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ABSTRACT 

This paper presents an investigation of the behavior of the multi-order fractional differential equation (MFDE). We derive 

expressions for the transition curves separating regions of stability from instability for the MFDE generally and the particular 

case 2k  . Employing the harmonic balance technique, we obtained approximate expressions for the n=1  and n=0  

transition curves of the MFDE and particularly for the case 2k  . We also obtained an approximate analytical solution to the 

multi-order fractionally damped and forced Duffing-Mathieu equation as well as some special cases computationally using the 

Homotopy Perturbation Method (HPM). 
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1. INTRODUCTION 

Mathieu’s equation as reported in Nwamba [1] has wide applications in Boundary Value Problems (BVPs) and 

recently it has been practically applied in the following areas: frequency modulation, alternating gradient focusing, 

the mirror trap for neutral particles, the inverted pendulum, vibrations in an elliptic drum, stability of a floating 

body and the Paul trap for charged particles. The equation in its original form is given by  

2

2
( 2 cos 2 ) 0

d
t

dt


    

         (1) 

It was first introduced by Mathieu in Mathieu [2] when he determined the vibration modes of a stretched 

membrane having an elliptical clamped boundary. Since its introduction, extensive studies have been conducted 

on/with (1), these studies have revealed the importance of the equation (1) and many of its variation in nonlinear 

dynamics of real physical systems of engineering and other areas. Reference [1, 3] presented a survey of some of 

the nonlinear variations of (1), some of which were listed below in (2)-(5). As was noted in Rand [4] Eq. (1) 

commonly occurs in nonlinear vibration problems in two different ways. These ways were properly described in 

Rand [4].  
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( 2 cos 2 ) 0

d
t

dt


      

                                                                                            (5) 

  is the transient curve/transition curve, c  is the damping coefficient, 1   is a small parameter and b  is the 

delay coefficient.  

For the summary of works done on these nonlinear variations of (1), see [1]. A detailed analysis of Mathieu’s 

equation especially that of stability, can also be found in Rand [4]. In all these extensive studies, we note that the 

fractional aspect of Mathieu’s equation is not left out, see [1, 4-6].  

 

2. THE PROPOSED FRACTIONAL MODEL  

Fractional calculus and fractional order differential equations clearly has wide applications in areas like control 

theory, diffusion, heat conduction, viscoelasticity and electromagnetics. References [1, 4-6] cites numerous works 

where such applications were discussed. Many fractional differential equations have been extensively discussed and 

treated recently. We can find a detailed list of such equations in Rand, et al. [5]. On the other hand, though much 

work have not been done in developing a complete theory of multi-order fractional differential equations, few 

literatures exist in this regard (see [7-10]). Moreover, the importance of multi-order fractional differential 

equations cannot be overemphasized in the areas of mathematical physics and engineering, for example the Basset 

as well as the Bagley-Torvick equations are popular ones. In this work, we shall not go into the theoretical basis 

underlying fractional calculus, but interested readers can see [11-13].  

The aim of this present work is first to, propose a more general form of the damped fractional Mathieu equation with 

external periodic forcing (6) and following [5] discuss the effect of the external forcing on the transition curves separating 

regions of stability from regions of instability in (10), secondly, to obtain an approximate analytical solution to the proposed 

MFDE (6) and the multi-order fractionally damped and forced Duffing-Mathieu equation using the HPM [14-21].  

0 1( ) ( ) ( cos ) ( ) cos sink

t tD x t cD x t b d t x t F bt F bt    
                                                      (6) 

where 
22 3,  0 1,  / 4, 1,2,3,...k b n n     

 is the transient curve/transition curve, c  is the damping 

coefficient, d  is the amplitude of the parametric forcing, it is usually small. 0 0F f
 and  1 1F f

 are the 

external forcing amplitudes, 
, 

 being arbitrary constants. Following [6] we define  
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0
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( ) ( )

tk p
k

t k p k p

d x t d x y dy
D x t

p kdt dt t y  
 

  
                                                                              (7) 

k , the order of the operation is a positive real number and 
p

 is an integer that satisfies 
1p k p  

.  

Setting 
1 and kp  

 in (7), we obtain  

0

( ) 1 ( )
( )

(1 ) ( )

t

t

d x t d x y dy
D x t

dtdt t y




 
 

  
                                                                                     (8) 

Letting 
t y w 

 in (8), we obtain  

0

1
( ) ( )

(1 )

t

t

d
D x t w x t w dw

dt

 



 
  

                                                                                          (9) 

We note that setting 2k   in (6) gives the fractional model equation   

0 1( ) ( ) ( cos ) ( ) cos sintx t cD x t b d t x t F bt F bt     
                                                         (10) 

Also, setting  0 1 0F F 
 in Eq. (10) gives the fractional model equation (11) studied in Rand, et al. [5]. 

( ) ( ) ( cos ) ( ) 0tx t cD x t b d t x t    
                                                                                         (11) 

 

3. ANALYSIS OF THE PROPOSED FRACTIONAL MATHIEU EQUATION  

       In this section, we employ the method of harmonic balance to obtain approximate expressions for the transient 

curves/transition curves 
2 / 4, 0,1,2,3,...b n n   in (6). After [5] we put forward a truncated Fourier series in 

order to obtain an approximation for the 1n   transition curves, thus  

( ) cos sin ...
2 2

t t
x t    

         (12) 

Generally from (7), 
for 3 and 1p m 

 

2
2

2

0

1
( cos sin ) cos sin ( )

2 2 (3 ) 2 2

t

k k

t

mt mt d mq mq
D t q dq

k dt
     

       


  (13) 

Performing the above indicated operation in (13) as t   gives 
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 

 
 

 


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  
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    (14) 

We compute the fractional derivative given in (7) from (14) using (12) to obtain the following expression   

( 2) ( 2)
sin sin cos

2 2 21
( )

2 ( 2) ( 2)
cos cos sin

2 2 2

k

t k

t k k

D x t
t k k

 
 

 
 

    
  

  
   
   

  

      (15) 

Using (12) in (9) as well, we obtain the result below. This result was also obtained in Rand, et al. [5].  

1
( ) cos sin cos sin cos sin

2 2 2 2 2 22
t

t t
D x t



   
   

    
       

        (16) 

Substituting (16), (15) and (12) into (6), collecting like terms and equating to zero coefficients of cos  and sin
2 2

t t

, we obtain: 

  1

1 ( 2) 1 ( 2)
sin : sin cos cos sin cos

2 2 2 2 2 2 2 2 2k k

t k c k c
b d t f

 

   
 

      
         

    
 

            (17a) 

  0

1 ( 2) 1 ( 2)
cos : cos cos sin sin cos

2 2 2 2 2 2 2 2 2k k

t k c k c
b d t f

 

   
 

      
         

    
 

            (17b) 

Eliminating  and   from equations (17a) and (17b) gives the following approximate expression for the n=1  

transition curves  

 
 

1
2 22

1 0 1 0

2
1 0 1 1

2 ( )
21 1

b= cos cos 1 ( 2)2 2 2 2 2 4 sin sin
2 2 22

k

k

f f d f f d
k c

f f k c




 
  

         
                  

    (18) 

Setting 2k   to obtain the approximate expression for the n=1  transition curves for Eq. (10), we have that   

  2 2

1
2 2

2 2 21 0

1 0 1 0

1 1
cos 2 ( ) sin

2 4 2 2 22 2

f f c c
b f f d f f d



 


 
         

    (19) 

This will be the same result obtained for Eq. (11) in Rand, et al. [5] if 1 0 0f f 
. Figures 1, 2 and 3 

displays the transition curves Eq. (19) for various values of 1 0,  and f f 
.  
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Fig-1. n=1  transition curve, Eq. (19) for 1 0 0f f 
, where the thick line represents 0  , dashed line is for  0.5   and the 

circle line represents 1  . The figure is obtained using scilab software. 

Similarly we may obtain approximations for other transition curves. For example, after [5] we may obtain an 

expression for the n=0  transition curve by starting with the ansatz  

cos sin ...x t t     
         (20) 

Just as we did before, the n=0  transition curve is expressed as  

   

 

22
3 2 2 2 2 2

1 0 1 0 1 0

2

1

2 2 ( ) 1 1 ( ) ( ) ( ) 2
2

0
2

d
b c f f b c f c f c c f f c b

d
f c

          

 

 
                 

 

   

   (21) 

Setting 2k  , we obtain the n=0  transition curve for Eq. (10) as  

   3 2 2 2

1 0 1 0 1 0 1 0

2

1

2 4( 1) 2( ) 2 ( ) ( ) 2 1

( 1) 0

b c f f b c c f f f f f f c d b

f c d

  



            

   

   (22) 

where 

( 2)
cos  and cos

2 2

k 
 


 

. See Figure 4 where Eq. (22) is displayed for various values of 

1 0,  and f f
. As was noted in Rand, et al. [5] the transition curve does not change much for 

[0,1] 
, but as 

1 0,f f
 increases from zero we observe an increase in the value of the parametric forcing amplitude d  for 

[0,1] 
. 
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Fig-2. n=1  transition curve, Eq. (19) for 1 0 0.5f f 
, where the thick line represents 0  , dashed line is for  0.5   and the 

circle line represents 1  . The figure is obtained using scilab software. 

 

 

Fig-3. n=1  transition curve, Eq. (19) for 1 0 1f f 
, where the thick line represents 0  , dashed line is for  0.5   and the 

circle line represents 1  . The figure is obtained using scilab software. 

 

4. APPLICATION OF HPM  

The basics of the HPM can be found in [14-21].  

Consider the multi-order fractionally damped and forced Duffing-Mathieu equation given by  

 

   

32

0 1( ) ( ) ( cos ) ( ) cos sin

0 , 0

t tD x t cD x t b d vt x t x t F jt F jt

x p x q

 



     

 
    (23) 

According to the HPM, we construct a homotopy of the form,  
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           0 0, 0H X p L X L X pL X p N X f r            (24) 

where the given fractional DE above has the general form,  

      0L X N X f r  
         (25) 

In view of the HPM, we can write the solution of (25) as a power series of the form,  

0 1 ...X X pX  
          (26) 

Then letting 
1p 

, we obtain the solution to (25) as  

  0 1
1

lim ...
p

x t X X X


   
         (27) 

Now from (23), we can take,  

           

   

32

0 1

,

cos sin cos

L X D x t cD x t bx t N X x t

f r F jt F jt dx t vt

     

  
      (28) 

From (26) and (24), we obtain,  

 

2 2 2

0 0 0 0 0 0

3

0 1cos sin cos 0

D X cD X bX D X cD X bX p D X cD X X

p X F jt F jt dx t vt

      



         

      

  (29) 

Substituting (26) into (29) yields 

     

   

2

0 1 0 1 0 1

2 2

0 0 0 0 0 0

3 2

0 0 1 0 1

... ... ...

3 ... cos sin cos 0

D X pX cD X pX b X pX

D X cD X bX p D X cD X bX

p X pX X F jt F jt dx t vt

 

   



       

       

       
 

    (30) 

 Equating the powers of p to zero in (30) we have,  

0 2

0 0 0: 0p D X cD X bX             (31a) 

1 2 3 2

1 1 1 0 0 0 0 0 1 0: cos sin cosp D X cD X bX X D X cD X bX F jt F jt dX vt               

           (31b) 

One may obtain other higher order terms if there is need for that, for this work we have no need for that. 

The general solution to (31a) is given as,  

   0 0 1 0 2exp expX A m t B m t           (32) 

where,  

   
1 1

2 2

1 2

2 1
0 0

2 1 2 1

1 1
4 , 4

2 2

,

m c b c m c b c

pm q q pm
A B

m m m m

 

 

   

   
         
   

 
 

 

     (33) 

From (31b) and (32), we obtain,  
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   1 1 1 1 2 1exp exp PX A m t B m t X           (34) 

where,  

     

     

 

1 1 2 8 9 10 2 1 9

1

2 1

1 1 9 1 1 2 8 9 10

1

2 1

1 1 1 2

3 ... cos sin ...
2 2

... 3 ... cos sin
2 2

exp 3 exp 2P

m G m ij G j G jt G jt m G G

A
m m

m G G m G m ij G j G jt G jt

B
m m

X G m t G

   

 

  

 

 

 

    
             

    


     
              

     


         

     

1 2 3 1 2 4 2 5 1

6 1 7 2 8 2 9 10
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          exp exp exp cos sin
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G m iv t G m iv t G m iv t G jt G jt

     

      

            (35) 

and,  
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3

0 0 0
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0
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2 2

3 3
, , ,

3 3 2 2 2 2
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2

A A B B A
G G G
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B dA dA
G G G
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F
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G G
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     

     

 

  



  
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         
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   


 

    
 

2 2

0 1

2 2

2 2

2 2

1 0

10 2

2 2

cos cos sin sin
2 2

cos cos sin sin
2 2

cos cos sin sin
2 2
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           (36) 

If two terms are sufficient enough, we can write the solution to (24) using (27) and (32)-(36).  

If not we can obtain higher order approximations via (31).  

 

5. DISCUSSION  

In the case of the n=1  transition curves (see Eq. (19) and Figs. 1,2, and 3), we observed that in as much as a 

change in the order  of the fractional derivative affects the shape and location of the transition curves [5] the 

introduction of external forcing enhances these effects and the rate at which they occur. We note that as the external forcing is 

increased, the transition curves become more parabolic in shape. After [5] we can characterize these effects through the 

location of the lowest point on the transition curves, representing the minimum quantity of parametric forcing 

amplitude needed to produce instability. We denote this minimum value of d , for a given   as mind
.    
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Fig-4. n=0  transition curve, Eq. (22) for 0.1c  . The three leftmost curves corresponds to 1 0 0f f 
 . The middle curves 

corresponds to 1 0 0.5f f 
. The rightmost curves corresponds to 1 0 1f f 

.  Where the thick lines represents 0  , dashed 

lines is for  0.5   and the circle lines represents 1  . The figure is obtained using scilab software. 

 

    To obtain an expression for mind
in the presence of external forces, we may obtain the slope of the transition 

curve by differentiating Eq. (19) with respect to d , requiring this slope to be infinite after [5] we obtain  

2
2

min 0 1 2 2
=( ) sin

2 2

c
d f f






 
                                                                                                 (37) 

Similarly we may obtain expressions for min1f  and min0f  by differentiating Eq. (19) with respect to 1f  and 0f  

respectively. We find  

min

2
2 2 2

1 0 0 0 0 2 2
=( ) ( ) ( 2 ) sin

22

c
f f d f d f f d d






      
                                                 (38) 

min

2
2 2 2

0 1 1 1 1 2 2
=( ) ( ) ( 2 ) sin

22

c
f f d f d f f d d






      
                                                  (39) 

See Fig. 5 where mind
 is plotted as a function of  for no or equal external forcing amplitude. The greatest 

effect is observed where this curve achieves its maximum [5] shown by a toggle in Fig. 5. Following Rand, et al. 

[5] we denote the corresponding value of  as * . Differentiating Eq. (37) with respect to   and setting 

mindd d
equal to zero, we may obtain an expression for  *  as  

*

2
arctan 0.74

2ln 2





 

                                                                                                          (40) 
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The same result (40) is also obtained for (38) and (39) following the same procedure. We note here that the value 

*  remains unchanged for all 1 0,f f
. Referring to the corresponding value of mind

 as 
*

mind
, we obtain  

* 2

min 0 1( ) 1.2078d f f c  
                                                                                                      (41) 

Similarly  

min

* 2 2 2

1 0 0 0 0( ) ( ) ( 2 ) 1.2078f f d f d f f d d c       
                                                       (42) 

 

min

* 2 2 2

0 1 1 1 1( ) ( ) ( 2 ) 1.2078f f d f d f f d d c       
                                                        (43) 

We can deduce from (41) that 
*

mind
 varies directly to c  as long as 1 0f f

 or 1 0 0f f 
 . For constant c , 

*

min 1 00,  if d f f 
  and 

*

min 1 00,  if d f f 
, as displayed in Fig. 6. From (42), we observe that as d   increases, 

min

*

1f   decreases. From (43), we observe also that as d   increases, min

*

0f   increases. 

 
Fig-5.

minPlot of , the minimum quantity of parametric forcing amplitude required to produce instability, as a function of fractional derivative order , Eq. (37).d   

The figure is obtained using scilab software. 
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Fig-6.
 

*

min min * 1 0Plot of , the corresponding value of  at  as a function of the external forcing amplitude , Eq. (41) for =1.d d f f   

The figure is obtained using scilab software. 

 

As was observed in Rand, et al. [5] the damping effect of the fractional derivative term in Eq. (11), for 

0.5 1  , is greater than that of the non-fractional damped Mathieu equation which corresponds to setting  

1   in Eq. (11), this remains true even in the presence of external forces. 

In contrast to non-fractional damping, fractional damping also moves the lowest point on the transition curve 

in a horizontal direction, see Fig. 1, thereby effectively changing the resonant value of b  Rand, et al. [5]. In the 

presence of external forcing, the movement of this lowest point becomes faster and the detachment of resonant tongues from 

the horizontal line becomes faster too.  

However, the values of the parametric forcing amplitude d  increases noticeably with the introduction of increasing 

external forcing in the case of n=0  transition curves (see Eq. (22) and Fig. 4).  

 

6. CONCLUSION  

In this paper we have investigated the externally excited fractional Mathieu equation (10) using the harmonic 

balance method after [5]. We obtained explicit approximate expressions for the n=1  and n=0  transition curves 

separating regions of stability from regions of instability in Eq. (10). We showed that by adding external forcing to Eq. 

(11) and changing the value of the order of the fractional derivative,  , the shape and location of the n=1  transition curve 

changes rapidly compared to when there is no external forcing. We also showed that the greatest value *  of the order of the 

fractional derivative    for which the minimum quantity of parametric forcing d  necessary to produce instability is given, 

remains unchanged even in the presence of external excitation. We obtained an approximate analytical solution to the 

multi-order fractional Mathieu equation introduced and some special cases of the considered equation. Future works 

may investigate the effect of delay and nonlinearity on the multi-order fractional Mathieu equation. 
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