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ABSTRACT
The main objective of this paper is to derive contiguous function relations or recurrence relations and obtain
an integral representation Appell k-series Fy j, where k > 0.
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Contribution/ Originality
This study originates a new formula for Appell’s series in the form of a new symbol k > 0
and contributes for deriving contiguous function relations, obtaining an integral representation of

the Appell’s series in terms of said symbol k > 0.

1. INTRODUCTION
In this section, we present the following fundamental relations for Pochhammer k-symbol, k-

gamma and k-beta functions introduced by the researchers [1-67.

nik" (nk)*

n,k

I (x)=Iim

N—o0

k>0,xeC, kZ~° (1.1)

and also gave the properties of said functions. The I}, is one parameter deformation of the
classical gamma function such that [, > I' as k — 1. The [}, is based on the repeated appearance
of the expression of the following form

a(a+K)(a + 2K)(@ +3K)...(a + (N—1)K). (1.2)

The function of the variable a given by the statement (1.2), denoted by (&), is called the
Pochhammer k-symbol. We obtain the usual Pochhammer symbol (@), by taking k = 1. The
definition given in relation (1.1), is the generalization of I'(x)and the integral form of I}, is given
by
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tk
Ir,(x)= IO t*'e kdt, Re(x) >0. (1.3)
From relation (1.3), we can easily show that
X4 X
M) =k TE). (1.4)
The same authors defined the k-beta function as

B (X y)= M Re(x) >0, Re(y) >0 (1.5)
L (x+Y)

and the integral form of By (x,y) is

1e 22 Y
ﬂk(x,y):ELt" L-1)* dt. (1.6)

From the definition of By (x,y) given in relations (1.5) and (1.6), we can easily prove that

1 _.x
B (%, Y)=E,3(E

They also have worked on the generalized k -gamma and k beta functions and discussed the

,%). (1.7)

following properties:

[ (X+K) =xT, (x) (1.8)
I', (x+nk)
Xk =——" (1.9)
e
I(k)=1 k>0 (1.10)
Fk(x):aéTtHef?adt, aeR (1.11)
I, (ak)=k“'T(x), k>0, R (1.12)
I, (nk)=k"*(n-1!, k>0, neN (1.18)
1"k((21r1+1)§)=k2n{l (2';?1;‘\'/; k>0, neN (1.14)

Using the relations (1.5) and (1.7), we see that, for x,y > 0 and k > 0, the following

properties of k-beta function are satisfied:

B (Xx+K,y) =—— B (X,Y) (1.15)
x+y
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,Bk(x,y+k):iﬂk(x, y) (1.16)
X+Yy
S (XK, YK) = B, Y) (117)
[(m-D!F°
mk!mk =—,m€R. 18
Ad )= k@m- (1.18)
k) =1 A,y =2 (1.19)
X y

Note that when k = 1, B (x,y) = B(x,y).

For more details about the theory of k-special functions like, k-gamma function, k-beta
function, k-hypergeometric functions, solutions of k-hypergeometric differential equations,
contagious functions relations, inequalities with applications and integral representations with

applications involving k-gamma and k-beta tfunctions and so forth (See [7-147).
Driver and Johnston [[15] determined the integral representation of generalized

hypergeometric functions 4 Fm. Habibullah and Mubeen [167] gave an integral representation
of extended confluent hypergeometric functions Fm. Very resently, Mubeen and Habibullah

[177] also obtained an integral representations of generalized k-hypergeometric and extended
conuent k-hypergeometric functions.

2. APPELL k-SERIES
By using the definition of Pochhammer k -symbol and k -gamma function, we define k-
Appell series or bivariate k-hypergeometric function with three parametersa, by, b, in numerator

one parameter ¢ in denominator as

F.(a,b,b,;c52,2,) = i (a)m*—n,lzél)jl)mvk i:zl::;k 2z (Q-U
m,n=0 m+n,k =iis

for all @, by, by,ceC, ¢ # 0,—1,-2,-3, ..., |z1],|z| < land k > 0.
If k=1, then (2.1) reduces to usual Appell's series or bivariate hypergeometric series

Fl(a, bl' bz,c, Z1, Zz) as

. < (@) (0)0(0,), 227
F(a,b;,b,;c; 21122)—mzn::0 (©)...min! ,
for alla,b,ceC, ¢ # 0,—1,-2,-3,..., |z¢1,125] <1, where (@), =(a@)(a+1)(a+

2)....(a+n—1)and (a), = 1 (see Appell [187).

2.1. Contiguous Relations for Fq 4.
Two hypergeometric functions are said to be contiguous if their parameters a, b and c¢ differ
by integers. The relations made by contiguous functions are said to be contiguous function

relations.
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Mubeen, et al. [87] determined the contiguous function relations for k-hypergeometric
functions with one parameter corresponding to Gauss fifteen contiguous function relations for
hypergeometric functions and also they obtained contiguous function relations for two
parameters.

Now if we increase or decrease one or more parameter of k-Appel series

FLk (a’ bl, bz;C; 211 Zz) — i (a)m+n,k (bl)m,k (bz)m,k Z:[nzg

M=o (©)mingmin!

by £k where k > 0, then the resultant function is said to be contiguous to Fy .

For simplicity we use the following notations:

_ Lo _ - (a)m+n,k (bl)m,k (bz)m,k Z:[nzg 2.2
F« =F.(@ab,b,;c;z,2,) = m;() ©nmint (2.2)
_ .  ~ @+k) i 0 (0)0 4 2'z; 2.3
Fu(@n =FRiarkbubicizz)= > i (29)
and
Y . o _ - (a_k)m+n,k (bl)m,k(bz)m,k ZFZ; 2.4
F.(a-)=F,(a—k,b,b,;c;z,2,) = mZnLO ©) mini (2.4)

Similarly we can write the notations for Fy (b +); Fy (b—); Fy(c+)and Fy . (c—).
Thus we have the following eight contiguous functions for the Appell series F ), where

k> 0.

Fy(as) = ZE-‘ (a+mk +nk)a), ...(B),.. (b)), . 27"z23 .

=0 CI( —e

F . (a-) = i (a—kXa), .. (D), (01),, 20727

mamo (@+(m+n—-1Dk)c),., m'n! :
= (b +mENA) s (B (B2) e 20723
Fx ok Zc bl(c). e m.!n! . :
_ = B = B @) e i (1) 1 (02D 21 2T
Bxtio= mz":c (b, +(m—-DEXO), ., mnal
_ & (b k@) (B (B2), 5 220
FaBa) = z by (€) e 11! ’

oo’ -+

& By — KN e (B, (D), TS
E“'(bz_)_éc (b, + (M=DEYO),,.,..m!n!
(A e (B, (D)), 2727

o (¢ +mk+nk)e),,., . mn! ’

F(e+) = i
S e+ m+n—DENA) . (D), (B, 2727
Flalen) =3 (c—F)E) e min! )

m =0

Now with the help of differential k0; = kz, % and k8, = kz, %, we derive the following
1 2

results:

© b m.n
(kel + I(02 + a) Fl,k = (k91 + k@z + a) z (a)m+n,k (bl)m,k ( Z)m,k Zl Z2

om0 (C)pynMin!
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or

0 k k mon
(ke:L+k€2+a)F1,k — Z (a+m +n )(a)m+n,k(b1)m,k (bz)m,k Zl ZZ

om0 (€)msniMIn!

Hence with the aid of (2.4, it follows that

(k& +kb, +a)F,, =aF, (a+) (2.6)
similarly
(kg +b)F =bF(H+) (27)
and
k6, +b,)F,, =b,F,  (b,+) (2.8)

3. CONTIGUOUS FUNCTION RELATIONS FOR APPELL k-SERIES Fq j

In this section, we have to obtain the following four contiguous functions relations for k-

Appell seriesF , where k > 0:

3.1. Relation

(a‘_bl _bZ)Fl,k (a’blle’C; Zy, 22)_aFl,k(a+k’b1’b2’C; Zy, Zz)
+bF  (a,b +k,b,,c;2,,2,) +b,F  (a,b,b, +k,c;2,2,) =0

Proof. By subtracting equations (2.6) and (2.7) from equation (2.5), we get

(k6 +kbO, +a—kb, —b -k, -b,)F,, =aF,, (a+)-bF , (b+)-b,F (b, +).
This implies that

(a-b -b)F,—-aFr,(a+)+bF (b +)+b,F, (b,+)=0

or

(a_bl _bZ)Fl,k (a,bl,bz,c; Zy, Zz)_aFl,k(a+k'b11b21C; Zy, Zz)
+bF  (a,b +k,b,,c;2,,2,) +b,F  (a,b,b, +k,c;2,2,) =0

3.2. Relation

CF, i (@5,5;,€:7,,2,) ~ (~ @)y (@B, by, 0 ki 2, 7,)
_aiFl,k (a+k,b1,b2,C+k; Zl' 22) =0
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Proof. Consider

o k +nk b mzn
F(a+k,b,b,;c+k;z,2,) = Z c(@a+mk+nk)(@),,nx (0 (0,)5,2"2)

M0 a(c+mk +nk)(c),,,,, min!
C <& (@+mk+nk) (@) (B (02)mic 222
=— (3.1)
a a0 (C+mk +nk) (C)minMin!
Now since
a+mk+nk c—a
c+mk+nk c+mk+nk

using this result in equation (4.1), we obtain

C—a (a)m+n,k (bl)m,k (bz)m,k Zlmzn

F.(a+k,b,b,;c+k;z,2,) = -
1k ( b, b, 12) = mzn:o[ (:+mk+nk:I (©)pmynmin!

a)m+n,k (bl)m,k (bZ)m,k Zlmz”

~ m+nk( )mk(bz)mkzlng ~
e )

c c
gmno (C)pynxMin! 5mn c+mk+nk (C)mynxMin!
Thus we obtain the required relation

ck,(ab,b,,c;z,2,)-(c-a)F, (ab,b, c+k;z,2,)

-a,F (a+k,b,b,,c+k;z,2,)=0

or

ck,—(c-a)F, (c+)-aF, (a+c+)=0.
3.3. Relation
ck,(ab,b,,c;z,2,)+cl-kz)F  (a,b +k,b,,C; 2, 7,)
—(c-a)kz,F,, (a,b +k,b,,c+k;z,2,) =0

Proof. By applying the differential operator k6; = k21 , we have

2 MK(@) e (B e (02)mic 2072
kOF  (a,b,b,;c;z,2,) = Tk 3 7m, m,
1 l,k( b1 2 1 2) m;() (C)m+n,km'n!
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— k i (a)m+n,k (b.l)m,k (bz)m,k Zlng

m1,n=0 (C)m+n,k (m_l)!n!

shifting m with m + 1, we get

= (a)m+n+l k (bl)m+1 k (bz)m k Zlng
kéF (ab,b,;c;z,2,)=kz ' ’ ' .
1Mk ( bl > 1 2) 1m;O (C)m+n+1,k min! (3.2)

Now since
(@ min+1k = (@ menx(a + mk +nk),
(©Omin+1k = (©Omink(c + mk + nk)
and
(b)) mr1rk = (b mi(by + mk),

thus using these results in equation (4.2) , we obtain

&, (a+mk+nk)(o, +mk)(@),,,0 5 (0)n 0,)n 222
kaF (a,b,b:ciz,z)=kz ' ’ ’ A
1Py (80,2, 2,) 1%:“0 (c+mk +1K)(C),y.,. M!N! (5:9)

since
(a+mk +nk)(b, + mk)
c+mk+nk

using this result in equation (4.3), we have

(c—a)(c—b, +nk)

c+mk +nk

=mk+(a+b —c)+

(C - a)(C - bl + nk) (a)mm,k (bl)m,k (bz)m,k ZlmZ;

ko F,(ab,b,;cz,2,) =k, Z mk +(a+h —c)+

mn=0 c+mk +nk (C)pnxM!N!

> a b m_n © (a b mon

— kZl Z mk( )m+n,k (bl)mk( 2I)n;k 21 Zz +(a+bl—C)kZl Z ( )m+n,k (bl)mk( zl)n:k Zl 22
m,n=0 (C)m+n,k min! o0 (C)m+n,k min!

+(C—a)k21 i (C_bl+nk) (a)m+n,k(bl)m,k(b2)m,k Zlng ,

mnzo C+ MK +nk (C)anxM!n!
this implies that

k&R, (ab,by;ciz,2,) =k*26F  (a,b,by;¢;2,2,) +(a+b —c)kz R, (a,b,b;;¢;2,,2,)

+(C—a)kZl i (C_b1+nk) (a)m+n,k (bl)m,k(bz)m,k Z{T‘Z; )

(3.4)
mazo C+ MK +nk (©)pinm!nt
. —by+nk by+mk . . :
Now using the result L0 g T equation (4.4), we obtain
ct+mk+nk ct+mk+nk
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kgF,, (a,b,b,;c;2,,2,) =k*2,0,F, (a,b,b,;¢;2,,2,) + (@a+b, —c)kz,F , (a,b,,b,;¢; 2, 2,)

+(C _ a)kZ i [1_ bl + mk j| (a)m+n,k (bl)m,k (bz)m,k Zlrn Z;
lm,n=0 c+mk +nk (C)mm'km!n!

this implies that

k6 (1-kz)F, (ab,b;c2,2,) =(a+b —c)kzF,, (a,b;,by;¢;2,,7,)

N K @k )i (0)m 222
+(c-a)kz,F . (a,b,b,;c;z,,2,)-(c—a)kz b1+m m+n,k mk\M2/mk 71 ~2
( ) 1 1,k( bl 2 1 2) ( ) 1m;00+mk+nk (C)mmy'(m!n!

:blklel,k(a,b1ybz;C;Z1r22)_(C—a)k21i b +mk (@) men i O) e (0:)mi 2122

mnzo C+ MK +nk (C)pminimIn!

=bkz,F, (a,b,b,;c;2,2,) —(c—a)kzl% F @b +kb;c+k;z,2,). (3.5)
Now by using equation (2.6), we have
k(l-kz,)GF,, =—b(1-kz)F, +b(1-kz)F, (b+) (3.6)
substituting equation (3.6) in equation (3.5), we get
—b(1-kz)F, +b,(1-kz)F,, (b+) =bkz,F  (a,0,b,;c;2,2,) (c—a)kzl%Fl,k(bﬁ; C+),
c(l-kz))F,, (b+)=ckz,F,,(a,b,b,;c; 2, 2,) - (c—a)kz,F, (b, +;c+)

which gives the required relation.

3.4. Relation

ck (a,b,b,,c;z,,2,) +c(1—k22)F1,k(a, b,b, +k,c;z,2,)
—(c—-a)kz,F, (a,b,b, +k,c+k;z,2,) =0.

Proof. By applying the differential operator k8, = kZ2 and then follows the

same procedure used in relation (4.3) then the required relation will be obtain.
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4. INTEGRAL REPRESENTATION OF APPELL k-SERIES Fy

In this section, we define the integral representation of k-Appell series F; j, where k > 0.

4.1. Integral Representation for Appell k-Series F;.

The Appell's series F; can also be written as a one dimensional Eular-type integral: if
Re(c) > Re(a) > 0,k > 0 then for all finite z4, z,
O

j 2 (1—t) 2 (L —zt) ™ (1—zt) 2 dt

Now we define the integral representation of k-Appell series Fy ; where k > 0.

4.2. Theorem

If Re(c) > Re(a) > 0,k > 0 then for all finite z,, z,

I (c) % k— b _:2
krk(a)rk(c—a)jt @-0* (-kat) © A-kz,t) * dt.

Fl,k[avbl,bz,C; Zl,ZZ]z

Proof. First note that

(a)m+n,k _ rk (C)Fk (a + (m + n)k)
@k Te(@ (C+(M+N)K)

_ I, (c)
[ ()l (c-a)

B, (a+(m+n)k,c—a)

Fk (C) j-t‘:Jr(ern)—l

2y
= @-t)  dt (4.1)
k' (@)I' (c-a) g

Now using (1.11), (1.9) and (5.1), we get

C (a)m+nk( )mk(bz)mkzlmzn
-y kB (05,

F.lab,b,.c;z,27,]
0 (C)pyniMin!

- (a)m+nk < ( )mk(bz)nkzlng
= 3 B 5 B) i (02)o,

m,n=0 (C)m+n,k m,n=0 mlnl

_ r.(c) Jl- [EHmrL 0 t)%fl dtx i (0) i (02, 272,
ka (a)Fk (C—a) 0 m,n=0 min!
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= I, (c) j.t:l(l—t)cialdtx i (0) i (0,)n "2t 2
k', (@)I' (c—a) mn=0 min'
L a ca 1 by —b,
N (R Te e

"k, @), (c-a)

0 0

I, (c) o

" K[, ()T, (c-a

1a, c-a by b,
)jtk A-t) ©  (L—kzt™) k (1—kz,t") * dt.
0

Thus for |z;], |z,] < 1, the Integral representation for Appell's series Fy j is given by

1 a, c-a_ = )
R lab,b,.c 2, 2,] = — ) [t a0 T a-ket) < @-ket) < dt.
0

b,

k', (a)[', (c—a)

Remarks: In this paper if we letting k — 1 then we obtain the contiguous or recurrence

relations and an integral representation of Appell's series Fj.
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