characteristics of 

emission vary with ship type. In order to better understand the impact of ECA on ship emission, it is necessary to 

analyze the air pollution emission sharing rate of different ship type. 

 

 
Fig-4. Emission Sharing Rate of Different Ship Type 

    

As shown in Figure 4, among the seven types of ocean-going vessels, cruise ships, container ships and liquefied 

gas ships have the highest share of pollutant emission. The total amount of SOx, NOx and PM emitted by them 

accounted for 65.01%, 69.89% and66.58% of all ship types respectively. The main reason is that the average tonnage 

and main engine rated power of these three types of ships are higher than others. In addition, the design speed and 

cruising speed of cruise ships and container ships are higher than others. Therefore, the heavy load of the main 
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engine during cruising and slow cruising conditions will discharge more pollutants. Accordingly, law enforcement 

officers can give priority to inspection of ships such as cruise ships, container ships and liquefied gas ships with 

large tonnage and high emission. 

 

4.2. Emission Sharing Rate of Different Engine Type 

The air pollutant emissions of different engine type are shown in Figure 5. It can be seen that three kinds of air 

pollutants discharged by main engine head the list. And the SOx, NOx and PM emitted by main engine account for 

54.3%, 56.4% and 60.9% of the total emission. Because of the large tonnage of ocean-going vessels, the output 

power of the main engine is much larger than that of auxiliary engine and boiler. What’s more, the main engine 

discharges large amounts of pollutants at high load under fairway cruise and deceleration conditions.  

Engine type has significant influence on ship emission, and the air pollutants discharged by main engines and 

auxiliary engines account for the major part. The reason is that their rated power is much larger than that of 

boilers. However, the SOx emission sharing rate of boilers reaches 13.2%. This is because the berthing time of 

ocean-going ships is long, and the SOx emission factor of boilers is larger than that of main and auxiliary engines. 

Therefore, compared with NOx and PM, the boiler shares more in SOx emission. 

 

 
Fig-5. Air Pollutant Emission Sharing Rate of Different Engine Type 

 

4.3. Emission Sharing Rate under Different Navigation Conditions 

The analysis of the pollution degree under different conditions will help the relevant departments to 

understand the emission characteristics of each stage, namely fairway cruise, decelerating, maneuvering and 

hoteling, and provide basis for establishing more specific emission reduction measures. Comparative analysis is 

conducted based on the use of low sulfur oil before and after 01/01/2017. (See Figure 6 a and b). 

It can be seen from Figure 6 that the emission sharing rate of NOx and PM occupy the largest amount under 

fairway cruise when heavy oils with 2.7% m/m sulfur content are used, reaching 42% and 38% respectively. This is 

because the ship is sailing in high speed under fairway cruise, under which both main engine and auxiliary engine 

are operated at high loads. The SOx emissions under hotelling are slightly higher than fairway cruise before the oil 

change measures are taken.  

There are two reasons lead to such circumstances. On one hand, the time under hotelling is the longest. 

Although the rated power of auxiliary engine and boiler are smaller than that of the main engine, long-term 

operation results in a large amount of emission. On the other hand, the SOx emission factor of boiler is larger than 

that of the main engine and auxiliary engine based on the same sulfur content of fuel. So in comparison with NOx 

and PM, the sharing rate of SOx under hotelling is slightly higher than that of fairway cruise. When the ships use 

the fuel with 0.5% m/m sulphur content, it is obvious that the emission sharing rate of SOx under hotelling have 

dropped from 36% to 9%. The air pollutant emission during this period has noticeably reduced. 

 



International Journal of Management and Sustainability, 2018, 7(3): 143-155 

 

 
153 

© 2018 Conscientia Beam. All Rights Reserved. 

 
Fig-6. Air pollutant emission sharing rates under different conditions 

 

4.4. Implications for the Next Phase of ECA Act 

The previous comparative analysis provides some references for whether and how to formulate new ECA 

emission control requirements after 2020. As regulated by IMO, the time limit for ships to use the fuel with less 

than 0.5% sulphur content in a global level from 01/01/2020 is more and more stringent. China’s emission control 

requirements in the current stage should be consistent with this standard. If the existing standards are still 

implemented in the future, ECA will lose its practical significance. Therefore, more stringent emission control 

requirements must be formulated to reflect the significance of ECA. If referring to the current ECA emission 

standards of sulfur oxides, ships are required to change fuel from less than 0.5% sulphur content to less than 0.1%. 

This is an enormous challenge for regulators, oil supply enterprise and shipping companies.  

Therefore, this paper proposes to implement new emission standards after 2020. During the period from 

01/01/2020 to 31/12/2020, fuel with less than 0.5% sulphur content is required for ships entering the ECA, and 

the fuel with less than 0.1% sulphur content should be used during berthing in ECA. After 01/01/2021, ships 

should use the fuel with less than 0.1% sulphur content when enter the ECA. At the same time, the scope of China 

ECA could extend to 24 sea miles along the coast, and even part of the exclusive economic zone (EEZ) could also be 

included. 

 

5. CONCLUSION 

In this paper, 24 typical ocean-going vessels at Port of Shanghai are selected as research objects. The activity-

based approach is used to measure the air pollutant emission of in two phases before and after the implementation of 

China’s ECA Act. Feature analysis of ship emission is then conducted and categorized as different ship type, engine 

type and navigation condition. First, the average emission reduction rate of oil tankers/chemical ships, container 

ships, bulk carriers, liquefied gas ships, general cargo ships, cruise ships and roll-on-roll-off ships are 30.52%, 

23.28%, 20.65%, 14.23%, 13.84%, 12.66% and 12.30%. Therefore, the ECA Act has a significant effect on the control 

of air pollutant emission. Second, main engine is the largest source of emission. The SOx, NOx, and PM emission 
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share rates are 54.3%, 56.4%, and 60.9%. Therefore, changing the use of low sulfur oil during fairway cruise and 

slow cruise can reduce more pollutant emission. The auxiliary engine is the second largest source, and the emission 

sharing rates of SOx, NOx and PM are 32.6%, 40.6% and 33.3%. Increasing the proportion of using shore power 

will reduce the emission from ships. Third, NOx and PM have the largest share of emission under fairway cruise 

conditions, and SOx has the largest share of emission under hotelling. The emission sharing rate of SOx, NOx and 

PM dropped from 35%, 24% and 29% to 9%, 23% and 9% respectively when the ships use low sulfur oil. Air 

pollutants emitted by ships in ports are significantly reduced. 

Finally, Implications for the next phase of ECA Act are proposed in enacting stricter emission control 

standards and expanding the scope of ECA after 2020.  
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