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ABSTRACT

In this paper, we develop numerical methods based on a non-polynomial spline function with uniform grid
Jfor solving certain class of singularly perturbed boundary value problems. The proposed methods are second-
order and fourth-order accurate. Numerical examples are provided to demonstrate the efficiency of the
proposed methods.
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INTRODUCTION

Consider singularly perturbed two point boundary value problems of the form:

-eu"+p(x)u=f(x), 0<p(x)<p) @
u0)=A u(t)=B (2)

~—

where AandB are constants and & is a small positive parameter such that

O<e<<land p(X) and f (X) are small bounded functions.

Singularly perturbed boundary value problems arise in several branches of applied mathematics
which include fluid dynamics, quantum mechanics, elasticity, chemical reactor theory,
aerodynamics, reaction diffusion process, optimal control, gas porous electrodes theory, etc. The
presence of small parameter (s) & in these problems poses some difficulties in obtaining

satisfactory numerical solutions as reported in Natesan and Deb [17]. Several numerical
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techniques have been developed for the solution of second order singularly perturbed boundary

value problems [2, 37].

Derivation of the Methods
To solve the singularly perturbed boundary value problem (1) with (2) in the finite interval 0,17,

we partition the interval using equally spaced knots XO = O, X, =1, X = Ih, i =:L 2, -+ N -1
and step length h=%, where Nis an arbitrary positive integer. For each subinterval

(XI , Xi+1)’ = 0,:L -+, N -:L the proposed non polynomial function has the form:

S(x)=a +b(x—x)+c sinz(x—x)+d. cost(x—Xx) ©)]
where @, b| y G, di are real finite non-zero constants to be determined and 7 1is a free
parameter. Let U; be an approximation to U(Xi), obtained by the non polynomial S passing
through the points (XI ) Ui) and (Xi+1’ UM). The spline function (8) is not only required to the
given differential equation and the associated boundary conditions at X; and Xi,1, but it must also

satisfy the continuity of first derivative at the common nodes (XI , U ) .
1

In order to derive expressions for the coefficients in (8) in terms of U, UM, Mi’ Mi+1,the
following relations are defined:
S(x) =t S(e)=u, S'0¢)=M;  Sx.z)=M, @
After some algebraic manipulations, we obtain from (3)
M. 1 1
& = +_2|’ b| :_(ui+1_ui)+_(Mi+1_Mi)
T h 0
1 -M
G =" (M;cos6-M,,), d, =— ()
r°sing T
where 0=Th, i =0,l,---n-1.
One sided limits of the derivative of S (X) are obtained as
oy L .
S'(x ):ﬁ(ui—ui_1)+,8hMi+ahMi_1, 1=12-..,n (6)
and
2
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SX) = -U) M,

i+l

1 1 ( 1 cosd j
where & = - —-—— | ,B: — T
gsin@ @ g 0sing

Using the continuity condition of the first derivative at (XI ) Ui), that is, S |(XI) =S I(X;r),

—phM,, i=0,1,--,n-1. (7)

we obtain the following consistency relation:

Uy — 20 +U, =h2 (@M, +2BM, +aM, ), 1=12,--,n-1. )

Now, setting X=X, in equation (1) and making use of (4), we have

M, :Mui 1 f ©
& &
It follows also that
M., = M Uiy = fig (10)
& &
and
I\/|i+l = M ui+1 _1 fi+1 (11)
& &

On using (9) —(11) in the consistency relation (8), we obtain
(th2 Pa-Ey+ Z(ﬁhz +e) + (th2 Py =)y
—ah?f + 280 +ah?f, i=12.n-1  (12)

Equation (12) together with the two boundary conditions (2) gives a tridiagonal set of

(n+1)equations which can be solved for the (z+1) unknowns’ %.:=0,1,....,n.

Truncation Error

The local truncation error of (12) is given by

Ty = pl ) e JuCs..) 2] A p0s) 2 JuCx) <] aplx. )¢ ucs,)
=l f (%) 280" f () -ah*f (x.,) (13)

Expanding in Taylor series about X; , we obtain

4 6
T =h[2(a+ A)-Teu’ +;‘—2 (12a+1)eu” +% (30a-D)eu” +O(H?) (14)
i=12,,n.
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. 1 .
Thus for arbitrary choices of & and ﬂ prOVIdEd that 0(+,3 = E, we obtain:

Second-order Methods
@) a=x%, p=5%

() a=%, p=%

© a=% B=%

d) a=%, B=%
(&) a=Xs B=%
(f) a=%s, b=V

Fourth-order Method
=Y, B~%,

NUMERICAL EXPERIMENTS AND RESULTS

In this section, we test the new methods on two problems which have exact solutions to
demonstrate the efficiency and accuracy of the methods. All computations were performed using a

program written Matlab R2010a.

Problem 1
Consider the following problem
&U"+U =-c0s’(7X) — 2&m” coS(27X)
u(0)=u@ =0

The exact solution for this problem is

YA

- —cos*(7X)
1+e/

u(x) =

Problem 1 has been solved by the proposed methods with #=16, 32, 64, 128 and 8=%, 3—12,

é, 1_%8 The maximum absolute errors are summarized in Tables 1-7. Comparing these results

with the results in Surla and Stojanovic [87, Kadalbajoo and Bawa [47], displayed in Tables 8 and
9 respectively, shows that methods 3.1(c) - 3.1(f) and 8.2 give better approximations. Figures 1 - 2

show the comparison of the exact and approximate solutions to this problem with different values

of hand €.
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Problem 2
Consider the following problem

(x-1) -X
-u"+[1+x(1-X)]u=1+x(L-X) [2\/_ X2 (L— x} 1JEJ{Z\/E—X(l—x)Z}e/JE

u@)=u@®=0
_}/ (x-1)
The exact solution is given by U(X) =1+ (x—l)e Ve _xe /e

The above problem has been solved by the new methods with #n=16, 32, 64, 128 and

6’:%, 3—12,é, ﬁ The maximum absolute errors are displayed in Tables 10 - 16. In Figures

3- 4, the exact and approximate solutions to this problem are compared for some methods with

different values of #and & which confirm the accuracy of the methods.

Table-1. Observed maximum absolute errors for Problem 1 by method 3.1(a)

& n=16 n=32 n==64 n=128 n=256
1/16 7.10E-3 1.78E-3 4.45E-4 1.11E-4 2.78E-5
1/82 5.69E-3 1.42E-3 3.56E-4 8.89E-5 2.22E-5
1/64 4.07E-3 1.02E-3 2.54E-4 6.35E-5 1.59E-5
1/128 6.98E-3 1.75E-3 4 .34E-4 1.09E-4 2.71E-5

Table-2. Observed maximum absolute errors for Problem 1 by method 3.1(b)

& n=16 n=232 n=064 n=128 n =256
1/16 1.43E-2 3.56E-3 8.90E-4 2.23E-4 5.56E-5
1/82 1.14E-2 2.85E-3 7.12E-4 1.78E-4 4.45E-5
1/64 8.17E-2 2.04E-3 5.08E-4 1.27E-4 3.18E-5
1/128 1.41E-2 3.50E-3 8.68E-4 2.17E-4 5.43E-5

Table-3. Observed maximum absolute errors for Problem 1 by method 3.1(c)

& n=16 n=32 n=:64 n=128 n =256
1/16 3.53E-3 8.88E-4 2.22E-4 5.56E-5 1.89E-5
1/382 2.83E-3 7.10E-4 1.78E-4 4.45E-5 1.11E-5
1/64 2.08E-3 5.08E-4 1.27E-4 3.18E-5 7.94E-6
1/128 3.54E-3 8.80E-4 2.17E-4 5.43E-5 1.36E-5

Table-4. Observed maximum absolute errors for Problem 1 by method 3.1(d)

& n=16 n=232 n=064 n=128 n=256
1/16 1.38E-3 3.54E-4 8.89E-5 2.23E-5 5.56E-6
1/32 1.12E-3 2.83E-4 7.12E-5 1.78E-5 4.45E-6
1/64 8.18E-4 2.03E-4 5.08E-5 1.27E-5 3.18E-6
1/128 1.52E-3 3.59E-4 8.73E-5 2.17E-5 5.43E-6
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Table-5. Observed maximum absolute errors for Problem 1 by method 3.1(e)

& n=16 n=32 n=064 n=128 n=256
1/16 1.06E-3 2.57E-4 6.38E-5 1.59E-5 3.96E-6
1/32 8.33E-4 2.04E-4 5.09E-5 1.27E-5 3.18E-6
1/64 5.82E-4 1.45E-4 3.63E-5 9.08E-6 2.27E-6
1/128 7.61E-4 2.35E-4 6.10E-5 1.54E-5 3.87E-6

Table-6. Observed maximum absolute errors for Problem 1 by method 3.1(f)

& n=16 n=32 n=>64 n=128 n=256
1/16 1.82E-3 4.48E-4 1.11E-4 2.78E-5 6.96E-6
1/32 1.44E-3 3.57E-4 8.90E-5 2.22E-5 5.56E-6
1/64 1.02E-3 2.54E-4 6.35E-5 1.59E-5 3.97E-6
1/128 1.46E-3 4.20E-4 1.07E-4 2.71E-5 6.78E-6

Table-7. Observed maximum absolute errors for Problem 1 by method 3.2

& n=16 n=32 n==64 n=128 n=256
1/16 4.07E-5 2.53E-6 1.58E-7 9.88E-9 6.17E-10
1/82 2.01E-6 1.24E-6 7.75E-8 4.84E-9 3.02E-10
1/64 5.46E-5 3.43E-6 2.15E-7 1.84E-8 8.40E-10
1/128 1.84E-4 1.23E-5 7.69E-7 4.82E-8 3.01E-9

Table-8. Maximum absolute errors reported in Surla and Stojanovic [87 for Problem 1

& n=16 n=232 n=64 n=128 n=256
1/16 8.06E-3 2.02E-3 5.08E-4 1.27E-4 3.17E-5
1/32 7.11E-3 1.79E-3 4.48E-4 1.12E-4 2.80E-5
1/64 6.58E-3 1.66E-3 4.15E-4 1.04E-4 2.60E-5
1/128 6.36E-3 1.61E-3 4.03E-4 1.01E-4 2.52E-5

Table-9. Maximum absolute errors reported in Kadalbajoo and Bawa [47 for Problem 1

& n=16 n=32 n=064 n=128 n=256
1/16 7.09E-3 1.77E-3 4.45E-4 1.11E-4 2.78E-5
1/82 5.68E-3 1.42E-3 3.55E-4 8.89E-5 2.22E-5
1/64 4.07E-3 1.01E-3 2.54K-4 6.35E-5 1.58E-5
1/128 6.97E-3 1.75E-3 4.33E-4 1.08E-4 2.71E-5

Table-10. Observed maximum absolute errors for problem 2 by method 3.1(a)

£ n=16 n=32 n=64 n=128 n=256
1/16 1.9725E-3 4.9084E-4 1.2257E-4 3.0633E-5 7.6578E-6
1/82 2.9275E-3 7.2608E-4 1.8164E-4 4.5382E-5 1.1844E-5
1/64 5.1321E-3 1.2583E-3 3.1373E-4 7.8429E-5 1.9601E-5
1/128 9.4595E-3 2.3291E-3 5.8123E-4 1.4503E-4 3.6268E-5
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Table-11. Observed maximum absolute errors for problem 2 by method 3.1(b)

& n=16 n=232 n=64 n=128 n=256
1/16 3.9455E-3 9.8170E-4 2.4518E-4 6.1266E-5 1.5316E-5
1/82 5.8616E-3 1.4527E-3 3.6330E-4 9.0766E-5 2.2688E-5
1/64 1.0805E-2 2.5189E-3 6.2762E-4 1.5687E-4 3.9208E-5
1/128 1.9159E-2 4.6671E-3 1.1631E-3 2.9090E-4 7.2538E-5

Table-12. Observed maximum absolute errors for problem 2 by method 3.1(c)

& n=16 n=32 n==64 n=128 n =256
1/16 9.8916E-4 2.4560E-4 6.1295E-5 1.56817E-5 3.8290E-6
1/82 1.4718E-3 3.6349E-4 9.0848E-5 2.2693E-5 5.6720E-6
1/64 2.5886E-3 6.6030E-4 1.5695E-4 3.9220E-5 9.8010E-6
1/128 4.7962E-3 1.1696E-3 2.9092E-4 7.2532E-5 1.8185E-5

Table-13. Observed maximum absolute errors for problem 2 by method 3.1(d)

& n=16 n=232 n==64 n=128 n=256
1/16 4.0017E-4 9.8523E-5 2.4536E-5 6.1279E-6 1.5317E-6
1/82 6.0100E-4 1.4617E-4 3.6388E-5 9.0802E-6 2.2690E-6
1/64 1.0760E-3 2.5480E-4 6.2940E-5 1.5698E-5 3.9210E-6
1/128 2.0546E-3 4.768SE-4 1.1694E-4 2.9049E-5 7.2563E-6

Table-14. Observed maximum absolute errors for problem 2 by method 3.1(e)

& n=16 n=32 n=064 n=128 n=256
1/16 2.7208E-4 1.2201E-5 1.7471E-5 4.8787E-6 1.0936E-6
1/32 3.9055E-4 1.7947E-4 2.5839E-5 6.4763E-6 1.6201E-6
1/64 6.4058E-4 3.0775E-4 4.4451E-5 1.1181E-5 2.7988E-6
1/128 1.0285E-3 3.1209E-4 8.1720E-5 2.0636E-5 5.1760E-6

Table-15. Observed maximum absolute errors for problem 2 by method 8.1(f)

& n=16 n=32 n==64 n=128 n=256
1/16 4.8189E-4 1.2201E-4 3.0698E-5 7.6554E-6 1.91438E-6
1/32 6.9973E-4 1.7947E-4 4.6282E-5 1.1338E-5 2.8355E-6
1/64 1.1744E-4 3.0775E-4 7.8000E-5 1.9580E-5 4.8986E-6
1/128 1.9812E-3 5.5805E-4 1.4376E-4 3.6160E-5 9.0609E-6

Table-16. Observed maximum absolute errors for problem 2 by method 3.2

& n=16 n=232 n==64 n=128 n =256
1/16 7.9343E-6 4.7902E-7 3.1084E-8 1.9432E-8 1.2146E-10
1/82 2.2195E-5 1.8932E-6 8.7462E-8 5.4679E-9 3.4177E-10
1/64 7.3085E-5 4.6055E-6 2.8879E-7 1.8089E-8 1.1307E-9
1/128 2.4975E-4 1.6298E-5 1.0297E-6 6.4479E-8 4.0889E-9
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Fig. 1: Comparison of solutions for Problem 1, Method 3.1(a), £=4,h=5;
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Fig. 2: Comparison of solutions for Problem 1, Method 3.2, e=¢;,h=4;
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Fig. 3: Comparison of solutions for Problem 2, Method 3.1(f), e=+%,h=2%
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Fig. 4: Comparison of solutions for Problem 2, Method 3.2, s=;,h=5;
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CONCLUSION

We have developed a class of methods based on a non-polynomial spline function for solving
linear singularly perturbed boundary value problems. The methods are second-order and fourth-
order accurate. Numerical results show better performance of the new methods, except methods

3.1(a) and 3.1(b), over the existing methods reported in Surla and Stojanovic [37], Kadalbajoo and

Bawa [47. The methods are computationally efficient and the scheme can easily be implemented
on a computer without wastage of computer time.
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