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ABSTRACT 

In this article based on a method of approximating equation an asymptotic solution of the general Riccati „s 

equation is obtained. The principal distinctive feature and advantage of the solution is its continuity at 

turning points. Estimates of accuracy of the approximate solution are derived. Limit values of the 

asymptotic solution in case of one-sided convergence of argument to turning point of the first order are 

calculated. 
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Contribution/ Originality 

This study contributes in the existing literature. Thus, the results of that study may be 

applied for solving problems were set up in works [1], [2], [3]. This study is one of very few 

studies, which have investigated the asymptotic behavior of solutions of Riccati’s equation in the 

neighborhood of turning points. 

 

1. PRINCIPAL ASYMPTOTIC EXPANSION 

We examine Riccati equation with assigned small positive parameter  : 
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Where we will understand the root )(xr  as one of its two branches. Note that in domain 

where 0)( xr  the asymptotic solution with 0  is function 


)(xr
. Thus, asymptotic 

expansion of exact solution by parameter  powers should be constructed as  
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This series’ coefficients are defined by its substitution in equation (1) and by equating of 

terms with same  powers. Using the identity 
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We come to recurrence equation  
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Make attention that in order to calculate coefficient nq  we have to assume r(x) function n+1-

multiple differentiability. The asymptotic solution with accuracy to order  looks like this 
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2. APPROXIMATE EQUATIONS 

Let us introduce the designation 
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Simplifying considerably the record of many subsequent expressions. 

Now equation (2) may be represented as 
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As )(xkq  with 0 , then following approximate equality is true 
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Having replaced the right side of the equation (7) accordingly to this equality, we will get 

following approximate equation: 
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This is linear first order differential equation concerning lnq. Thus, it admits explicit form of 

solution. For the first time it was treated in the work [4]. Let us write out this solution assuming 

000 )()( kxkxq  . To discriminate it from Riccati equation exact solution we will 

designate it by capital Q.  
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When substituting in that solution   for   we will obtain other asymptotic solution of 

equation (1) for which with 0  the main term of asymptotic expansion will be function 



r
 . 

 

3. APPROXIMATE SOLUTION ACCURACY EVALUATIONS  

We will evaluate obtained approximate solution by comparing its asymptotic and power 

expansions to corresponding expansions of Riccati equation exact solution. 

We will start from asymptotic expansions. Remembering that 


r
k  , we are looking for 

solution of equation (8) in form of asymptotic series by parameter ε powers. As a result of 

necessary operations for function (9), we obtain such asymptotic formula 
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Comparing this formula to the formula (6), we can see that Qq  ~  2O .  
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Let us examine now power series of argument x. Differential equations solutions expansion in 

x degrees is obtained by their successive differentiation and calculation of values of derivatives in 

one fixed initial point. For Riccati equation (1) and approximate equation (8), this process relates 

to very bulky calculations. It will become little simpler if we assume that in the initial point 

00 x  conditions are met that 0)0( 0  rr , 0)0( r . In this case, for Riccati equation 

(1) mentioned calculations result in following values: 
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Making similar calculations to solve of equation (8) and comparing them to values of 

derivatives that have just been written we will get power corrections for approximate solution 

deflection from Riccati equation exact solution. For function (9) the correction will be as follows 
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4. RICCATI EQUATION REAL-VALUED FORMS AND THEIR 

APPROXIMATE SOLUTIONS 

In the domain where r(x)<0, it is more practical to use Riccati equation (1) in two real-valued 

forms. These forms come out by means of having introduced designation 
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Approximate solutions of these equations are deduced absolutely similarly to deduction of 

approximate solution for Riccati equation complex-valued form (1), or can be simply obtained 

from formula (9) by due substitutions. Let us write down these solutions admitting conditions   
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Note that at 0 both these approximate solutions tend asymptotically to the same 

function  x . 

 

5. ASYMPTOTIC CALCULATION OF INTEGRALS. LIMIT VALUES OF 

APPROXIMATE SOLUTIONS 

One of the most important issues in Riccati equation theory is the one of solution value 

calculation in zero of coefficient r(x). Point x=a where r(a)=0, is called turning point.  Note that 

all approximate solutions obtained in previous paragraphs remain finite in turning points. 

However, above-mentioned evaluations do not allow judging how they reflect exact solutions’ 

behavior in neighborhood of these points. Maybe analysis of approximate solution (9) as complex 

variable functions will clarify the situation. The author leaves this problem open. Nevertheless, 

concrete examples show that using limit values of function Q(x), )(1 x , )(2 x  assuming 

unilateral tendency of argument x to a turning point, leads to correct results! 

Further relevant calculations are given and principal terms of asymptotic values in turning points 

are obtained. 

Let point x = 0 be a turning point, i.е. r (0) = 0. It is necessary to examine separately four 

situations represented in figures 1, 2, 3, 4. 
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Fig-1.  0 0r  . Argument x tends to the turning point 

from the right. 

Fig-2.   0 0r  . Argument x tends to the turning 

point from the left. 
Source: See [5] Source: See [5] 

 

 

 

 

Fig-3.  0 0r  . Argument x tends to the turning point 

from the left. 

Fig-4.  0 0r  . Argument x tends to the turning 

point from the right. 
Source: See [5] Source: See [5] 

     

We assume that in neighborhood of point x = 0 function r( x ) is analytic, i.е. representable 

by a power series 
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Where coefficient  01 rr   is positive in cases corresponding to figures 1, 2 and negative 

in cases corresponding to figures 3, 4. 

Let us put  
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Using these correlations, we will mark out dominant terms in asymptotic of values of Q(0), 

   0,0 21   calculated by formulae (9) and (13), (14).  
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1 .  S i t u a t i o n  c o r r e s p o n d i n g  t o  f i g u r e  1 .  0,0 01  xr .  We calculate in point 

х = 0 dominant term of asymptotic of integral taken from formula (9) and then using it, we find 

value of Q(0). 
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Value of Q(0) is calculated by formula (9) as follows 
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Introducing in this dominant term of asymptotic of integral (20), we get 
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2 .  S i t u a t i o n  c o r r e s p o n d i n g  t o  f i g u r e  2 ,  1r  >  0 ,  2x  <  0 .  We calculate in 

point х = 0 dominant term of asymptotic of integral taken from formulae (14) and then using 

them we find value )0(2 . 
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where C is Euler constant, 
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Value of )0(2  by formula (14) is following 
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Introducing in this dominant term of asymptotic of integral (22) we get 
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3 .  S i t u a t i o n  c o r r e s p o n d i n g  t o  f i g u r e  3 ,  1 00, 0.r x   We carry out 

calculations by formula (9) analogical to those corresponding to figure 1. 
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Value Q(0) is calculated by formula (9) as follows 
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We substitute in this dominant term of asymptotic of integral (24), 
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 4 .  S i t u a t i o n  c o r r e s p o n d i n g  t o  f i g u r e  4 ,  .0,0 11  xr  We find value of 

 01  from formulae (13). Calculation of integral from formula (13): 
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Value of )0(1  by formula (13) is following 
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Substituting in this (26), we get 
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Results of these calculations can be summarized as follows. In turning point 0x  (

  00 r ) approximate solutions limit values are: 

If   ,00 1 rr  then 
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6. CONCLUSION 

New asymptotic solution of the Riccati’s equation (1) continuous at turning points is 

represented by the formula (9) (or, in real-valued form – by the formulas (13), (14)). Comparison 

of expansions (6) and (10) shows that the approximate solution is distinguished from the exact 

one only in second order of this small parameter. Formula (11) gives power correction in the 

sense of the argument x. In paragraph 5, we developed the procedures of asymptotic calculation of 

definite integrals, which have singular dependence from the small parameter in exponential 

factor. There were obtained principal terms of the asymptotic solutions in turning points. These 

principal terms (28) – (31) can be used for sewing together various solutions of wave problems 

with turning points. 
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