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ABSTRACT 

This study considers a generalist predator-prey system. We investigate a local bifurcation namely 

Bogdanov-Takens (co dimension 2) bifurcations and a cusp point on two significant points in the division 

of parameter space. These points show the place where Bogdanov-Takens point and a cusp point exist. The 

existence of these bifurcations proved analytically by Normal form derivation. To reach the analysis we first 

studied the steady state solutions and their dependence on parameters and then investigate a parameter space 

which is divided into subregions based on the number of equilibrium points. We identified three vital 

parameters 𝛼 stands for the maximum uptake rate of the generalist predator; 𝜃 stands for half saturation 

value and 𝜂 such that 𝜇/𝜂 is the conversion efficiency of the generalist predator where 𝜇 is the intrinsic 

growth rate of the predator. 

Keywords: Couple differential equations, Parameter space, Cusp point, Bogdanov-takens bifurcation point, Normal 

form derivation. 
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Contribution/ Originality 

This study contributes new findings in the field of a mathematical model. We investigated 

two bifurcation points namely Bogdanov-Takens bifurcation point and the cusp point on the 

generalist predator prey mathematical model by observing and analyzing the change of the 

behavior of the solutions of the couple of the differential equations if small change appears on the 

parameters of the considered model by using the normal form of derivation method. 

  

1. INTRODUCTION 

A bifurcation is a qualitative change in the behaviour of solutions as one or more parameters 

are varied. The parametric values at which these changes occur are called bifurcation points. If the 

qualitative change occurs in a neighbourhood of a fixed point or periodic solution, it is called a 
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local bifurcation. Any other qualitative change that occurs is considered as a global bifurcation 

[1]. Here we can see two bifurcations namely Trans-critical bifurcation and Tangent bifurcation. 

Trans-critical bifurcation occurs in the mathematical model or ordinary differential equation 

   𝛼     depends only on one parameter α and has two equilibrium points           𝛼.  

For 𝛼    the equilibrium point     is stable where as    𝛼 is unstable and for  𝛼    the 

equilibrium point     is unstable where as    𝛼 is stable. This shows that the Trans-critical 

bifurcation experiences change of stability. The Tangent bifurcation corresponding to the 

creation and destruction of fixed points in one dimensional system given by a mathematical model 

       𝛼 and has two equilibrium points    √𝛼. This shows that for 𝛼    there is no 

equilibrium point and for 𝛼    two equilibrium points created and the point     is the 

bifurcation point. 

In this paper we investigate the local bifurcation involving the system dynamics. We find 

that the considered system is very rich in dynamics and involves several interesting bifurcations. 

A comprehensive analytical bifurcation analysis presented on the local bifurcation. The local 

bifurcation we studied thoroughly in this paper is Bogdanov-Takens (co dimension 2) bifurcation. 

The work done by Temesgen Tibebu Mekonnen [2] the author of this paper has investigated the 

existence of saddle node, Trans-critical and pitchfork bifurcations in the parameter space.  

The division of the parameter space as shown in figures 3, 4 and 5 with respective parameter 

values η = 1, η > 1 and η < 1 are the fundamental bifurcation diagrams of this study.  

In the next section we present the basic concepts: the model, steady state solutions and 

division of parameter space in the system dynamics. In section three, the central part of this 

study: the Bogdanov-Takens bifurcation is analysed. In section four Bogdanov-Takens (double 

zero eigen value) once again revisited and conclusions of the work presented in section five. 

 

2. THE MODEL, STEADY STATE SOLUTIONS AND DIVISION OF 

PARAMETER SPACE 

2.1. The Model 

Let X and Y represent the density of Prey and Generalist Predator respectively with the 

assumption that each species grow logistically in the absence of the other. Further we assume that 

the predator’s functional response is of Holling type II and hence the dynamics of the considered 

system is given by: 

  

  
   .  

 

  
/   

   

   
                                                                           (1) 

  

  
   .  

 

  
/   

   

   
                                                                            (2) 

The constants a (d), k1 (k2) are the intrinsic growth rate and carrying capacity of prey 
(predator). b, c stands for maximum uptake rate and half saturation value of the predator and e = 

δb (0 <δ< 1) where δ is the conversion efficiency. From the above model we clearly observe that 
the predator can survive in the absence of the prey and the per capita growth rate of the predator 
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is enhanced by 
  

   
in the presence of prey. To reduce the number of parameters we non-

dimensionalize the considered model (1,2) and obtained the following: 

  

  
  ( )( ( )   )                                                                                         (3) 

  

  
   ( ( )   )                                                                                              (4) 
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. 

 

2.2. Nature of Steady State Solutions 

In this section we study the existence of equilibrium solutions of (3, 4) and study their nature 

through linear analysis. Clearly the system admits (0, 0) as trivial equilibrium and (1, 0), (0, 1) to 

be its axial equilibrium points. The interior equilibrium points are the intersection points of the 

isoclines    ( ) and    ( ) in the interior of the positive quadrant. Following the standard 

linear analysis it is easy to observe that (0, 0) and (1, 0) are unstable node and saddle point 

respectively. We observe that the nature of (0, 1) depends on the values of the parameters α and θ. 

If θ / α ≤ 1 then (0, 1) is stable and it becomes a saddle if θ / α > 1. In the latter case (0, 1) is 

unstable in the x-direction and stable in the y-direction. Thus we have the equilibria (0, 0), (1, 0) 

to be always hyperbolic. Whereas (0, 1) is hyperbolic when α ≠ θ and it turns to non hyperbolic 

when α equals θ. Analysing the Jacobian of the system (3, 4) at its interior equilibrium point 

(      ) gives the associated characteristic equation to be 

   ,     (  )  (  )-      (  ),  (  )    (  )-    

To understand the nature of an interior equilibrium solution of the system (3, 4) we need to 

study the signs of the trace       (  )  (  ) and the determinant      (  ),  (  )    (  )-  

which are respectively the sum and product of the eigen values of the considered Jacobian matrix 

[3]. 

 

2.3. Division of Parameter Space 

From the qualitative behaviour of the isoclines of the system (3, 4) we can observe that there 

is a possibility for the system to admit multiple interior equilibrium solutions. The number of 

interior equilibrium solutions admitted by the considered system (3, 4) and its dependence on the 

involved parameters can be best understood by analysing the following cubic equation: 
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 ( )     (    )   0 (   )   .  
 

 
/1   (   )                          (6) 

This is obtained by equating the functions g(x) and h(x) (5). If x is a positive root of (5) then 

either (x, g(x)) or (x, h(x)) gives an interior equilibrium point of the system (3, 4). Thus the 

number of positive roots of (5) corresponds to the number of interior equilibrium solutions 

admitted by the system (3, 4). Hence from this cubic polynomial equation we observe that the 

system (3, 4) admits a maximum of three interior equilibria in the first quadrant of the phase 

space. The discriminant of the cubic polynomial equation (6) is  

   𝜃 (𝛼  𝜃)  
 

 
𝜃(𝛼  𝜃)( 𝜃   ) 0𝜃(𝜃   )  𝛼 .  

 

 
/1  

 

  
𝜃(𝛼  𝜃)( 𝜃   )  

 

  
( 𝜃   ) ,𝜃(𝜃   )  𝛼 .  

 

 
/-  

 

  
,𝜃(𝜃   )  𝛼 .  

 

 
/- .                                  (7) 

The sign of    determines the number of real roots admitted by (6). If    is either < 0, = 0 

or > 0 then  ( )    admits three distinct real roots, three real roots with one of them repeated 

twice or three roots with one of them real respectively [4]. For a chosen set of parameters α, θ 

and η sign of the discriminant along with the signs of the coefficients of the equation   ( ) yield 

further information on the roots of the equation (6). For the sake of simplicity let us denote the 

constant term in (6) by  

 

  (𝜃 𝛼)  𝜃(𝜃  𝛼)                                                                                                                   (8) 

 

This represents the product of the roots of (6). Analyzing the curves      and   (𝜃 𝛼)  

  it can be verified that   (𝜃 𝛼)    is tangential to      at (
 

(  
 

 
)
 

 

(  
 

 
)
) which is denoted by 

c and these two curves intersect at (√𝜂   √𝜂  ) denoted by e (figures 2 and 3) which is a 

candidate of Bogdanov-Takens bifurcation point. From these figures we observe that there is 

another significant point .
    

 
   

 (    )

 (   )
/ lying on the curve      denoted by f at which the 

curve takes a sharp turn (cusp point). It is further observed that this point f also satisfies the 
equations 

   ( 𝜃   ) 0𝜃(𝜃   )  𝛼 .  
 

 
/1   𝜃(𝜃  𝛼)                                             (9) 

    ( 𝜃   )   0𝜃(𝜃   )  𝛼 .  
 

 
/1                                                          (10) 

Implying that the equation (6) admits a triple root at f [4]. It is interesting to note that the 

points c and e merge in f when𝜂   . It can be observed that, depending on the value of the 

parameter(𝜂    𝜂      𝜂   ), the equations      and   (𝜃 𝛼)    divide the positive 

quadrant of the (𝜃 𝛼) space into several significant regions as given below. 
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If     the positive quadrant of the (   ) space is divided into four regions (Figure 1) given by 

Region I = *(   )               + 

Region II = *(   )               + 

Region III = *(   )               + 

Region IV = *(   )               + 

 

Figure-1. This figure represents division of  the parameter space for 𝜂  = 1. The regions bounded by   (   )     and 

     enclosed by {a,b,c} and {a,c,d} represent regions I and II respectively. Regions lying below (above) the line 

  (   )    is Region III(IV). The system admits two interior equilibrium points in the region I, one interior equilibrium 

point in Regions II & III and no interior equilibrium point in region IV. 

 

 

 

 

 

 

 

 

 

Figure-2. This figure represents division of  the parameter space for 𝜂 > 1. The regions bounded by   (   )     and 

     enclosed by {a,b,c}, {c,f,e} and {a,d,e} represents regions Ia, Ib and II respectively. Region lying below (above) the 

line   (   )    is region III(Iv) for   𝟗 (a representative for 𝜂 > 1). The system admits two interior equilibrium 

points in the region Ia, one interior equilibrium point in regions II & III and no interior equilibrium point in regions Ib& 

IV. 

If 𝜂    then region I is further divided into  

Region Ia = *(𝜃 𝛼)   𝜃  
 

  
 

 

  𝛼  𝜃      + 
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Region Ib = *(𝜃 𝛼)   𝜃  
 

  
 

 

  𝛼  𝜃      + 

And regions II, III and IV remain as in the case 𝜂   . (Figure 2) 

On the other hand if   𝜂    then region II is divided into 

Region IIa = *(𝜃 𝛼)   𝜃  
 

  
 

 

 𝛼  𝜃      + 

Region IIb = *(𝜃 𝛼)   𝜃  
 

  
 

 

  𝛼  𝜃      + 

And the regions II, III and IV remain as in the case 𝜂 = 1. (Figure 3). 

 

Figure-3.This figure represents division of the parameter space for 0<𝜂< 1. The regions bounded by   (   )     and 

     enclosed by {a,b,e}, {a,c,d} and {c,e,f} represents regions I, IIa and IIb respectively. Region lying below (above) 

the line   (   )    is region III(Iv) for      (a representative for 0 <𝜂< 1) The system admits three interior 

equilibrium points in the region IIb, two interior equilibrium points in region I and no interior equilibrium point in 

regions IV. 

 

From the nature of the boundary equilibrium solutions we observe that (0, 1) changes its 

stability nature as the parameter cross the curve   (𝜃 𝛼)   indicating occurrence of bifurcation 

along the curve   (𝜃 𝛼)   . Similarly we also observe change in the number of equilibrium 

solutions of the system as the parameter cross the discriminant curve     presentinganother 

incidence of bifurcation. This curve also contains three significant pointsc, e and f. In the next 

section we study the significance of these curves and the importance of the points mentioned 

above.  
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2. BOGDANOV-TAKENS (DOUBLE ZERO EIGEN VALUE) 

BIFURCATION 

Division of the parameter space as shown in figures 1, 2 and 3 enables us to recognize some basic 

bifurcations associated with the system as the parameters move from one region to another. The 

considered system experiences Saddle-Node bifurcation along the curve     , Trans-Critical 

bifurcation along the curve   (   )    and Pitchfork bifurcation at the point c (only for 

        𝜂   ). In this work we will discuss only bifurcations experience at the pointse which 

is a Bogdanov-Takens bifurcation point and f which is the cusp point. Now we show that 

Bogdanov-Takens bifurcation takes place at the points e and f (figures 1-3). This is achieved by 

applying a series of transformations on the considered model and using normal form theory [5]. 

Let (     ) be an interior equilibrium point of the system (3, 4).   We know that the Bogdanov-

Takens bifurcation takes place at the equilibrium point (     ) if the associated Jacobian matrix 

 (     ) admits a double zero eigen value [5, 6]. Hence to ensure the occurrence of Bogdanov-

Takens bifurcation at (     ) we assume that  

    (     )   
     (       )

    
 

        

 (    ) 
                                                     (11) 

   (     )   𝜇   
  (       )

    
                                                                          (12) 

From (11) we have 

  𝜃      
   

 (    ) 
                                                                                             (13) 

Using (13) in (12) we obtain 

    
     

 (    ) 
                                                                                                                       (14) 

 

Hence forth we shall assume that the equilibrium point (     ) satisfies (13) and (14). Under 

this assumption we proceed to find the normal form for the system (3, 4) which requires 

application of a series of transformations. First we translate the interior equilibrium point 

(     ) to the origin using the transformations:        ,          and    (    )  

and hence obtain 

  
  

   

 (    ) 
           (       )  

           (|     |)
                   (15)                                                 

  
  

      

 (    ) 
   

     

(    ) 
   .

 (    )

 (    )
  /       (    )   (|     |)

           (16)  

The system (15, 16) can be conveniently represented as  

.
  

  
/
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 (     )

)   (|     |
 )                                                                      (17) 
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and  (     ),  (     ) are terms of order 2. Observe that (0, 0) is an equilibrium point of the 

above system with the associated Jacobian being A. clearly A has double zero eigen value.  

The second transformation is a linear transformation which transforms the vector   to 

 through the following relation 

                                                                                                                              (18) 

Where  

  .
  

  
/,   .

  

  
/and B is a matrix of the form 

  (
  

      
)where      and satisfies 

      .
  
  

/. Computing for B we obtain 

  (
  

     

(    ) 
 𝛼𝜂  

)                                                                                                 (19) 

Clearly we have      . In view of the transformation (18) we have 

                                                                                                                                 (20) 

   
     

(    ) 
   𝛼𝜂                                                            (21)  

Differentiating (20) and (21) with respect to t we obtain 

  
    

                                                                                       (22)  

  
  

     

(    ) 
  

  𝛼𝜂    
                                (23) 

Substituting (15) and (16) into the system (22 , 23) we obtain 
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In view of (20) and (21) the above system can be written as 
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  𝛼        (| |)                      (24) 
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𝛼   
𝛼 𝜃𝜂  

(𝜃    ) 
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𝜇(𝜃    )

𝛼  
  

Observe that the above system (24, 25) can also represented in the form 

      ( )                                             (26) 

Where    .
  
  

/   and    ( )  (
𝛼    

  𝛼      

𝛼    
  𝛼       𝛼    

 )   (| |)  

Now we employ the normal form theory to transform the system (26) to the following form 

  
      (| |)                                                             (27) 

  
     

         (| |)                                 (28) 

   With      

Which is nothing but the normal form associated with Bogdanov-Takens bifurcation [5]. 

The equation (26) can be written as 

        ( )   (| |)                                                                                        (29)  

Where  
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 )                                              (30) 

Which consists of second degree terms. Consider the transformation 

      ( )                                     (31) 

Where   .
  

  
/, and   ( )   (| | )  is the space    of all second degree polynomials of the 

form 

  ( )  (
   

           
 

   
           

 ) 

Differentiating (31) with respect to t we obtain 

         ( )   (     ( ))                    (32) 

whereI is the identity matrix. Substituting (31) and (32) in (29) we obtain 

(     ( ))    ( )   (  ( ))    ( )   (| | )   (33)  

   

In a neighborhood of zero (33) can be written as  

   (     ( ))
  

, ( )   (  ( ))    ( )   (| | )- 

as(     ( ))
  

 exists as | |    and it is given by 

(     ( ))
  

      ( )     ( )   (| | )    (34)  

Using (34) we have  
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         ( )     ( )     ( )   (| | )    (35) 

Denoting  

  
̅̅̅( )      ( )     ( )     ( )     (36) 

(35)  reduces to the form 
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Now let us consider the linear transformation  
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In view of (30) and (39) equation (36) takes the form 
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By choosing the coefficients 

  
   

 
,    𝛼   and        𝛼     

we obtain  

  
̅̅̅( )  (

 
𝛼    

  (𝛼     )    
)                                                           (41)  

                      

And thus (35) takes the form 

   .
  
  

/ .
  

  
/  (

 
𝛼    

  (𝛼     )    
)   (| |)                   (42) 

This is the required normal form of Bogdanov-Takens (codimension 2) bifurcation if the 

coefficients satisfy the following conditions: 

𝛼                                           (43) 
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𝛼      
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Thus we have the following result: 

Theorem1: 

The system (3, 4) experiences Bogdanov-Takens (codimension 2) bifurcation at an equilibrium point 

(     ) if the involved parameters satisfy the conditions (13), (14), (43) and (44). 

Now we shall use Theorem 1 to establish the occurrence of Bogdanov-Takens bifurcation in the 

system (3, 4) at the points   (
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Theorem 2(Bogdanov-Takens bifurcation point): 
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  𝜂   , it can be easily verified that  

    
√ 

 
(  √ )[√ (    )    (   )]          (45) 

       
 

 
(

√ 

 
(     )    (   ))            

(46) 

Which shows        and        and hence the proof. 

 

Theorem 3 (cusp point):  
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Upon some long but simple simplifications we obtain the following 
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Observe that 𝛼     under the assumptions given in the theorem. And now let us simplify (44) 

𝛼      
𝛼(𝜃    )

𝜂(𝜃    )
 

 𝜇𝛼𝜃

𝜃    
     𝜂(  𝜃     )  

𝛼 𝜃

(𝜃    ) 
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Again upon some long but simple simplifications we obtain the following 

𝛼        
𝛼(𝜃    )

𝜂(𝜃    )
 

 𝜇𝛼𝜃

𝜃    
     𝜂(  𝜃     )  

𝛼 𝜃

(𝜃    ) 
 

 
  𝛼𝜃

𝜂
   

𝛼(   𝜃)

𝜂(𝜃   )
 

 

 
𝜂(   𝜃)  

  𝛼 𝜃 (   𝜃)

(𝜃   ) (𝜂(𝜃   )  𝛼(   𝜃))
 

   (
𝛼𝜃

𝜂
 

 

  
)  

𝛼(   𝜃)

𝜂(𝜃   )
 

 

 
𝜂(   𝜃)  

  𝛼 𝜃 (   𝜃)

(𝜃   ) (𝜂(𝜃   )  𝛼(   𝜃))
 

Here also observe that 𝛼        under the assumption given in the theorem. That is both 

𝛼     and  𝛼        and hence the proof. 
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