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ABSTRACT 

The present work deals with optimization in kinematics, generalizing previous results of the author. A 

second theme is maximizing the constrained gain linear function and minimizing the constrained cost 

function. Elementary notions of optimal control are considered as well. Finally, polynomial approximation 

results on unbounded subsets in several variables are applied to the moment problem. The existence of the 

solution of a two dimensional moment problem is characterized in terms of quadratic forms. 
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Contribution/ Originality 

 The paper contributes the first logical analysis of the problems solved in the theorems 2.1, 

2.2 (optimization in kinematics), 3.3 (minimization of the total cost), Lemma 4.2 (approximation), 

Theorem 4.3 (solving the moment problem). The paper’s primary contribution is finding that 

suitable polynomial approximation yields solving the multidimensional moment problem. This 

study documents how practical and theoretical  problems can be solved. 

 

1. INTRODUCTION 

The importance of increasing the kinetic energy of a system of particles is essential. On the 

other hand, we try to minimize the total constrained cost linear functional (of transportation, etc.) 

and to increase the constrained gain functional. Most of these problems can be solved by applying 

basic inequalities and studing the case when equalities occur in these inequalities. Such 

inequalities are: Cauchy-Schwarz-Buniakovski inequality, mean inequality, Hölder’s inequality 

and many others. In practice, the extremum problems are usually constrained extremum 

problems. Some of the results in the present work have been presented during the Railway Stock 

National Symposium   [1], Politehnica University of Bucharest. These results concern 

optimization in kinematics, respectively minimization and control of the total cost. Maximizing 

the gain is another subject briefly treated in this work. For basic notions of the present work, we 
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mention the monographs [2-6], [7]. For applications of polynomial decomposition and 

approximation to the moment problem see [2], [8-13], [14-17]. An approximation method 

similar to ours, applied to the complex moment problem, appears in [9].  Most of these works are 

using Hahn-Banach type results in solving moment problems. For separation theorems applied to 

optimization, Mazur-Orlicz and moment problems see [5]. 

The paper is organized as follows. Sections 2 is devoted to optimization in kinematics. 

Section 3 contains elements of control and optimization of the total cost. The aim of Section 4 is 

to present an application of an     approximation result to the multidimensional Markov 

moment problem. This leads to the characterization of the existence of the solution in terms of 

quadratic forms. Section 5 concludes the paper. 

 

2. OPTIMIZATION IN KINEMATICS 

Next we generalize some results from [1]. In the space 
nR  we consider a system of p  

material particles, of masses ,,...,1 pmm  which are moving following the action of a the 

continuous fields of forces 

    .,...,1,,,,,..., 01 plTtttffff llp 


 

The velocities pvv


,...,1  verify the following conditions 

       .,...,1,,,0,0 1
0 plRTCvtv n

ll 


 

2.1 Our first aim is determining conditions on the velocity-fields, such that the kinetic energy 

and the total kinetic moment of the system to be maximal. We assume that the euclidean norms in 

nR  of the forces fields are bounded from above by the constants ,,...,1, plM l   so that by 

hypothesis we have: 

    .,...,1,,0, plTtMtf ll 


 

Theorem-2.1.(i) If the movement of the system occurs such that the kinetic energy is maximal, the lf


 is 

parallel to lv


 at any moment of time, and we have 

     

       .,,/
2

1

,,...,1,/

0
2

0

1

2
max

0max,

TttttmMtT

plttmMtv

p

l

ll

lll






















                              (1) 

(ii) Under the additional assumption of a maximal kinetic momentum  ,t  we have: 
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       

     .,...,1,/

,//,,0,

0

1
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111

pkttmMmt

mMmMTttvtvtv

kk

p

l

l

ppl
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





















                                 (2) 

Proof: Following the Newton’s second law, we have 

 

       
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




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


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


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





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






           (3) 

Equality occurs in the last inequality if and only if 

      .02/1

1 0

2 

















 


p

l

t

t

llll tvmdvM                                             (4) 

Using (3), we infer that each term of the sum (4) is nonnegative. Because the sum is 

vanishing, the conclusion is that in case of a maximal kinetic energy, each term is vanishing as 

well. Derivation with respect to t  in the equalities obtained in this way leads to 

            
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

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So, the relations (1) follow, also applying Cauchy-Schwarz-Buniakovski inequality in 
nR  

and the case when equality occurs in this inequality. Next we additionally assume that the kinetic 

momentum 
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is maximal too, at any moment of time .t  Then we have equality in the above inequality. This 

happens if and only if there exists  t  such that 
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Now the relations (2) follow. This concludes the proof.     □ 

 

2.1. Increasing the Momentum in a Concrete Case 

We next consider a method of increasing the “total momentum”, illustrated in a particular 

case of a train formed by a locomotive and a wagon of masses 21,mm  respectively. The 

locomotive is coupled to the wagon with the aid of an elastic connection, of coefficient .0k  

Let F  be the force applied to the locomotive and   a friction coefficient. At the initial moment 

,0tt   the velocities are assumed to be zero. We assume that the movement is rectilinear. 

From Newton’s second low, the movement equations of the train follow: 

 

 

  ,

;
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112111
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




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
                                             (5) 

where 21, xx  are respectively the abscissa of the gravity centers of the two vehicles. 

Theorem-2.2. The momentum 2211 xmxmy    is maximal if and only if 
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where the force maxF  is assumed constant with respect to .t  It follows that the kinetic energy 

corresponding to the maximal momentum is increasing with ,t  having a horizontal asymptote at .  

Proof: Adding the two equations (5) one obtains a first order linear differential equation in the 

unknown function :2211 xmxmy    
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        .expexp
0

dxxgxFtgtyFygy
t

t
                           (6) 

On the other hand, application to the sum of the moments of Schwarz inequality yields: 
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and equality occurs if and only if 
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For   ,max constFxF   from (6) and (7) we infer that 
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Now the conclusion follows.    □                                                                                       

 

3. MAXIMIZING THE GAIN AND THE CONTROL OF THE COST 

Proposition 3.1. Under the constraints 
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Proof: Hőlder’s inequality yields 
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and equality occurs in the first relation if and only if there exists 
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,,...,1,,0 njcx
q
j

p
j    

(following the proof of the Hőlder’s inequalitiy and the associated remark [7]). Now the 

conclusion follows and the proof is complete.   □                

Next we study the constrained extreme values of the total cost, also using elementary notions 

of optimal control. We start by determining the maximum of the total cost, under a constraint on 

the quantities of the goods. Such problems are useful in determining an upper bound that stands 

for a threshold. If the coefficients jc  stand for gains, one obtains a maximization of the total 

gain. Let consider the constrained linear form 
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where 0jc  are given constants standing for the cost or gain of each unit of good, jx  

being the quantities (the number of the good - units) that are going to be transported 

(respectively sold) following the unitary costs .,...,1, njc j   Assume that 
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Theorem-3.2. The above equalities give the optimal quantities ,,optimjx  the controls ju  and the 

maximum value maxf  of the cost (respectively gain) function. 

Next we go on with a constrained minimization problem of the total cost, which follows from 

the mean inequality [7]. We recall this problem due to its simplicity and importance in 

applications. Let consider the constrained minimization problem 
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Application of the mean inequality [7]  lieds to the following result. 
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Proof: Because both products 21, PP  are constants, denoting ,,...,1, njxcy jjj   from the 

mean inequality and the case when equality occurs, we infer that the minimum of the sum of the  
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,;min.,0 21

1 1

2121

1

n
n

j

n

j

jj

n

j

jj PPnPPyyconstPPyy 













  

 

 

.2121
n

n PPyyy    

Following our notations, the conclusion follows. □ 

  

4. POLYNOMIAL APPROXIMATION ON UNBOUNDED SUBSETS AND THE 

MULTIDIMENSIONAL MOMENT PROBLEM 

Recall that in several real dimensions, there exist positive polynomials on   
  that are not 

writable in terms of sums of squares. Consequently, “computable” characterizations for the 

existence of the solution might be difficult. We solve this difficulty by using an approximation 

process of nonnegative compactly supported continuous functions by sums of tensor products of 

positive polynomials on the whole   , in each separate variable.  
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Theorem-4.1. (see [16]) Let 
nRA  be a closed unbounded subset and   a positive regular 

M  determinate Borel measure [7]  on ,A  with finite moments of all orders. Then for any 

   ,0  AC  there is a sequence  mmp  of polynomials on ,A   mm pp ,  in 

 .1 AL  We have 

 
A A

m ddp ,lim   

the cone P  of positive polynomials is dense in   
AL1

  and P  is dense in  .1 AL  

Recall that a determinate (M-determinate) measure is uniquely determinate by its moments 

(or by its values on polynomials).  

Lemma-4.2. The convex cone of sums of tensor products 21 pp   of positive polynomials in 

separate variables 21 , tt  is dense in    ,2
RCc  the cone of all nonnegative continuous compactly 

supported functions, with their support contained in ,2
R with respect to the   

   norm, for any measure 

,21    where 2,1, jj  are positive regular M  determinate Borel measures on ,R  with 

finite moments of all natural orders.  

Proof: If K  is the support of a function   ,0,2   fRCf c  then 

  .2,1,,21  jKprKKKK jj  

Consider a rectangle 2R  containing the above Cartesian product of compacts and apply 

approximation of the extension of f  vanishing on the rectangle outside its support, by Luzin’s 

theorem. Next, approximate this continuous function on the rectangle by the corresponding 

Bernstein polynomials in two variables. Each term of such a polynomial is a tensor product 

,21 pp   of positive polynomials in each variable. Extend each jp  such that it vanishes 

outside  ,2Rpr j  applying then Luzin’s theorem once more, this time in one variable, .2,1j  

This procedure does not change the values of jp  on .2,1, jK j  One obtains approximation 

by sums of tensor products of positive continuous functions with compact support, in each 

variable .2,1, jt j  The approximating process holds in 
1L norm and uniformly on .K  Next 
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one approximates each of these function via Theorem 4.1, in each separate variable, in the space 

   
 (  )         by means of positive polynomials on the nonnegative semi axes: one applies 

Theorem 4.1 for           This concludes the proof.   □                                   

 

Let Y  be an order complete Banach lattice with solid norm. 

Theorem-4.3. Let 21    be a product measure on ,2
 RH  where 2,1, kk  are 

regular positive M - determinate Borel measures [7] with finite moments of all natural orders on .R  

Let   
  2,, kjkjy  be a sequence in   YRLXFY  

21
2 :,   a linear positive bounded 

operator. The following statements are equivalent: 

(a) there is a unique linear positive bounded operator  YXBF ,  which verifies 

the moment conditions 

        ,,,:,, 2
2121,,,  kjttttyF kj

kjkjkj   

and F  is dominated by 2F  on the positive cone of ,X  ;2FF   

(b) for any finite subsets 21, JJ  and all 

    ,,
21

RbRa JmmJjj  
 

one has: 

   

     .1,01,0,

,0 ,2

,
,,

,
,,

,

2

1

2

1



 







 

pk

Fbbaaybbaa pnmkji

Jnm
Jji

nmji

Jnm
Jji

pnmkjinmji 

 

Proof: The implication  ba )(  is almost obvious. In order to prove the converse, one 

uses the density of sums of tensor products of positive polynomials in each one separate variable 

in the positive cone of   RRCc  (Lemma 4.2), in approximating nonnegative continuous 

compactly supported functions. Using the analytic expression of positive polynomials on the 

positive semiaxes [2], one observes that  b  says that the linear operator 0F  defined on 

polynomials and verifying the moment conditions is positive and dominated by 2F  on the cone 

generated by tensor products of positive polynomials in separate variables ,1 Rt  respectively 
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.2 Rt  In particular, this linear operator has a positive extension ,F  to the space of all 

integrable functions dominated in absolute value by a polynomial, on 
2
R  (see Cristescu 1976 p. 

160, [4]). This space contains the space of continuous compactly supported functions. Let   be a 

nonnegative continuous compactly sopported function, with the support contained in   
 . By the 

preceding remarks, one approximates   on a rectangle containing 

    portprportpr supsup 21   by means of Luzin’s theorem and the corresponding 

Bernstein polynomials in two variables. Then one approximates   by sums of tensor products of 

positive polynomials in each separate variables: 

,,

)(

0

,2,.1, 


mpp

mk

j

jmjm   

in the space  .1
 RRL  Using (b) and applying Fatou’s lemma, one obtains: 

    
 

 
 

      .,,

lim

inflim0

2

0

,2,,1,2

0

,2,,1,























































YyRRCFy

ppFy

ppFyFy

c

mk

j

jmjmm

mk

j

jmjmm









                  (8) 

Assume that  

     YFF 2  

Using a separation theorem, it should exist a positive linear continuous functional 



 Yy  

such that 

     ,02   FFy  

that is      .2  FyFy    This relation contradicts (8). The conclusion is that we must 

have  

       .,2   RRCFF c  

Then for arbitrary    RRCg c  one writes 

          .
12222 gFgFgFgFgFgF  
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The conclusion is that the operator F  is positive and continuous, of norm dominated by 

,2F  on a dense subspace of  .1
 RRL  It has a unique linear extension preserving its 

qualities. This concludes the proof.   □ 

 

5.  CONCLUSIONS 

We have solved some optimization problems with practical meaning, by using well - known 

inequalities and the extreme cases when equality occurs. These extreme values coincide with the 

extremes of our functions, having a practical meaning. For example, Theorem 3.3 says that 

(under some constraints), the optimal quantities are converse - proportional with respect to the 

corresponding (transport) costs. This result has a very natural practical meaning. The aim of 

section 4 is to solve the difficulty created by the fact that in several dimensions there are positive 

polynomials that are not writable by means of sums of squares. Using an approximation method, 

we obtain the characterization for the existence of the solution of the multidimensional moment 

problem in terms of  “computable” quadratic forms. 
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