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ABSTRACT 

A four-parameter probability distribution, which includes a wide variety of curve shapes, is presented. Because of the flexibility, 

generality, and simplicity of the distribution, it is useful in the representation of data when the underlying model is unknown. 

Further important applications of the distribution include the modeling and subsequent generation of random variates for 

simulation studies and Monte Carlo sampling studies of the robustness of statistical procedures. This research centered on 

combining these two distributions that will simultaneously capture the rate of occurrence of a phenomenon, especially buying 

behaviour and the actual performance of that phenomenon as well as tracking and forecasting future purchasing pattern based 

the data. Further important applications of the distribution include the modeling and subsequent generation of random variates 

for simulation studies of the robustness of statistical procedures. To do this, specification of the hybrid model named 

Exponential- Gamma mixture model is given and followed by its derivation. The concluding part of the paper depicts an 

example of the areas of its application. 
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Contribution/ Originality 

This study contributes to the existing literature by combining exponential-gamma mixture as a hybrid model 

to see its rate of tracking and forecasting purchasing pattern. This is carried out by using our newly arrived formula 

in analyzing both the real life and simulated data in other to ascertain the uniqueness of combined probability 

distribution in forecasting future customer buying behavior data for producers effective planning and 

administration. 

 

1. INTRODUCTION 

The stable distributions have a wide area of applications: probability theory, communications theory, physics, 

astronomy, economics, and sociology. Reasons for fitting a distribution to a set of data have been summarized by 

many researchers, the desire for objectivity, the need for auto-mating the data analysis, and interest in the values of 

the distribution parameters. Although various empir-ical distributions already exist, e.g., the Pearson sys-tem and 

the Johnson system (see Chapter 7 of Hahn and Shapiro) and the Burr distribution, we are presenting another 

distribution because of its simplicity, flexibility, and generality.  The importance of exponential and gamma 

distributions in the field of mathematical statistics cannot be over emphasized. Both distributions are timing in 
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nature; most importantly exponential distribution can also be termed as waiting time distribution which is 

analogous to the geometric and Poisson distributions. A mixture distribution describes a population which 

comprises two or more subpopulations combined in fixed proportions. A wide variety of curve shapes are possible 

with this distribution. Probability models of this type are utilized in situations where the sample observations can 

only be drawn from the whole population and not separately from the individual component populations. Such cases 

typically occur due to a difficulty in distinguishing the underlying subpopulations forming the mixed population. 

Consequently, mixture models are employed in fields which include pattern recognition, biology, chemistry, 

geology, medicine, and actuarial science. An example taken from the discipline of biology will serve to illustrate the 

type of situation in which mixture models arise. Biologists are often faced with the task of inferring population 

parameters on the basis of samples collected during the course of field experiments. 

A particular characteristic of the customers’ behaviour of interest is measured for each individual in the sample. 

An important consideration by Akomolafe [1] is that when taking these measurements incorporating age or sex of 

the individual, since the distribution of many characteristics is dependent on these. However, the age or sex of a 

customer is not always readily determined when measurements are performed in the natural environment. Hence, 

observations must be drawn from the mixed population, where the component populations are the different age 

groups or sexes of the customer. These two distributions had  been found useful in any situation that is time 

variant. Given the robustness of these two distributions, it is then pertinent to simultaneously look at their behavior 

which is the subject matter of this paper. 

An attempt has been made to specify the mixture of these two distributions which is tagged exponential-

gamma model. Thereafter, a comprehensive derivation of the model is given for more clarification. The paper is 

concluded by an exposition of major area of its application which is capturing evolving customer visit buying 

behavior. 

 

2. SPECIFICATION OF THE MODEL 

Assume a timing process phenomenon;an appropriate robust starting point on repeated trials can be modeled as 

an exponential-gamma timing process. This is to say that each inter repeated trials time is assumed to be 

exponentially distributed governed by a rate,   . Furthermore, these individual trials rate of occurrence vary across 

the population. This heterogeneity can be captured by a gamma distribution with shape parameter ᴦ, and scale 

parameter α. 

These distributions are given by the following 

 (       )      
    (       (   ))

………………………………………(1) 

                          And 

  (       )   
  
          

  
………………………………………………….(2) 

Where    is individual trial,i’s latent of occurrence,    is the time when the јth repeat of      occurrence occurred, 

and    is the time of first observed item occurred. For a single occurrence occasion, this leads to the following 

familiar Exponential – Gamma Mixture Model: 
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3. DERIVATION OF EXPONENTIAL – GAMMA MIXTURE MODEL 

Given the Exponential model: 

 (       )      
    (       (   ))

 

And the Gamma model: 

  (       )   
  

          

  
 

Where 

                                            

                                                   

        

   (   )                                

And 

  = shape parameter [is also a quantity of buying] 

α = scale parameter [is also the time rate of buying] 

for a single visit occasion, this leads to the following familiar exponential – gamma mixture model: 

i.e. 
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Differentiate equation 10 with respect to λ: 
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Substitute for λ and dλ in equation (7) 

i.e. 
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By Gamma distribution or Gamma function 

Where 
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4. LIKELIHOOD SPECIFICATION 

When estimating the ordinary (stationary) exponential-gamma model, there are two ways of obtaining the 

likelihood function for a given individual. The usual approach is to specify the individual-level likelihood function, 

conditional on that person’s (unobserved) value of  i. This likelihood is the product of Ji exponential timing terms, 

where Ji is the number of repeat buying made by panelist i, plus an additional term to account for the right-

censoring that occurs between that customer’s last arrival and the end of the observed calibration period (at time 

T): 

        iiiiJiiiiiiii JtTtJt

i

tt

i

tt

iii eeeeL
 

  .... 1112101

...   (23) 

To get the unconditional likelihood we then integrate across all possible values of  , using the gamma 

distribution as a weighting function: 

  iiiii drgammaLrL  ,;.,
0






   (24) 

Where gamma( i ; r,  ) denotes the gamma distribution as shown in (1). This yields the usual exponential-

gamma likelihood, which can be multiplied across the N panelists to get the overall likelihood for parameter 

estimation purposes: 
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An alternative path that leads to the same result is to perform the gamma integration separately for each of the 

Ji+1 exponential terms, and then multiply them together at the end. This involves the use of Bayes Theorem to 
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refine our “guess” about each individual’s value of  i after each arrival occurs. Specifically, it is easy to show that if 

someone’s first repeat visit occurs at time tij, then: 

   0112 ,1at  arrival iiii ttrgamma tg  
    (26) 

 

The gamma distribution governing the rate of buying for subsequent arrivals follows: 

    01 ,at  arrival iijijji ttjrgamma tg  
   (27) 

Using this logic, we can re-express the likelihood as the product of separate EG terms 
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Which collapses into the same expression as (24). 

When we introduce the nonstationary updating distribution, the multipliers (cij) change the value of  i from 

visit to visit, thereby requiring us to use the sequential approach given in (28) to derive the complete likelihood 

function. We need to capture two forms of updating after each visit: one due to the usual Bayesian updating process 

(which is associated with stationary behaviour given by (25)) and the other due to the effects of the stochastic 

evolution process. Therefore, the distribution of buying rates at each repeat visit level is the product of two gamma 

distributed random variables – one associated with the updating multiplier and one capturing the previous visiting 

rate. For the case of panelist i making her jth repeat visit at time tij: 

       , . ,at   arrival 01 sgammattjrgammatG iijijji 
 (29) 

One issue with this approach is that the product of two gamma random variables does not lend itself to a 

tractable analytic solution. However, there is an established result (see, e.g., [2] suggesting that the product of two 

gamma distributed random variables can be approximated by yet another gamma distribution, obtained by 

multiplying the first two moments about the origins of the original distributions: 
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As shown in Appendix A, this moment-matching approximation, used in conjunction with Bayesian updating, 

allows us to recover the updated gamma parameters that determine the rate of buying,  ij, for panelist i’s jth 

repeat visit as follows: 
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Where r(i, 1) and  j(i, 1) are equal to the initial values of r and s as estimated by maximizing the likelihood 

function specified in (28). 

 

5. APPLICATION  

We performed 20 separate simulations to verify the accuracy of using such a moment-matching approximation. 

In each simulation, we first generated 1000 random draws from a gamma distribution with randomly determined 

shape and scale parameters to represent initial  values.  Then, a matrix of updating multipliers was also simulated 

for a series of five updates (i.e., five future repeat visits). Each 1000x5 matrix was generated by taking draws from a 

gamma distribution, again with randomly determined shape and scale parameters, where columns, one through five 

represented the updates after one to five visits. The updated  series after five repeat visits was calculated using 

two methods 

 (1) direct (numerical) multiplication of the 1000 initial  ’s and the five updating series or  

(2) Randomly drawing 1000 values from the distribution resulting from the moment-matching approximation 

across all five updates. 

A Kolmogorov-Smirnov test of fit indicated that, for each of the 20 simulations, the distribution of values 

resulting from the moment-matching approximation is not significantly different from that resulting from the 

direct multiplication of these random variables. Therefore, we are confident that the moment-matching 

approximation accurately captures the gamma distributed updating process we wish to model. 

After incorporating the evolution process into our model, the likelihood function to be maximized follows: 
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Where r(i, j) and  (i, j) are defined in equations (31) and (32) while the survival function, S(T-tij), is defined as: 
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6. RESULTS 

For the special case in which behaviour is not evolving and the nonstationary updating distribution 

degenerates to a spike at 1.0 (i.e., s = 


= M, where M approaches infinity), then this equation collapses down 

exactly to the ordinary (stationary) exponential-gamma model. The graphs of the mixture of two different 

distributions as obtained from the data analysed for simulation parameters are shown in Figure a, b and c below. 
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[a] 

                                              

 
[b] 

                                            

 
[c] 

Figure-(a),(b) and (c). Graph of simulated data showing the consistency of the mix distributionS 

 

The analysis of my result is as shown in the tables below 

 

 

 

Table-1. Simulation Results 
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Exponential -Gamma 

                                                  Π1 = 0.6 λ =2 α1 =10 β1 =1.5 

                                                     Π 1 λ α1 β1 

Average (Π,θ)                         0.6041 2.0502 11.7699 1.4165 

Standard error (Π,θ)                0.0081 0.0133 0,1434 0.0143 

                                                   

Exponential -Weibull 

 Π1 = 0.8 λ =5 α2 =15 Β2 =5 

 Π 1 λ α1 β1 

Average (Π,θ) 0.8110 4.4460 14.9555 5,0691 

Standard error (Π,θ) 0.0019 0.0338 0.0128 0.0206 

      

Convergence was achieved in all cases even when the starting value was poor and thus emphasizes the 

numerical stability of EM algorithm. The values of averages and standard error suggest that the EM estimates 

performed consistently. According to the simulation results, the EM approach work well with different mixture 

proportions. No restriction was imposed on the maximum number of iterations and convergence was assumed when 

the absolute differences between successive estimates were less. The results from the simulated data sets are 

reported in Table1, which gives the averages of the maximum likelihood estimators and standard errors. 

 

7. CONCLUSION  

This research has succeeded in deriving the Exponential – Gamma mixture Model. The model could be 

successively applied into  capturing evolving customer visit buying behavior process that has three main 

components which has been addressed in the model viz.; 

(a) A timing process governing an individual’s rate of visiting  

(b) A heterogeneity distribution that accommodates differences across people  

(c) An evolutionary process that allows a given individual underlying visit rate to change from one visit to the 

next by providing a precise forecast of overall new product sales as well as tracking and forecasting future 

purchasing pattern based on consumer buying  behaviour data. 

The mixture models of two different distributions such as Exponential-Gamma and Exponential-Weibull  to 

represent the heterogeneous survival data sets. The maximum likelihood estimations of parameters of the mixture 

models obtained with EM algorithm. Simulations were performed to investigate the convergence of the proposed 

EM algorithm. According to the simulation results, the EM algorithm was successful in estimation of parameters of 

the mixture models. The mixture models of two different distributions such as Exponential-Gamma and 

Exponential-Weibull successfully applied for modeling failure times however, while exponential – Gamma may be 

an excellent bench mark model, it fails to capture certain buying behaviors that are not stationary over time. 

Accounting for this condition will be considered in the subsequent work as well as introducing a multiplier effect 

into the equation that will capture different attrition pattern and some measurable demographic variables. 
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