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ABSTRACT 

The (F/G)-expansion method is firstly proposed, where F=F(ξ) and  G = G(ξ) satisfies a first order ordinary differential 

equation systems (ODEs). We give the exact travelling wave solutions of the variant Boussinesq equations and the KdV 

equation and by using (F/G)-expansion method. When some parameters of present method are taken as special values, results of 

the )( GG -expansion method are also derived. Hence, )( GG -expansion method is sub method of the proposed method. 

The travelling wave solutions are expressed by three types of functions, which are called the trigonometric functions, the rational 

functions, and the hyperbolic functions. The present method is direct, short, elementary and effective, and is used for many other 

nonlinear evolution equations. 
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Contribution/ Originality 

This study contributes in the existing literature of -expansion method. We proposed the (F/G)-

expansion method and investigated the exact travelling wave solutions of the variant Boussinesq equations and the 

KdV equation by using (F/G)-expansion method. 

 

1. INTRODUCTION 

The nonlinear phenomena are frequently encountered in all the fields, including either the scientific work or 

engineering fields, such as fluid mechanics, optical fibers, plasma physics, solid state physics, biology, chemical 

kinematics, chemical physics. To define these complex phenomena, many non-linear evolution equations (NLEEs) 

are widely used. During the past four decades or so, the many researchers are interested to find powerful and 

efficient methods for analytic solutions of nonlinear equations. Many powerful methods to obtain exact solutions of 

nonlinear evolution equations have been constricted and developed such as the inverse scattering transform in [1], 

the Backlund/Darboux transform in [2-4], the Hirota’s bilinear operators in [5], the truncated Painleve expansion 

in [6], the tanh-function expansion and its various extension in [7-9], the Jacobi elliptic function expansion in [10, 

11], the F-expansion in [12-15], the sub-ODE method in [16-19], the homogeneous balance method in [20-22], 

the sine–cosine method in [23, 24] the rank analysis method in [25], the ansatz method in [26-28], the exp-

function expansion method in [29] and so on, but there is no unified method that can be used to deal with all types 

of nonlinear evolution equations. 

)( GG
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Recently, Wang, et al. [30] introduced a new direct method called )( GG -expansion method for  the 

NLEEs. The value of the )( GG -expansion method is that one can deal with nonlinear problems by essentially 

linear methods. In the method, nonlinear evolution equations are transformed to the explicit linear differential 

equations for traveling waves with a certain substitution which leads to a second-order differential equation with 

constant coefficients. The )( GG -expansion method is widely used by many authors [31, 32]. More recently, 

this method has been generalized by Zhang, et al. [33]; Zhang, et al. [34] to obtain non-traveling wave solutions 

and coefficient function solutions. Later, Zhang, et al. [35] further extend the method to obtain solution of an 

evolution equation with variable coefficients. Also, Zhong, et al. [36] designed an algorithm for using the method 

to obtain solution of nonlinear differential-difference equations. Then, Yu-Bin and Chao [37] adapted the method  

to get traveling wave solutions for Witham-Broer-kaup-Like equations.  

In the present paper, we shall propose a new method, which is called the )( GF -expansion method to obtain 

travelling wave solutions of nonlinear evolution equations. In the method, nonlinear evolution equations are 

transformed to the explicit linear differential equations for traveling waves with a certain substitution which leads 

to a system of first-order differential equation with constant coefficients. The main idea of the given method is that 

the travelling wave solution of a nonlinear evolution equation is expressed by a polynomial in )( GF . Where

)(FF   and )(GG   are solutions of a system of first order ODEs and ctx .  The degree of the 

polynomial of the )( GF can be decided by considering the homogeneous balance between the highest order 

derivatives and nonlinear terms which is appearing in nonlinear evolution equation. The coefficients of the 

polynomial can be obtained if system of algebraic equations which is obtained by using the proposed method can be 

solved. It will be shown that more travelling wave solutions of many nonlinear evolution equations can be acquired 

by using the )( GF -expansion method. 

In )( GF -expansion method, it is considered that )(FF   and )(GG   are satisfied system of first 

order ODEs in the form  













0

0

2bGdGcFG

bFGeGaFF  

for 0e . If we consider 0b , 1c , 0d  and  0e  in the above a system of first order ODEs, this 

method is transformed to the )( GG -expansion method. Hence, )( GG -expansion method is special form of 

the present method.  

In Section 2, we give an account of the )( GF -expansion method for obtaining travelling wave solutions of 

nonlinear evolution equations. The principal steps of the present method are given in here. In the subsequent 
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sections, the proposed method is applied to the celebrated KdV equation and the variant Boussinesq equations. In 

the last section, the features of the )( GF -expansion method are briefly summarized. 

2. DESCRIPTION OF THE )( GF -EXPANSION METHOD 

In this part, we describe the )( GF -expansion method for obtaining travelling wave solutions of nonlinear 

evolution equations. Suppose that  

0)...,,,,,( xxttxt uuuuuP      (2.1) 

is a nonlinear equation of ),( txu . Where ),( txuu   is an unknown function, P is a polynomial of  ),( txuu   

and it’s various partial derivatives with respect to x and t, in which nonlinear terms and the highest order 

derivatives are involved. Principal steps of the )( GF -expansion method will be given as follows: 

Step 1. Combining the independent variables x and t into one variable Vtx , we suppose that  

,),(),( Vtxutxu         (2.2) 

The travelling wave variable in (2.2) allows us reducing  (2.1) to an ODE for u = u(ξ) 

0)...,,,,,,( 2  uuVuVuuVuP     (2.3) 

Step 2. We consider that the solution of equation (2.3) can be taken  by a polynomial in )( GF  as follows: 





n

m

m
m GFu

0

)()( 
      (2.4) 

Where  )(FF   and )(GG   satisfy the following system of equation  













0

0

2bGdGcFG

bFGaFF
      (2.5) 

,,...,, 10 n dcba ,,,  and V  are constants to be determined later, 0n  and, n  is a positive integer, 

which can be determined by considering the homogeneous balance between nonlinear terms and the highest order 

derivatives appearing in Eq.  (2.3). 

Step 3. By replacing (2.4) into (2.3), using equation (2.5) and gathering all terms of the same order of )( GF  

together, the left-hand side of Eq. (2.3) is organized as polynomial of )( GF . If each coefficients of obtained 

polynomial are equating to the zero, algebraic equations system for ,,...,, 10 n dcba ,,,  and V  can be 

obtained 
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Step 4. The constants n ,...,, 10 and V  can be obtained by solving the algebraic equations in Step 3. The 

general solutions of the system of first order ODEs  (2.5) have been well known for us depending on the sign of the 

discriminant acd 42  . We have more travelling wave solutions of the nonlinear evolution equation (2.1) by 

substituting Vn ,,...,, 21   and the general solutions of (2.5) into (2.4).  

In the subsequent sections we will give examples such as celebrated KdV equation and the variant 

Boussinesq equations for proposed method.  

 

3. KDV EQUATION 

In this part, we apply our proposed method to three celebrated KdV equation in the form 

,0 xxxxt uuuu        (3.1) 

which arises in many physical problems such as ion-acoustic waves in plasma and surface water waves. The variable 

of travelling wave given as: 

Vtxutxu  ),(),(       (3.2) 

Allows us transforming (3.1) into an ODE for )(uu    

0 uuuuV  . 

If this equation is integrated with respect to , equation given as:  

,0
2

1 2  uuVuC       (3.3) 

can be acquired. Where C  is integration constant which will be determined in the below. 

Suppose that the solution of equation (3.3) can be given by a polynomial of )( GF  as follows: 





n

m

m
m GFu

0

)()(       (3.4) 

Where  )(FF   and )(GG   satisfy a system of first order ODEs in the form  













0

0

2bGdGcFG

bFGaFF
     (3.5) 

If we consider homogeneous balance between  u   and 
2u  in (3.3), we can obtain 222  nnn . Hence we 

can write (3.4) as 

01
2

2 )()()(   GFGFu      (3.6) 

And also  
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2
001

2
02

2
1

3
12

42
2

2 )(2))(2()(2)()(   GFGFGFGFu  (3.7) 

By using (3.6) and (3.5), it is easily obtained that 

12
2

1
2

2

2
12

23
1

2
2

4
2

2

2))()2(6(

))(3)84(())(210()(6)(





adaGFacdad

GFcdacdGFccdGFcu



  (3.8) 

If we substitute (3.6), (3.7) and (3.8) into (3.3) and all terms of same power of )( GF are collected together, 

the left-hand side of (3.3) is turned into polynomial in )( GF . If each coefficients of this polynomial are equated to 

zero, we can obtain a algebraic equations system of  ,,, 210  Vdcba ,,,,  and C  as follows: 

0
2

2:)( 0

2
0

12
20  CVadaGF 


  

0)2(6:)( 011
2

2
1   VacdadGF  

0
2

3)84(:)( 02

2
1

12
22  


 cdVacdGF  

0102:)( 1221
23   cdcGF  

06
2

:)( 2
2

2
24  


cGF  

Solving the above system, we can get the following set of solutions. 

 2
2 12c ,      cd121  ,      0

2 8   acdV                      (3.9) 

22222
0

2
2
0 1224)8(
2




acdcaacdC 
 

Where dca ,,,0  and  are arbitrary constants. 

If we substitute the general solutions of ordinary differential equation system of (3.5), 

tacdx )8( 0
2    and coefficients (3.9) into (3.6), we can get three types of travelling wave solutions 

of the KdV equation (3.1) as follows: 

When 04 2 dac , GF /  is acquired as 
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



2

4
sinh4

2

4
cosh4

2

4
sinh

2

4
cosh2

/
2

2
12

2
2

21

2

2

2

1

acd
acdKdK

acd
acdKdK

acd
K

acd
Ka

GF









 









 













 





 

If it is regulated, it can be shown as 

21
2

4
2

)(4
tanh

2
/

dac
Cdac

d

a
GF














 






 

Hence, solution of the KdV equation (3.1) is acquired as follows: 

0

21
2

2

21
2

2
1

4
2

)(4
tanh

2
12

4
2

)(4
tanh

2
12)(














































 







































 




dac
Cdac

d

a
cd

dac
Cdac

d

a
cu  

Where tacdx )8( 0
2    and 1C (or 1K  and 2K )  is arbitrary constant. 

 When 04 2 dac , GF /  is acquired as  

2)(

)(2

2)(

)(2
/

1

1

212

12











Cd

Ca

KKKd

KKa
GF








 

Hence, solution of the KdV equation (3.1) is acquired as follows: 

0
1

1
2

1

12
2

2)(

)(2
12

2)(

)(2
12)( 









 



























Cd

Ca
cd

Cd

Ca
cu  

where tacdx )8( 0
2    and 1C (or 1K  and 2K )  is arbitrary constant. 

When 04 2 dac , GF /  is obtained as 





2

4
sin4

2

4
cos4

2

4
sin

2

4
cos2

/
2

2
12

2
2

21

2

2

2

1

acd
acdKdK

acd
acdKdK

acd
K

acd
Ka

GF









 









 













 





 

If it is regulated, it can be shown as 
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)4(
2

)()4(
tan

2
/

21
2

dac
Cdac

d

a
GF














 





 

Hence, solution of the KdV equation (3.1) is acquired as follows: 

0

21
2

2

21
2

2
3

)4(
2

)()4(
tan

2
12

)4(
2

)()4(
tan

2
12)(














































 







































 




dac
Cdac

d

a
cd

dac
Cdac

d

a
cu  

Where tacdx )8( 0
2     and 1C  (or 1K  and 2K )  is arbitrary constant. 

 

4. VARIANT BOUSSINESQ EQUATIONS 

In this part, our proposed method have been applied to the variant Boussinesq equations given in the form 












0

0)(

xxt

xxxxt

uuHu

uHuH

     (4.1) 

This is a model for water waves. Where ),( txuu   represents the velocity and  ),( txHH   represents 

total depth. The variable of travelling wave given as: 

)(),( HtxH  ,  )(),( utxu  ,    Vtx     (4.2) 

allows us transforming (4.1) into ODEs for )(uu   and )(HH   as follows: 












0

0)(

uuHuV

uHuHV

 

If we integrate the ODEs above with respect to  , we can get equation given as: 














0
2

0

2

2

1

u
HVuC

uHuVHC

     (4.3) 

Where 1C  and  2C  are integration constants whose values will be determined in the below. 
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If we consider homogeneous balance between  u   and Hu  in first equation of (4.3) and also between  H  and 

2u  in second equation of (4.3), we obtain  

1,22,2 2112221  nnnnnnn  

Similar to (3.4), we conjecture that  

01
2

2 )()()(   GFGFH      (4.4) 

01 )()(   GFu       (4.5) 

Where  )(FF   and )(GG   satisfy (3.5)  and  01012  and ,,,   are constants whose values will 

be determined in the below. 

 By using  (4.4), (4.5)  and  (3.5), it is easily to get that 

000110
2

0211
3

12 )/)(()/)(()/(   GFGFGFHu  (4.6) 

adGFacdGFcdGFcu 11
2

1
2

1
32

1 )/)(()/(3)/(2      (4.7) 

2
010

22
1

2 )/(2)/(   GFGFu     (4.8) 

If we substitute (4.6), (4.7) and (4.8) into (4.3) and all terms of same power of )( GF are collected together, 

the left-hand side of (3.3) is turned into polynomial in )( GF . If each coefficients of this polynomial are equated to 

zero, we can obtain an algebraic equations system of  2101210 and,,,,,,,,,, CCVdcba  as follows: 

 

0:)( 10100
0  CVadGF   

02:)( 2
1101101

1  dacVGF   

03:)( 021112
2   cdVGF  

02:)( 121
23  cGF  

0
2

:)( 0

2
0

02
0  


VCGF  

0:)( 1101
1   VGF  

0
2

:)(
2
1

2
2 


GF  
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Solving the above system, the following set of solutions can be acquired. 

2
2 2c ,   cd21  ,   ac20  , 

c21  ,   dV  0    (4.9) 

01 C ,   acdC 2
2

0

2
0

2  


 

Where dca and,,0  are arbitrary constants. 

If we substitute the general solutions of ordinary differential equation system of (3.5), coefficients in equation 

(49) and tdx )( 0     into  (4.4) and (4.5), we can get three types of travelling wave solutions of the variant 

Boussinesq equations  (4.1) as follows: 

When 04 2 dac , solutions of variant Boussinesq equations are acquired as  
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Where tdx )( 0     and 1K  is arbitrary constant. 

When 04 2 dac , solutions of variant Boussinesq equations are acquired as 
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Where tdx )( 0     and 1K  is arbitrary constant. 
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When 04 2 dac , solutions of variant Boussinesq equations are acquired as  
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Where tdx )( 0     and 1K  is arbitrary constant. 

 

5. CONCLUSIONS 

In this study, the )/( GF -expansion method is firstly proposed. We have shown that three types of travelling 

solutions of the variant Boussinesq equations and the KdV equation are successfully found out by using the 

)/( GF -expansion method. When some of the parameters of present method are taken as special values, results of 

the )( GG -expansion method is also obtained automatically. Hence )( GG -expansion method is sub method of 

the )/( GF -expansion method. Applications of this method are very easy, direct, concise, elementary and effective. 

The present method can be applied further works to establish completely new solutions for other kinds of nonlinear 

wave equations for instance the Burgers equation [38] the KdV– Burgers equation [21] the Boussinesq equation 

[1] the Gardner equation [39] the Sharma–Tasso–Olver equation [40] the generalized KPP equation [41] the 

approximate long water wave equations [22] and the Broer–Kaup equations [42] and so on. 
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