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In this paper, we show the parallel of Adomian Decomposition Method (ADM) and 
Lobatto-Runge-Kutta Collocation Method (LRKCM) on first order initial value stiff 
differential equations. The former method provided closed form solutions while the 
latter gave approximate solutions. We illustrated these findings in two numerical 
examples. ADM solutions were in series form while those of LRKCM gave sizeable 
absolute error. We further visualized our findings in respective plots to show the great 
potentials of ADM over LRKCM in providing analytical solutions to stiff differential 
equations. 
 
 
 

Contribution/Originality: This study contributes in showing the originality of ADM in obtaining exact 

solution to Stiff differential equations, while LRKCM provided approximate solution whose accuracy depended on 

step size. 

 

1. INTRODUCTION 

The exact solution of a stiff differential equation is typically associated with an exponent that has a large 

magnitude. It include a term that decay exponentially to zero as the independent variable increases, but whose 

derivative is much greater in magnitude than the term itself. This class of differential equation, in application, arise 

from phenomena with widely differing time (independent variable) scales. It is very common as mathematical 

models in physical and biological sciences. They occur in many fields of engineering science particularly in studies 

of electrical circuits, vibrations, chemical reactions and so on. There are ubiquitous in weather predictions, 

astrochemical kinetics, control systems and electronics. In general, it application is wide in industrial areas. 

A differential equation  

)y,t(fy                                                                                                   (1) 

is stiff if the exact solution include a term that decays exponentially to zero as t increases. Suppose such a term is 

te 
, where λ is a large positive constant. The kth derivative of this term is 

tkee 
, and the character 

ke  forces 
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this derivative to decay transiently to zero than 
te 

 as t grows unbounded. The exact solutions of stiff differential 

equation (1) are extremely stable but the numerical ones can be extremely unstable with large step size. Numerical 

methods currently used in literature for obtaining approximate solutions are implicit Euler’s  and Runge-Kutta 

method see Haier and Wanner [1]. Explicit Euler’s method is also used with unreliable result, finite difference and 

finite element as well. Others are nth order Taylor’s method, linear multistep method like Adams-Bashforth which 

is implemented as predictor and Adams-Moulton method which is implemented as corrector. The two methods are 

regarded as predictor-corrector pair. Direct higher order solver like Runge-kutta and LRKCM are also used, see 

Butcher [2]; Lie and Norsett [3]. All the aforementioned numerical methods are base on obtaining approximate 

solutions, an approach that is sometimes expensive when higher accuracy is required. The truncation errors for all 

methods are large and their absolute errors have sizeable values which may not be useful for practical applications. 

In this paper, we show the great advantages ADM has over LRKCM when used in obtaining solutions to stiff 

differential equations. The ADM, in this analysis, gave exact solutions to stiff differential equation (1) in series 

form; while LRKCM gave approximate solutions with errors that increase as the step-size increased. We depict 

clearly our findings in respective plotted graphs facilitated by Maple software. The use of LRKCM on equation (1) 

has also been reported by Yakubu, et al. [4]. 

 

2. BRIEF CONCEPT OF LRKCM AND ADM 

2.1. LRKCM 

Consider the general form stiff differential equation as given in equation (1), y = y(t) with the conditions given 

as  

  )btt(,yty 000                                                                                    (2) 

n
0 ]b,t[:y   and in Yakubu, et al. [4]  the continuous multistep collocation approximation formula defined 

for [t0, b] is given as 

 







 

1x

0j

1s

0j
jnjjnj f)t(hy)t(y                                                              (3) 

where 

    x = number of interpolation points, tj, j = 0, 1, 2, . . ., x -1 

    s = distinct collocation points with ]b,t[t 0j , j = 0, 1,  . . .  s - 1) 

    h = equally spaced step size (it can also be a variable) 

Assuming that the stiff differential equation (1) has only one solution, αj(t)  and hβj(t) are polynomials given as 







1sx

0i

i
1i,jj t)t(                                                                         (4) 





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1sx

0i

i
1i,jj th)t(h                                                                                (5) 

where 1i,j   and 1i,j   are constant coefficients to be determined. y(t) in (3) is expanded using Taylor series 

about t, as it is done in linear multistep method, and collecting powers of h to obtain the LRKCM. The resulting 

multistep collocation and interpolation matrix affects the efficiency, accuracy and stability property of equation (3). 
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Yakubu, et al. [4] further examined how the constant 1i,j  and 1i,j   for his new LRKCM. This was done by 

deriving multistep collocation method as continuous single finite difference formula of non-uniform order six based 

on Lobatto points.  This was recovered from the popular Lobatto IIIA. Equation (3) becomes a special class of 

multistep collocation method, for details on LRKCM see Yakubu, et al. [4].  

 

2.2. ADM 

Considering an abstract stiff differential equation (1), assuming f is analytic near y = y0, (1) becomes the 

Volterra integral equation  


t

00 ds))s(y,s(fy)t(y                                                         (6) 

In ADM, y is considered as 







1n

n0 yyy                                                                                    (7) 

And the nonlinear term in 







0n

n210n )y,...,y,y,y,t(A)y,t(f                                                           (8) 

where An are the Adomian polynomial. For more on Adomian polynomials and the concept of ADM see 

Adomian [5]; Agom and Ogunfiditimi [6] and Agom and Ogunfiditimi [7]; Agom, et al. [8] and Agom, et al. [9] 

and the references there in. Formally, 
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                                                                      (9) 

where n is a non-negative integer and   is a grouping parameter. 

 

3. NUMERICAL ILLUSTRATIONS 

In this section we present some numerical results which are adapted from Yakubu, et al. [4] 

 

Example 1 

In relation to equations (1) and (2), consider a stiff differential equation with 











20

y
1

4

y
)y,t(f                                                                                         (10) 

)0(y)t(y 0  ,  a = 1 

The analytical solution is  

4
t

e191

20
y




                                                                                             (11) 

which can be expanded in series form to give 

...t
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Applying equations (2) to (5) on (10), as given in Yakubu, et al. [4] the result by LRKCM is stated in Table 1 

with step size of 0.1. From Table 1, the Lagranges interpolation polynomial alongside equation (11) gives the plot 

in Figure 1A. 
 

Table-1. Exact versus LRKCM values of Example 1   

t Exact value LRKCM 

0.1 1.024018962351866 1.02401896229202 
0.2 1.048582996382734 1.04858299626072 
0.3 1.073702928838836 1.07370292865234 
0.4 1.099389726731483 1.09938972647798 
0.5 1.125654495329782 1.12565449500686 

 

  
Table-2. Exact versus LRKCM values of Example 2. 

t Exact value LRKCM 

0.1 1.024018962351866 1.02401896229202 
0.2 1.048582996382734 1.04858299626072 
0.3 1.073702928838836 1.07370292865234 
0.4 1.099389726731483 1.09938972647798 

0.5 1.125654495329782 1.12565449500686 
 

 

Applying equations (6) to (9) of ADM concept, we have the Adomian polynomial of the nonlinear term as  

2
00 yA   

101 yy2A   

2
1202 yyy2A   

. . . 

For details see Agom, et al. [8] and Agom and Ogunfiditimi [6] and the references there in. Where  

1y0                                                                                                (13) 

t
80

19
y1                                                                                          (14) 

2
2 t

6400

171
y                                                                                (15) 

3
3 t

1536000

2717
y                                                                                 (16) 

and so on. Equations (13) to (16)  are the terms of equation (12) which is the exact solution of stiff differential 

equation (10). The result is presented in Figure 1B with 



7

0n
nyy  

Example 2 

Also in relation to equations (1) and (2), consider 

y)y,t(f                                                                                           (17) 

1a),0(y)t(y 0   

The solution is 
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tey                                                                                                (18) 

 

 
Figure-1A. Exact versus LRKCM Solutions of Example1 

        

 
Figure-1B. Exact versus ADM Solutions of Example1 

 

Following similar steps in example 1, we have Table 2 showing solutions by analytical method and LRKCM 

and the plot is as given in Figure 2A. 

Similarly using ADM concept, we have 

 







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n
!n

t
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Equation (19) is the series form of equation (18). The plot of equation (18) and 



7

0n

n
n

!n

t
)1(y  is as given in 

Figure 2B. 
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Figure-2A. Exact versus LRKCM Solutions of Example2 

 

 
Figure-2B. Exact versus ADM Solutions of Example2 

 

5. CONCLUSION 

In this work, we have been able to show that ADM uses no step-size but provided exact solutions to stiff 

differential equation (1); whereas, LRKCM when applied to the same class of equation provided solutions that were 

in agreement (to some extend) with the exact solutions and ADM solutions. These discoveries were illustrated in 

respective plots and tables. Also, it has been reported in literature that LRKCM has been applied to obtain fairly 

accurate result with extremely small step-size to this class of equations. However, this comes with computational 

cost unlike ADM. 

 

Funding: The study received no formal support. 
Competing Interests: The authors declares that they are no competing interest. 
Contributors/Acknowledgement: E. U. Agom conceptualized, designed and carried out the study 
supervised by F. O. Ogunfiditimi and Edet Valentine Bassey gave information on multistep 
collocation method. The authors greatly acknowledge the role, thorough and valuable comments 
by the   supervisor (F. O. Ogunfiditimi). 

 

REFERENCES 

[1] E. Haier and G. Wanner, "Stiff differential equations solved by Radua methods," Journal of Computational and Applied 

Mathematics, vol. 111, pp. 93-111, 1999. View at Google Scholar | View at Publisher 

[2] J. C. Butcher, Numerical method for ordinary differential equations. West Sussex, England: John Wiley and Sons, 2003. 

https://scholar.google.com/scholar?hl=en&q=Stiff%20differential%20equations%20solved%20by%20Radua%20methods
http://dx.doi.org/10.1016/s0377-0427(99)00134-x


International Journal of Mathematical Research, 2017, 6(2): 53-59 

 

 
59 

© 2017 Conscientia Beam. All Rights Reserved. 

[3] I. Lie and S. P. Norsett, "Super-convergence for multistep collocation," Mathematical Computation, vol. 52, pp. 65-80, 

1989. View at Google Scholar   

[4] D. G. Yakubu, N. H. Manjak, S. S. Buba, and A. J. Maksha, "A family of uniformly accurate order lobatto-runge-kutta 

collocation method," Computational and Applied Mathematics, vol. 30, pp. 315-330, 2011. View at Google Scholar | View at Publisher 

[5] G. Adomian, "A review of the decomposition method in applied mathematics," Journal of Mathematical Analysis and 

Applications, vol. 135, pp. 501-544, 1988. View at Google Scholar   

[6] E. U. Agom and F. O. Ogunfiditimi, "Modified adomian polynomial for nonlinear functional with integer exponent," 

International Organisation of Scientific Research – Journal of Mathematics, vol. 11, pp. 40-45, 2015.  

[7] E. U. Agom and F. O. Ogunfiditimi, "Numerical solution of third-order time invariant linear differential equations by 

adomian decomposition method," International Journal of Engineering and Science, vol. 16, pp. 81-85, 2016. View at Google 

Scholar   

[8] E. U. Agom, F. O. Ogunfiditimi, and P. N. Assi, "On Adomian polynomial and its applications to Lane-Emden type of 

equation," International Journal of Mathematical Research, vol. 6, pp. 13-21, 2017. View at Google Scholar | View at Publisher 

[9] E. U. Agom, F. O. Ogunfiditimi, and P. N. Assi, "Numerical application of  Adomian decomposition method to fifth-

order autonomous differential equations," Journal of Mathematical and Computational Science, vol. 3, pp. 554-563, 2017. 

View at Google Scholar   

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Views and opinions expressed in this article are the views and opinions of the author(s), International Journal of Mathematical Research shall not be 
responsible or answerable for any loss, damage or liability etc. caused in relation to/arising out of the use of the content. 

 

https://scholar.google.com/scholar?hl=en&q=Super-convergence%20for%20multistep%20collocation
https://scholar.google.com/scholar?hl=en&q=A%20family%20of%20uniformly%20accurate%20order%20lobatto-runge-kutta%20collocation%20method
http://dx.doi.org/10.1590/s1807-03022011000200004
https://scholar.google.com/scholar?hl=en&q=A%20review%20of%20the%20decomposition%20method%20in%20applied%20mathematics
https://scholar.google.com/scholar?hl=en&q=Numerical%20solution%20of%20third-order%20time%20invariant%20linear%20differential%20equations%20by%20adomian%20decomposition%20method
https://scholar.google.com/scholar?hl=en&q=Numerical%20solution%20of%20third-order%20time%20invariant%20linear%20differential%20equations%20by%20adomian%20decomposition%20method
https://scholar.google.com/scholar?hl=en&q=On%20Adomian%20polynomial%20and%20its%20applications%20to%20Lane-Emden%20type%20of%20equation
http://dx.doi.org/10.18488/journal.24.2017.61.13.21
https://scholar.google.com/scholar?hl=en&q=Numerical%20application%20of%20%20Adomian%20decomposition%20method%20to%20fifth-order%20autonomous%20differential%20equations

