Index

Abstract

In this paper, determination of refractivity gradient and modified refractivity gradient for Cross River state was carried out.  The year 2013 Radiosonde meteorological data from Nigerian Meteorological Agency (NIMET) was used. Refractivity, modified refractivity, refractivity gradient and modified refractivity gradient were computed.  The results showed that in the year  2013, Cross River  state had  maximum  modified refractivity gradient  (dM/dz) of  114.9 (M -units/Km) and it occurred in December whereas the minimum  modified refractivity gradient  (dM/dz) on  81.9 (M–units/Km)   and it occurred in October .  Also, in the year 2013, the maximum refractivity gradient  (dN/dz) was  -42.1 (N-units/Km) and it occurred in December whereas the minimum  refractivity gradient  (dN/dz) was  -75.1 (N-units/Km) and it occurred in October. The standard refractivity gradient of -39 N-units and standard modified refractivity gradient of 118 M-units occurred in December at altitude of 103 meters. In all the months the atmospheric condition was in the normal state except in the month of October where superrefraction occurred.

Keywords: Refractivity, Refractivity gradient, Radioclimatic factor, Modified refractivity gradient.

Received: 10 October 2018 / Revised: 13 November 2018 / Accepted: 18 December 2018/ Published: 8 January 2019

Contribution/ Originality

This study is one of very few studies which have investigated the modified refractivity gradient for Cross River state. Available related studies on Cross River State were mainly on refractivity gradient.


1. INTRODUCTION

Studies on atmospheric parameters are very essential in the wireless industry as the parameters have great impact on radio waves as they propagate through the atmosphere.  Especially, radio refractivity which is a function of temperature pressure and relative humidity determines the extent to which radio signal path can be bent as it propagates through the atmosphere (Gao et al., 2008; Grabner et al., 2012; Hurter and Maier, 2013; Akinwumi et al., 2015; Series, 2015; Wang et al., 2017).  The value of radio refractivity varies with altitude and hence, the gradient of the radio refractivity in the atmosphere is also required in wireless network design.

Importantly, the refractivity gradient is used to determine the nature and degree of curvature of the radio signal path in the atmosphere. Under normal atmospheric conditions radio waves tend to bend downwards towards the earth whereas for subrefraction condition radio waves bend upwards away from the earth (Sim, 2002; Usman et al., 2015; Bruin, 2016).  In the case of superrefraction radio waves tend to bend downwards to the earth more than normal.  Trapping occurs when the propagation path is bent downwards to such extent that it exceeds the curvature of the earth (Sim, 2002; Branson, 2008; Bhattacharjea, 2014; Bruin, 2016; Manjula et al., 2016). The visual representation of the different refractive conditions is given in Figure while  the values of refractivity gradient and modified refractivity gradient for each of the different atmospheric conditions are listed in Table 1.

Figure-1. Visual representation of the different refractive conditions

Source: Bruin (2016) and Merrill (2008).

Table-1. Refractivity gradients and modified refractivity gradient under different conditions

Condition
N-gradient (N/Km)
M-gradient (M/Km)
Subrefraction
0<dN/dz
157<dM/dz
Normal
-79<dN/dz<0
79<dM/dz≤157
Standard
dN/dz = -79
dM/dz =118
Superrefraction
-157<dN/dz<-79
0<dM/dz≤79
Trapping
dN/dz <-157
dM/dz<0

Source: Bruin (2016) and Merrill (2008).

In this paper, the refractivity gradient and modified refractivity gradient for Cross River state in Nigeria are studied and the atmospheric conditions are identified based on the refractivity values for the various months in the year 2013. The study is based on the Radiosonde meteorological data from Nigerian Meteorological Agency (NIMET).

2. METHODOLOGY

Where

N is radio refractivity (dimensionless quantity in N-units).

M is Modified refractivity (dimensionless quantity in M-units).

z is Geometric height or the altitude (m) 

Re is Radius of the earth (m).

3. RESULTS AND DISCUSSION

The vertical profile of the meteorological data for the month of January 2013 along with the computed refractivity, modified refractivity, refractivity gradient and modified refractivity gradient are given in Table 1. Similar tables for the months of October and December are given in Table 2 and Table 3 respectively.

Table-1. January 2013: The vertical profile of the meteorological data with the computed refractivity, modified refractivity, refractivity gradient and modified refractivity gradient

Altitude, z [m]
T [C]
U [%]
P [hPa]
N (N -Units)
M (M-Units)
dN/dz
dM/dz
0
30.6
64.87
1012.86
374.03
374.03
0
0
38.4
30.15
65.6
1008.65
372.01
378.03
-52.68
104.28
65
29.84
66.1
1005.73
370.6
380.8
-52.77
104.19
76.7
29.7
66.33
1004.44
369.98
382.02
-52.81
104.16
100
29.43
66.77
1001.89
368.74
384.44
-52.88
104.08
115.1
29.25
67.05
1000.23
367.88
385.95
-53.4
103.56
153.4
28.8
67.78
996.03
365.84
389.92
-53.39
103.58
191.8
28.35
68.51
991.81
363.78
393.89
-53.41
103.55
200
28.26
68.67
990.91
363.34
394.74
-53.42
103.54
230.1
27.91
69.24
987.61
361.73
397.84
-53.46
103.5
268.8
27.45
69.97
983.36
359.64
401.83
-53.52
103.44
300
27.09
70.57
979.94
357.96
405.05
-53.56
103.4
315.3
26.91
70.86
978.26
357.13
406.62
-53.59
103.37
371
26.26
71.92
972.15
354.12
412.35
-53.67
103.29
400
25.92
72.47
968.96
352.55
415.33
-53.71
103.25
422.3
25.66
72.89
966.52
351.34
417.62
-53.74
103.22
468.1
25.12
73.76
961.49
348.85
422.32
-53.79
103.17
500
24.75
74.37
957.99
347.11
425.6
-53.83
103.13
504.4
24.7
74.45
957.51
346.88
426.05
-53.83
103.13
541.8
24.26
75.16
953.4
344.84
429.88
-53.87
103.09
580.1
23.81
75.89
949.2
342.76
433.81
-53.9
103.06
620.8
23.34
76.66
944.73
340.55
437.99
-53.93
103.03
663.4
22.84
77.47
940.06
338.23
442.36
-53.96
103

Source:  for T, U and P: NiMET (2013)

The graph of atmospheric temperature, pressure and relative humidity  versus altitude for the month of January 2013 is given in Figure 1. Graph of refractivity and modified refractivity versus altitude for the month of January 2013 is given in Figure 2. Also, the graph of  refractivity gradient and modified refractivity gradient  versus altitude for the month of January 2013 are  given in Figure 3. Table 1 and  Figure 1 show that in January 2013 air temperature and pressure decrease  with altitude whereas the relative humidity increases with altitude. This is in line with the generally observed pattern that air temperature and pressure decrease  with altitude. However, , relative humidity does not generally decrease with altitude but varies depending on other atmospheric phenomena.

Figure-1. Graph of atmospheric Temperature, pressure and relative humidity  versus altitude for the month of January 2013

Source: Generated by the authors using Mathlab program

Figure 2 shows that refractivity decreases with altitude as such in Figure 3 the refractivity gradient is negative. On the other hand, Figure 2 shows that modified refractivity increases with altitude and in Figure three, the modified refractivity gradient is positive.

Figure-2. Graph of refractivity and modified refractivity versus altitude for the month of January 2013

Source: Generated by the authors using Mathlab program

Figure-3. Graph of refractivity gradient and modified refractivity gradient  versus altitude for the month of January 2013

Source: Generated by the authors using Mathlab program

Table-2. October 2013: The vertical profile meteorological data with the computed refractivity, modified refractivity, refractivity gradient and modified refractivity gradient

Altitude[m]
T[C]
U[%]
P[hPa]
N (N -Units)
M
dN/dz
dM/dz
0
26.81
78.18
1015.96
377.19
377.19
0
0
14.8
26.57
78.49
1014.28
376.01
378.34
-79.41
77.56
29.6
26.34
78.81
1012.61
374.84
379.49
-79.3
77.66
44.5
26.1
79.13
1010.93
373.67
380.65
-79.2
77.76
59.3
25.86
79.45
1009.25
372.5
381.81
-79.09
77.87
65
25.77
79.58
1008.61
372
382.2
-79.81
77.15
74.1
25.62
79.77
1007.58
371.29
382.92
-79.64
77.32
88.9
25.38
80.09
1005.91
370.13
384.08
-79.42
77.54
100
25.2
80.33
1004.65
369.26
384.96
-79.27
77.69
103.7
25.14
80.41
1004.23
368.97
385.25
-79.23
77.74
118.6
24.9
80.73
1002.55
367.81
386.43
-79.05
77.91
133.4
24.67
81.05
1000.88
366.67
387.6
-78.89
78.07
148.2
24.43
81.37
999.2
365.52
388.78
-78.74
78.22
163
24.19
81.69
997.53
364.38
389.96
-78.6
78.36
177.8
23.95
82.01
995.86
363.24
391.15
-78.46
78.5
200
23.6
82.49
993.35
361.54
392.93
-78.25
78.71
226.8
23.17
83.06
990.32
359.5
395.1
-78.01
78.95
300
21.99
84.64
982.04
353.98
401.07
-77.37
79.59
337
21.39
85.44
977.86
351.23
404.12
-77.04
79.92
400
20.38
86.8
970.74
346.6
409.38
-76.48
80.48
447.1
19.62
87.81
965.41
343.18
413.36
-76.06
80.9
500
18.77
88.95
959.43
339.4
417.88
-75.58
81.38
557.3
17.85
90.19
952.95
335.36
422.83
-75.06
81.9

Source: Generated by the authors using Mathlab program

Table-3. December 2013: The vertical profile meteorological data with the computed refractivity, modified refractivity, refractivity gradient and modified refractivity gradient

Altitude[m]
T[C]
U[%]
P[hPa]
N (N -Units)
M
dN/dz
dM/dz
0
31.07
66.24
1012.81
378.87
378.87
0
0
54.1
30.56
67.42
1006.94
376.86
385.35
-37.29
119.68
65
30.46
67.66
1005.76
376.45
386.65
-37.37
119.59
100
30.13
68.42
1001.96
375.11
390.81
-37.64
119.32
108.2
30.05
68.6
1001.08
374.8
391.78
-37.7
119.26
162.3
29.55
69.78
995.21
372.63
398.11
-38.46
118.51
200
29.19
70.6
991.12
371.14
402.54
-38.65
118.31
216.4
29.04
70.96
989.34
370.49
404.46
-38.75
118.22
270.2
28.54
72.14
983.51
368.32
410.73
-39.06
117.9
300
28.26
72.79
980.28
367.1
414.19
-39.23
117.73
323.1
28.04
73.29
977.77
366.15
416.87
-39.37
117.59
375.2
27.55
74.43
972.12
363.99
422.88
-39.68
117.28
400
27.32
74.97
969.44
362.95
425.73
-39.82
117.14
427.9
27.06
75.58
966.41
361.77
428.93
-39.98
116.98
480.4
26.57
76.73
960.72
359.52
434.93
-40.28
116.68
500
26.39
77.16
958.59
358.68
437.16
-40.39
116.57
532
26.09
77.86
955.12
357.3
440.8
-40.56
116.4
582.4
25.61
78.96
949.66
355.1
446.51
-40.83
116.13
631.8
25.15
80.04
944.3
352.92
452.09
-41.08
115.88
682
24.68
81.13
938.86
350.68
457.73
-41.33
115.63
732.9
24.21
82.24
933.34
348.4
463.44
-41.58
115.38
785.3
23.71
83.39
927.66
346.03
469.29
-41.82
115.14
836.8
23.23
84.51
922.07
343.68
475.03
-42.05
114.91

Source: Generated by the authors using Mathlab program

The computed vertical profile of refractivity for the twelve months in 2013 are given in Table 4 and Figure 4. Similar table and figure for the modified refractivity are given in Table 5 and Figure 5. About 23 data points were used in the analysis for each of the months where the first data point 1 is the surface level data and the data point 23 is for the highest altitude.  The altitudes for the different months are not the same, that is why data point serial number is used.

Table-4.  The computed vertical profile  of   refractivity for the twelve months in 2013

S/N
N (N-Units) Jan
N (N-Units) Feb
N (N-Units) March
N (N-Units) Apr
N (N-Units) May
N (N-Units) Jun
N (N-Units) Jul
N (N-Units) Aug
N (N-Units) Sep
N (N-Units) Oct
N (N-Units) Nov
N (N-Units) Dec
1
374
370.8
384
384.6
362.9
376.9
387.1
378.5
380
377.2
382.6
378.9
2
372
367.5
381.7
381.2
360.2
374.3
383.8
375.6
376.6
376
379.9
376.9
3
370.6
366.2
380.9
380.7
359.2
373.5
383.2
374.8
375.4
374.8
379.3
376.4
4
370
363.8
379.4
378.6
357.5
371.7
381.1
373
372.9
373.7
377.5
375.1
5
368.7
363.3
379.2
377.9
357.2
371.6
380.4
372.8
373.1
372.5
377.1
374.8
6
367.9
359
377
374.6
354.8
369
377.2
370.2
369.7
372
374.3
372.6
7
365.8
357
374.7
372.7
352.2
366.5
375
367.5
366.4
371.3
372.4
371.1
8
363.8
354.8
374.4
371.2
351.6
366.3
374.1
367.2
365.8
370.1
371.5
370.5
9
363.3
351.1
372.4
368
349.6
364
371.1
365.1
363.2
369.3
368.8
368.3
10
361.7
350.4
370.2
366.8
346.1
361.3
369.2
362.5
360.2
369
367.3
367.1
11
359.6
347.4
369.6
364.9
344.4
361.1
368
361.6
359
367.8
366.1
366.2
12
358
343.9
368.1
361.7
341.8
358.7
364.9
359.8
357.2
366.7
363.5
364
13
357.1
343.8
364.9
361
340.6
356
363.3
357
354.2
365.5
362.2
362.9
14
354.1
340
366
358.2
339.3
355.9
361.4
356.1
352.4
364.4
360.8
361.8
15
352.5
337.6
363.9
355.2
336.7
353.2
357.8
354.3
351
363.2
358.1
359.5
16
351.3
336.2
361.7
354.5
335.2
350.7
357.6
351.6
345.9
361.5
357.2
358.7
17
348.8
332.5
360.2
351
334.5
350.3
354.1
350.6
348
359.5
355.5
357.3
18
347.1
329
359.4
347.7
332.1
347.7
350.1
348.7
345
354
353
355.1
19
346.9
325.6
357.2
344.2
327.5
345
346
345.6
342.1
351.2
350.5
352.9
20
344.8
322.3
355
341.3
325.3
342.5
341.6
342.6
339.3
346.6
348
350.7
21
342.8
318.9
352.6
338.5
323.2
339.8
337.3
339.4
336.5
343.2
345.4
348.4
22
340.5
315.6
350.2
335.9
320.9
337.2
333
336.1
333.7
339.4
342.8
346
23
338.2
312.5
347.7
333.2
318.6
334.5
329
333
331
335.4
340.3
343.7

Source: Generated by the authors using Mathlab program

Figure-4. The computed vertical profile of refractivity for the twelve months in 2013

Source: Generated by the authors using Mathlab program

From Table 4 and Figure 4 , the month of May has the lowest refractivity of 362.9(N-units). whereas April has the highest surface level refractivity value of 384.6 (N-units).  Similar modified refractivity values are obtained from Table 5 and Figure 5.

Table-5. The computed vertical profile of modified refractivity for the twelve months in 2013

M (M-Units)  Jan
M (M-Units) Feb
M (M-Units) March
M (M-Units)Apr
M (M-Units)May
M (M-Units) Jun
M (M-Units) Jul
M (M-Units) Aug
M (M-Units) Sep
M (M-Units)Oct
M (M-Units)Nov
M (M-Units)Dec
374
370.8
384
384.6
362.9
376.9
387.1
378.5
380
377.2
382.6
378.9
378
374.9
389.3
390.2
367.6
382.1
392.4
383.5
384.1
378.3
388.3
385.3
380.8
376.5
391.1
390.9
369.4
383.7
393.4
385
385.6
379.5
389.5
386.6
382
379.5
394.5
394.3
372.3
387.2
396.8
388.3
388.6
380.7
393.2
390.8
384.4
380.3
394.9
395.5
372.9
387.3
397.8
388.5
388.3
381.8
394.1
391.8
385.9
385.7
399.8
400.8
377.1
392.3
402.9
393.1
392.4
382.2
399.8
398.1
389.9
388.4
405
404
381.8
397.4
406.4
398
396.6
382.9
403.8
402.5
393.9
391.3
405.8
406.4
383
397.7
407.9
398.6
397.2
384.1
405.5
404.5
394.7
396.5
410.3
411.8
386.6
402.3
413
402.4
400.7
385
411.2
410.7
397.8
397.4
415.4
413.9
393.1
407.6
416.2
407.1
404.6
385.3
414.4
414.2
401.8
401.6
416.7
417
396.2
408.2
418.2
408.7
406.1
386.4
416.8
416.9
405
406.7
420.2
422.4
401.1
413
423.5
412
408.5
387.6
422.4
422.9
406.6
406.8
427.7
423.7
403.4
418.4
426.1
417.2
412.6
388.8
425
425.7
412.4
412.4
425
428.5
405.9
418.6
429.5
418.9
415.2
390
428
428.9
415.3
416
429.9
433.6
410.8
424
435.8
422.3
417
391.1
433.6
434.9
417.6
418
435.1
434.8
413.7
429.1
436.1
427.4
424.3
392.9
435.6
437.2
422.3
423.8
438.6
440.8
415.1
429.8
442.4
429.1
421.3
395.1
439
440.8
425.6
429.4
440.3
446.7
419.7
435.2
449.5
432.9
425.7
401.1
444.4
446.5
426
434.8
445.5
452.8
428.8
440.6
457.1
438.7
429.8
404.1
449.7
452.1
429.9
440.3
450.8
458
433.1
445.9
465.1
444.5
434
409.4
455
457.7
433.8
445.9
456.3
463
437.3
451.4
473.2
450.7
438.2
413.4
460.5
463.4
438
451.6
462
467.7
441.9
456.9
481.4
457.2
442.5
417.9
466.1
469.3
442.4
457
468
472.6
446.7
462.4
489.3
463.4
446.8
422.8
471.6
475

Source: Generated by the authors using Mathlab program

Figure-5. The computed vertical profile of modified refractivity for the twelve months in 2013

Source: Generated by the authors using Mathlab program

The computed vertical profile of refractivity gradient for the twelve months in 2013 are given in Table 6 and Figure 6. Similar table and figure for the modified refractivity gradient are given in Table 7 and Figure 7.  From the results in Table 6 and Figure 6, he maximum refractivity gradient (dN/dz) = -42.1and it occurred in December whereas the minimum refractivity gradient (dN/dz) = -75.1 and it occurred in October. Also, From the results in Table 7 and Figure 7, in the year 2013, the maximum modified refractivity gradient  (dM/dz) = 114.9 and it occurred in December whereas the minimum  modified refractivity gradient  (dM/dz) = 81.9  and it occurred in October.

Table-6. The computed vertical profile of refractivity gradient for the twelve months in 2013

dM/dz Jan
dM/dz Feb
dM/dz March
dM/dz Apr
dM/dz May
dM/dz Jun
dM/dz Jul
dM/dz Aug
dM/dz Sep
dM/dz Oct
dM/dz Nov
dM/dz Dec
104.3
86.9
108.7
97.3
100.1
104
96.2
100.2
84.9
77.6
105.9
119.7
104.2
87
108.8
97.3
100.2
104
96.3
100.2
85.1
77.7
105.9
119.6
104.2
87.3
108.8
97.4
100.3
104
96.4
100.3
85.4
77.8
105.9
119.3
104.1
87.4
108.8
97.4
100.3
104
96.5
100.3
85.3
77.9
105.9
119.3
103.6
87.6
108.5
97.1
100.1
103.7
96.4
100.1
85.4
77.2
105.6
118.5
103.6
87.9
108.7
97.3
100.4
103.9
96.6
100.3
85.9
77.3
105.7
118.3
103.5
88.2
108.7
97.4
100.4
103.9
96.7
100.3
86
77.5
105.7
118.2
103.5
88.7
108.8
97.5
100.6
104
96.9
100.5
86.4
77.7
105.8
117.9
103.5
88.8
108.9
97.6
100.9
104.1
97.1
100.6
86.8
77.7
105.9
117.7
103.4
89.2
108.9
97.7
101
104.1
97.2
100.7
86.9
77.9
105.9
117.6
103.4
89.7
108.9
97.8
101.2
104.2
97.4
100.8
87.2
78.1
105.9
117.3
103.4
89.7
109
97.9
101.3
104.3
97.5
100.9
87.6
78.2
106
117.1
103.3
90.2
109
98
101.4
104.3
97.7
101
87.8
78.4
106
117
103.3
90.5
109.1
98.1
101.5
104.3
98
101.1
88
78.5
106
116.7
103.2
90.7
109.1
98.1
101.6
104.4
98
101.2
88.6
78.7
106
116.6
103.2
91.1
109.2
98.3
101.7
104.4
98.2
101.3
88.3
78.9
106.1
116.4
103.1
91.6
109.2
98.4
101.8
104.5
98.5
101.4
88.7
79.6
106.1
116.1
103.1
92
109.3
98.6
102.1
104.6
98.8
101.6
89.1
79.9
106.2
115.9
103.1
92.4
109.3
98.7
102.3
104.7
99.1
101.7
89.4
80.5
106.2
115.6
103.1
92.9
109.4
98.9
102.4
104.7
99.4
101.9
89.8
80.9
106.2
115.4
103
93.3
109.5
99
102.6
104.8
99.7
102.1
90.1
81.4
106.3
115.1
103
93.7
109.5
99.1
102.7
104.9
100
102.2
90.5
81.9
106.3
114.9

Source: Generated by the authors using Mathlab program

Figure-6. The computed vertical profile  of   refractivity gradient for the twelve months in 2013

Source: Generated by the authors using Mathlab program

Table-7. The computed vertical profile  of  modified  refractivity gradient for the twelve months in 2013

dN/dz Jan
dN/dz Feb
dN/dz March
dN/dz Apr
dN/dz May
dN/dz Jun
dN/dz Jul
dN/dz Aug
dN/dz Sep
dN/dz Oct
dN/dz Nov
dN/dz Dec
-52.7
-70.1
-48.2
-59.7
-56.8
-53
-60.7
-56.8
-72
-79.4
-51
-37.3
-52.8
-69.9
-48.2
-59.6
-56.8
-53
-60.7
-56.8
-71.9
-79.3
-51
-37.4
-52.8
-69.7
-48.2
-59.6
-56.7
-52.9
-60.6
-56.7
-71.6
-79.2
-51
-37.6
-52.9
-69.6
-48.2
-59.6
-56.6
-52.9
-60.5
-56.7
-71.6
-79.1
-51
-37.7
-53.4
-69.3
-48.5
-59.8
-56.8
-53.2
-60.6
-56.9
-71.5
-79.8
-51.3
-38.5
-53.4
-69
-48.3
-59.7
-56.6
-53.1
-60.4
-56.7
-71
-79.6
-51.2
-38.7
-53.4
-68.7
-48.3
-59.6
-56.5
-53.1
-60.3
-56.6
-71
-79.4
-51.2
-38.7
-53.4
-68.2
-48.2
-59.4
-56.4
-53
-60
-56.5
-70.6
-79.3
-51.1
-39.1
-53.5
-68.1
-48.1
-59.4
-56.1
-52.9
-59.9
-56.3
-70.2
-79.2
-51.1
-39.2
-53.5
-67.7
-48.1
-59.3
-56
-52.9
-59.8
-56.3
-70
-79.1
-51.1
-39.4
-53.6
-67.3
-48
-59.1
-55.8
-52.8
-59.5
-56.2
-69.8
-78.9
-51
-39.7
-53.6
-67.3
-47.9
-59.1
-55.7
-52.7
-59.4
-56
-69.4
-78.7
-51
-39.8
-53.7
-66.8
-48
-59
-55.6
-52.7
-59.3
-56
-69.2
-78.6
-51
-40
-53.7
-66.5
-47.9
-58.9
-55.4
-52.6
-59
-55.9
-69
-78.5
-50.9
-40.3
-53.7
-66.3
-47.8
-58.8
-55.3
-52.5
-59
-55.7
-68.3
-78.3
-50.9
-40.4
-53.8
-65.8
-47.8
-58.7
-55.3
-52.5
-58.7
-55.7
-68.6
-78
-50.9
-40.6
-53.8
-65.4
-47.7
-58.5
-55.1
-52.5
-58.4
-55.6
-68.2
-77.4
-50.8
-40.8
-53.8
-65
-47.7
-58.4
-54.8
-52.4
-58.1
-55.4
-67.9
-77
-50.8
-41.1
-53.9
-64.5
-47.6
-58.2
-54.7
-52.3
-57.8
-55.3
-67.5
-76.5
-50.8
-41.3
-53.9
-64.1
-47.6
-58.1
-54.6
-52.2
-57.5
-55.1
-67.2
-76.1
-50.7
-41.6
-53.9
-63.7
-47.5
-58
-54.4
-52.1
-57.2
-54.9
-66.8
-75.6
-50.7
-41.8
-54
-63.3
-47.4
-57.8
-54.3
-52.1
-56.9
-54.7
-66.5
-75.1
-50.6
-42.1

Source: Generated by the authors using Mathlab program

Figure-7. The computed vertical profile of   modified refractivity gradient for the twelve months in 2013

Source: Generated by the authors using Mathlab program

In all, from the results in Table 6 and Table 7, the standard refractivity gradient of -39 and standard modified refractivity gradient of 118 occurred in December at an altitude of 103 meters. In all the months the atmospheric condition was in the normal state except in the month of October where superrefraction occurred.

4. CONCLUSION

A study of the refractivity gradient and modified refractivity gradient for Cross River state was presented.  Radiosonde meteorological data from Nigerian Meteorological Agency (NIMET) for the year 2013 was used. The vertical profile of each of the following four parameters was computed for the twelve months; refractivity, modified refractivity, refractivity gradient and modified refractivity gradient. The result showed that Cross River state is generally in the normal atmospheric condition except for the month of October where superrefraction was observed.

Funding: This study received no specific financial support.   
Competing Interests: The authors declare that they have no competing interests. 
Contributors/Acknowledgement: All authors contributed equally to the conception and design of the study.

REFERENCES

Agbo, G., O. Okoro and A. Amechi, 2013. Atmospheric refractivity over abuja, nigeria. International Research Journal of Pure and Applied Physics, 1(1): 37-45.

Akinwumi, S., T. Omotosho, A. Willoughby, J. Mandeep and M. Abdullah, 2015. Seasonal variation of surface radio refractivity and water vapour density for 48 stations in Nigeria. In Space Science and Communication (IconSpace), 2015 International Conference on. IEEE. pp: 106-110.

Bhattacharjea, R., 2014. The effects of atmospheric refractivity in near-earth UHF channels (Doctoral Dissertation, Georgia Institute of Technology).

Branson, J., 2008. Propagation modeling for the analysis of radar systems (Doctoral Dissertation, University of London).

Bruin, E., 2016. On propagation effects in Maritime situation awareness: Modelling the impact of North Sea weather conditions on the performance of AIS and coastal radar systems (Master's Thesis).

Gao, J., K. Brewster and M. Xue, 2008. Variation of radio refractivity with respect to moisture and temperature and influence on radar ray path. Advances in Atmospheric Sciences, 25(6): 1098-1106. Available at: https://doi.org/10.1007/s00376-008-1098-x.

Grabner, M., V. Kvicera, P. Pechac and O. Jicha, 2012. Parameters of vertical profiles of temperature humidity and refractive index of air in the lowest troposphere. In: Proc. of 9th International Symposium on Tropospheric Profiling (ISTP).

Hurter, F. and O. Maier, 2013. Tropospheric profiles of wet refractivity and humidity from the combination of remote sensing data sets and measurements on the ground. Atmospheric Measurement Techniques, 6(11): 3083-3098. Available at: https://doi.org/10.5194/amt-6-3083-2013.

Louf, V., O. Pujol and H. Sauvageot, 2016. The seasonal and diurnal cycles of refractivity and anomalous propagation in the sahelian area from microwave radiometric profiling. Journal of Atmospheric and Oceanic Technology, 33(10): 2095-2112. Available at: https://doi.org/10.1175/jtech-d-14-00208.1.

Manjula, G., M.R. Raman, M.V. Ratnam, A. Chandrasekhar and S.V.B. Rao, 2016. Diurnal variation of ducts observed over a tropical station, Gadanki, using high-resolution GPS radiosonde observations. Radio Science, 51(4): 247-258. Available at: https://doi.org/10.1002/2015rs005814.

Merrill, I.S., 2008.  3th Edn., Radar handbook. Chapter 26 The Propagation Factor, F P, in the Radar Equation. 3rd Edn., McGraw-Hill Professional. pp: 18-39.

NiMET, 2013. Cross River State 2013 Radiosonde meteorological data, Nigerian Meteorological Agency (NiMET). Available from www.nimet.gov.ng .

Series, P., 2015. Propagation data and prediction methods required for the design of earth-space telecommunication systems. Recommendation ITU-R: 618-612. Geneva: International Telecommunications Union. pp: 16.

Sim, C.Y.D., 2002. The propagation of VHF and UHF radio waves over sea paths (Doctoral Dissertation, University of Leicester).

Usman, A.U., O.U. Okereke and E.E. Omizegba, 2015. Instantaneous GSM signal strength variation with weather and environmental factors. American Journal of Engineering Research, 4(3): 104-115.

Wang, K.-N., T. Juárez, C.O. Ao and F. Xie, 2017. Correcting negatively biased refractivity below ducts in gnss radio occultation: An optimal estimation approach towards improving planetary boundary layer (pbl) characterization. Atmospheric Measurement Techniques, 10(12): 4761-4776. Available at: https://doi.org/10.5194/amt-10-4761-2017.

Views and opinions expressed in this article are the views and opinions of the author(s), International Journal of Sustainable Energy and Environmental Research shall not be responsible or answerable for any loss, damage or liability etc. caused in relation to/arising out of the use of the content.