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ABSTRACT 

In this paper, we develop numerical methods based on a non-polynomial spline function with uniform grid 

for solving certain class of singularly perturbed boundary value problems. The proposed methods are second-

order and fourth-order accurate. Numerical examples are provided to demonstrate the efficiency of the 

proposed methods. 
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INTRODUCTION 

 

Consider singularly perturbed two point boundary value problems of the form: 

               - '' ( ) ( ),  0 ( ) (1)                                                                    (1)

                 (0)       (1)                                                   

u p x u f x p x p

u A u B

    

                                             (2)
 

where  and A B  are constants and   is a small positive parameter such that 

0 1 and ( ) and ( )p x f x  are small bounded functions. 

 

Singularly perturbed boundary value problems arise in several branches of applied mathematics 

which include fluid dynamics, quantum mechanics, elasticity, chemical reactor theory, 

aerodynamics, reaction diffusion process, optimal control, gas porous electrodes theory, etc. The 

presence of small parameter (s)   in these problems poses some difficulties in obtaining 

satisfactory numerical solutions as reported in Natesan and Deb [1]. Several numerical 
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techniques have been developed for the solution of second order singularly perturbed boundary 

value problems [2, 3]. 

 

Derivation of the Methods 

To solve the singularly perturbed boundary value problem (1) with (2) in the finite interval [0,1], 

we partition the interval using equally spaced knots 0 0,  1,  ,  1,2,  , -1n ix x x ih i n   

and step length 1 ,nh  where n is an arbitrary positive integer. For each subinterval 

1( ,  ),  0,1,  , -1,i ix x i n  the proposed non polynomial function has the form: 

    ( ) ( ) sin ( ) cos ( )                                                      (3)i i i i i i iS x a b x x c x x d x x       

where , ,  c ,  di i i ia b  are real finite non-zero constants to be determined and   is a free 

parameter. Let iu  be an approximation to ( )iu x , obtained by the non polynomial S passing 

through the points
11( ,  )  ( ,  )

i ii ix u and x u
 . The spline function (3) is not only required to the 

given differential equation and the associated boundary conditions at 1 and i ix x  , but it must also 

satisfy the continuity of first derivative at the common nodes ( ,  )
iix u .  

In order to derive expressions for the coefficients in (3) in terms of 
1 1,  ,  ,  ,

ii i iu u M M
  the 

following relations are defined: 

11 1 1( )    ( )    ''( )      ''( )                                                        (4)
ii i i i i i iS x u S x u S x M S x M
       

After some algebraic manipulations, we obtain from (3) 

1 12

12 2

1 1
    ,     ( ) ( )

1
                                  ( cos ),                                         (5)

sin

i
i i i i i i i

i
i i i i

M
a u b u u M M

h

M
c M M d

 


  

 



     


  

 

where ,  0,1, -1.h i n    

One sided limits of the derivative of ( )S x  are obtained as  

1 1

1
      '( ) ( ) ,  1,2, , .                                           (6)i i i i iS x u u hM hM i n

h
 

     
 

and 
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1 1

1
       '( ) ( ) ,  0,1, , -1.                                      (7)i i i i iS x u u hM hM i n

h
 

     
 

where 2 2

1 1 1 cos
,        

sin sin


 

    

   
     

  
 

Using the continuity condition of the first derivative at 
-( , ),  that is, '( ) '( ),  i i i ix u S x S x

 

we obtain the following consistency relation: 

2

-1 1 1 1      2 ( 2 ),    1,2, , -1.                           (8)i i i i i iu u u h M M M i n           

Now, setting ix x in equation (1) and making use of (4), we have 

( ) 1
                                                                                                     (9)i

i i i

p x
M u f

 
 

 

It follows also that 

1
1 1 1

( ) 1
                                                                                      (10)i

i i i

p x
M u f

 


   
 

 and 

1
1 1 1

( ) 1
                                                                                        (11)i

i i i

p x
M u f

 


     

On using (9) – (11) in the consistency relation (8), we obtain 

2 2 2

-1 -1 1 1

2 2 2

-1 1

   ( - ) 2( ) ( - )

                                           2 ,   1,2, , 1             (12)

i i i i i

i i i

h p u h u h p u

h f h f h f i n

     

  

 



  

    
 

Equation (12) together with the two boundary conditions (2) gives a tridiagonal set of 

(n+1)equations which can be solved for the (n+1) unknowns’ ui,i=0,1,….,n. 

 

Truncation Error 

The local truncation error of (12) is given by  

2 2 2

1 1 1 1
2 2 2

-1 1

( ) ( ) 2 ( ) ( ) ( ) ( )

                                                     ( ) 2 ( ) ( )                          (13)
i i i i i i i

i i i

T h p x u x h p x u x h p x u x

h f x h f x h f x

     

  
   



               
   

 

Expanding in Taylor series about ix , we obtain 

4 6
2 8[2( ) 1] (12 1) (30 1) ( )                        (14)

12 360

                                  1,2, , .

i i

ii iv vi

i i

h h
T h u u u O h

i n
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Thus for arbitrary choices of 
1

 and  provided that , we obtain:
2

      

Second-order Methods  

 

1 1
6 3

1 1
4 4

31
8 8

1 2
10 5

31
14 7

71
16 16

( ) ,  =

( ) ,  =

( ) ,  =

( ) ,  =

( ) ,  =

( ) ,  =

a

b

c

d

e

f

 

 

 

 

 

 













 

 

Fourth-order Method 

51
12 12  ,  =   

 

NUMERICAL EXPERIMENTS AND RESULTS 

 

In this section, we test the new methods on two problems which have exact solutions to 

demonstrate the efficiency and accuracy of the methods. All computations were performed using a 

program written Matlab R2010a. 

 

Problem 1 

Consider the following problem 

2 2            '' -cos ( ) 2 cos(2 )

                         (0) (1) 0

u u x x

u u

     

 
 

The exact solution for this problem is 

( 1)

2

1
                  ( ) cos ( )

1

x x

e e
u x x

e

 





 




 



 

Problem 1 has been solved by the proposed methods with n=16, 32, 64, 128 and 1 1
16 32

= ,  ,

1 1
64 128

, .The maximum absolute errors are summarized in Tables 1-7. Comparing these results 

with the results in Surla and Stojanovic [3], Kadalbajoo and Bawa [4], displayed in Tables 8 and 

9 respectively, shows that methods 3.1(c) - 3.1(f) and 3.2 give better approximations. Figures 1 - 2 

show the comparison of the exact and approximate solutions to this problem with different values 

of h and . 
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Problem 2 

Consider the following problem 

 
( -1) -

2 2       - '' 1 (1 ) 1 (1 ) 2 (1 ) 2 (1 )

                      

                (0) (1) 0

x x

u x x u x x x x e x x e

u u

                    

 
 

The exact solution is given by 

( 1)

( ) 1 ( 1)
xx

u x x e xe 


   
 

The above problem has been solved by the new methods with n=16, 32, 64, 128 and 

1 1 1 1
16 32 64 128

= ,  , ,  .
 
The maximum absolute errors are displayed in Tables 10 - 16. In Figures 

3- 4, the exact and approximate solutions to this problem are compared for some methods with 

different values of h and   which confirm the accuracy of the methods. 

 

Table-1. Observed maximum absolute errors for Problem 1 by method 3.1(a) 

         16n       32n           64n             128n              256n                 

1/16      7.10E-3       1.78E-3          4.45E-4             1.11E-4            2.78E-5 

1/32      5.69E-3       1.42E-3          3.56E-4             8.89E-5            2.22E-5 

1/64      4.07E-3       1.02E-3          2.54E-4             6.35E-5            1.59E-5 

1/128      6.98E-3       1.75E-3         4 .34E-4             1.09E-4            2.71E-5 

 
 

Table-2. Observed maximum absolute errors for Problem 1 by method 3.1(b) 

           16n         32n             64n                128n          256n                 

1/16       1.43E-2       3.56E-3           8.90E-4   2.23E-4          5.56E-5 

1/32       1.14E-2       2.85E-3           7.12E-4                1.78E-4           4.45E-5 

1/64       8.17E-2       2.04E-3           5.08E-4     1.27E-4           3.18E-5 

1/128       1.41E-2       3.50E-3           8.68E-4                2.17E-4           5.43E-5 

 
Table-3. Observed maximum absolute errors for Problem 1 by method 3.1(c) 

           16n         32n             64n               128n            256n                 

1/16        3.53E-3        8.88E-4           2.22E-4                5.56E-5           1.39E-5 

1/32        2.83E-3        7.10E-4           1.78E-4                4.45E-5           1.11E-5 

1/64        2.03E-3        5.08E-4           1.27E-4                3.18E-5           7.94E-6 

1/128        3.54E-3        8.80E-4           2.17E-4                5.43E-5           1.36E-5 

 
Table-4. Observed maximum absolute errors for Problem 1 by method 3.1(d) 

            16n          32n             64n          128n                     256n                 

1/16         1.38E-3          3.54E-4             8.89E-5      2.23E-5           5.56E-6 

1/32         1.12E-3          2.83E-4             7.12E-5      1.78E-5           4.45E-6 

1/64            8.13E-4            2.03E-4             5.08E-5      1.27E-5             3.18E-6 

1/128         1.52E-3          3.59E-4             8.73E-5      2.17E-5           5.43E-6 
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Table-5. Observed maximum absolute errors for Problem 1 by method 3.1(e) 

           16n          32n            64n           128n                   256n                 

1/16         1.06E-3          2.57E-4             6.38E-5      1.59E-5           3.96E-6 

1/32        8.33E-4          2.04E-4             5.09E-5      1.27E-5           3.18E-6 

1/64         5.82E-4          1.45E-4             3.63E-5      9.08E-6           2.27E-6 

1/128         7.61E-4          2.35E-4             6.10E-5      1.54E-5           3.87E-6 

 
Table-6. Observed maximum absolute errors for Problem 1 by method 3.1(f) 

           16n          32n           64n            128n                    256n                 

1/16         1.82E-3          4.48E-4            1.11E-4      2.78E-5           6.96E-6 

1/32         1.44E-3          3.57E-4            8.90E-5      2.22E-5           5.56E-6 

1/64         1.02E-3          2.54E-4            6.35E-5      1.59E-5           3.97E-6 

1/128         1.46E-3          4.20E-4            1.07E-4      2.71E-5           6.78E-6 

 
Table-7. Observed maximum absolute errors for Problem 1 by method 3.2 

          16n            32n            64n      128n                    256n                 

1/16        4.07E-5           2.53E-6            1.58E-7      9.88E-9          6.17E-10 

1/32        2.01E-6           1.24E-6            7.75E-8      4.84E-9          3.02E-10 

1/64        5.46E-5           3.43E-6            2.15E-7      1.34E-8          8.40E-10 

1/128        1.84E-4           1.23E-5                 7.69E-7      4.82E-8          3.01E-9 

 
Table-8. Maximum absolute errors reported in Surla and Stojanovic [3] for Problem 1 

            16n           32n             64n         128n                    256n                 

1/16         8.06E-3          2.02E-3            5.08E-4     1.27E-4           3.17E-5 

1/32         7.11E-3          1.79E-3            4.48E-4     1.12E-4           2.80E-5 

1/64         6.58E-3          1.66E-3            4.15E-4     1.04E-4           2.60E-5 

1/128         6.36E-3          1.61E-3            4.03E-4     1.01E-4           2.52E-5 

 
Table-9. Maximum absolute errors reported in Kadalbajoo and Bawa [4] for Problem 1 

          16n           32n          64n           128n                  256n                 

1/16         7.09E-3           1.77E-3          4.45E-4     1.11E-4        2.78E-5 

1/32         5.68E-3           1.42E-3               3.55E-4     8.89E-5        2.22E-5 

1/64         4.07E-3           1.01E-3          2.54E-4       6.35E-5        1.58E-5 

1/128         6.97E-3           1.75E-3           4.33E-4     1.08E-4        2.71E-5 

 
Table-10. Observed maximum absolute errors for problem 2 by method 3.1(a) 

         16n          32n         64n              128n                   256n                 

1/16     1.9725E-3        4.9084E-4         1.2257E-4    3.0633E-5         7.6578E-6 

1/32     2.9275E-3        7.2608E-4         1.8164E-4    4.5382E-5         1.1344E-5 

1/64     5.1321E-3        1.2583E-3         3.1373E-4    7.8429E-5         1.9601E-5 

1/128     9.4595E-3        2.3291E-3         5.8123E-4    1.4503E-4         3.6268E-5 
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Table-11. Observed maximum absolute errors for problem 2 by method 3.1(b) 

          16n         32n      64n                 128n                    256n                 

1/16       3.9455E-3        9.8170E-4         2.4513E-4    6.1266E-5         1.5316E-5 

1/32       5.8616E-3        1.4527E-3         3.6330E-4    9.0766E-5         2.2688E-5 

1/64       1.0305E-2        2.5189E-3         6.2762E-4    1.5687E-4         3.9203E-5 

1/128       1.9159E-2        4.6671E-3         1.1631E-3    2.9090E-4         7.2538E-5 

 
Table-12. Observed maximum absolute errors for problem 2 by method 3.1(c) 

         16n        32n      64n                 128n                  256n                 

1/16       9.8916E-4         2.4560E-4        6.1295E-5     1.5317E-5          3.8290E-6 

1/32      1.4713E-3        3.6349E-4        9.0848E-5    2.2693E-5         5.6720E-6 

1/64      2.5886E-3        6.6030E-4        1.5695E-4    3.9220E-5         9.8010E-6 

1/128      4.7962E-3        1.1696E-3        2.9092E-4    7.2532E-5         1.8135E-5 

 
Table-13. Observed maximum absolute errors for problem 2 by method 3.1(d) 

           16n          32n         64n             128n                  256n                 

1/16      4.0017E-4        9.8523E-5         2.4536E-5   6.1279E-6        1.5317E-6 

1/32      6.0100E-4        1.4617E-4         3.6388E-5   9.0802E-6        2.2690E-6 

1/64      1.0760E-3        2.5480E-4         6.2940E-5   1.5698E-5        3.9210E-6 

1/128      2.0546E-3        4.7688E-4        1.1694E-4   2.9049E-5        7.2563E-6 

 
Table-14. Observed maximum absolute errors for problem 2 by method 3.1(e) 

            16n          32n            64n      128n                  256n                 

1/16      2.7203E-4       1.2201E-5         1.7471E-5   4.3737E-6         1.0936E-6 

1/32      3.9055E-4       1.7947E-4         2.5839E-5   6.4763E-6         1.6201E-6 

1/64      6.4058E-4       3.0775E-4         4.4451E-5   1.1181E-5         2.7988E-6 

1/128      1.0285E-3       3.1209E-4         8.1720E-5   2.0636E-5         5.1760E-6 

 
Table-15. Observed maximum absolute errors for problem 2 by method 3.1(f) 

          16n          32n       64n               128n                     256n                 

1/16      4.8189E-4        1.2201E-4         3.0598E-5    7.6554E-6         1.9143E-6 

1/32      6.9973E-4        1.7947E-4         4.5282E-5    1.1338E-5         2.8355E-6 

1/64      1.1744E-4        3.0775E-4         7.8000E-5    1.9580E-5         4.8986E-6 

1/128      1.9812E-3        5.5805E-4         1.4376E-4    3.6160E-5         9.0609E-6 

 
Table-16. Observed maximum absolute errors for problem 2 by method 3.2 

           16n          32n       64n                128n                  256n                 

1/16      7.9343E-6        4.7902E-7         3.1084E-8    1.9432E-8         1.2146E-10 

1/32      2.2195E-5        1.3932E-6         8.7462E-8    5.4679E-9         3.4177E-10 

1/64      7.3085E-5        4.6055E-6         2.8879E-7    1.8089E-8         1.1307E-9 

1/128      2.4975E-4        1.6298E-5         1.0297E-6    6.4479E-8         4.0339E-9 
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1 1
32 32

Fig. 1: Comparison of solutions for Problem 1, Method 3.1(a), = , =h  

 

1 1
64 64

Fig. 2: Comparison of solutions for Problem 1, Method 3.2, = , =h  

 

1 1
16 64

Fig. 3: Comparison of solutions for Problem 2, Method 3.1(f), = , =h  
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1 1
128 128

Fig. 4: Comparison of solutions for Problem 2, Method 3.2, = , =h  

 

CONCLUSION  

 

We have developed a class of methods based on a non-polynomial spline function for solving 

linear singularly perturbed boundary value problems. The methods are second-order and fourth-

order accurate. Numerical results show better performance of the new methods, except methods 

3.1(a) and 3.1(b), over the existing methods reported in Surla and Stojanovic [3], Kadalbajoo and 

Bawa [4]. The methods are computationally efficient and the scheme can easily be implemented 

on a computer without wastage of computer time. 
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