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ABSTRACT 
 

The main focus of this study is the multivariate analysis of Electroencephalogram data 
which included multivariate analysis of variance. The multivariate model diagnostics 
comprise checking number of assumptions of MANOVA model such as multivariate 
normality, homogeneity of covariance matrices. In this paper, the model X=BC+E is 
used and estimate the different parameters. Also by using a general form, H0: GBF=0 
to test the different types of null hypothesis. Here G and F is known matrices and 
obtained from the hypothesis. This study gives mathematical ideas from multivariate 
statistical analysis to find a solution or a good approximation of a complex scientific 
problem. 
 

Contribution/Originality: This study gives mathematical ideas from multivariate statistical analysis to find a 

solution or a good approximation of a complex scientific problem. 

 

1. INTRODUCTION 

Electroconvulsive therapy (ECT) formerly known as electroshock, is a psychiatric treatment used to treat 

severe depressed patients. People with symptoms such as delusions, hallucinations, or suicidal thoughts or when 

other treatments such as psychotherapy and antidepressant medicines have not worked, are exposed to ECT. The 

composite activity or measure of brain waves is called an electroencephalogram (EEG). Nowadays, there is no 

common statistical approach to analyze the EEG data. Some analysis of EEG signals using dynamic models have 

been conducted in neurophysiology (e.g. [1-3]). Recent research efforts have been based on various numerical 

algorithms that estimate individual dynamics and statistical information characteristics have been considered in 

more detail [4, 5]. The dynamical approach was subsequently applied to a variety of physiological time series, 

including EEG recordings [6-10]. Various mathematical techniques developed for the studies of complex, nonlinear 

and chaotic systems have also been used to explore the dynamics of human brain physiology [8, 11, 12].  

The fractal dimension (FD) is used to quantify the complexity and self-similarity of a signal [13]. FD analysis 

of EEG data has been applied in the biomedical research, such as the routine detection of dementia [14, 15] EEG 

analysis of sleeping newborns [16]  and fractal spectral analysis of pre-epileptic seizures [17]. The use of FD in the 

analysis of EEG data was suggested by Popivanov, et al. [18]. Wahlund, et al. [19] proposed an approach where 

one looked at FD of the curve as the representation of EEG data obtained from ECT seizures to identify differences 

in responses between parts of the brain. In some other studies, estimation of FD of similar biological signal has been 
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used. For the data used from magneto encephalogram (MEG), Gómez, et al. [20] estimated the complexity of those 

signals in Alzhemer’s patients and healthy elderly. They found significantly lower complexity of MEG in 

Alzheimer’s patients compared to the control subjects.  

Classical approaches where measurement errors are regarded as generators of uncertainty are not valid when 

considering EEG time series data [21]. Due to strong individual responses to ECT one possible approach is to use 

mixed models where individual effects are taken into account via random effects. These individual effects can then 

be discarded or incorporated in the analysis. The multivariate analysis of variance (MANOVA) is a type of 

multivariate statistical technique to analyze data that involves more than one response at a time. One of the aims of 

this work is to apply multivariate statistical techniques for the analysis of EEG signals recorded from depressed 

patients. Complexity of EEG signal is assessed by using FD according to Wahlund, et al. [19].  

In the next section, background characteristics of EEG data including the assessing complexity of EEG signal 

will be discussed. In Section 3, multivariate approach to the statistical analysis of EEG data will be presented. Issue 

of model checking as assessment of the multivariate normality, and equality of covariance matrices also discussed 

here.  In Section 4, the obtained results will be presented.  Finally, the last section comprises the discussion.  

 

2. BACKGROUND 

ECT is used for people whose depression is severe or life threatening or who cannot take antidepressant 

medication. ECT is then often recommended for use as a treatment for severe depression that has not responded to 

other treatment, and is also used in the treatment of mania and catatonia. Before ECT, a patient is given anesthesia, 

and medicines to loosen up his muscles. Then electrical current is briefly sent to the brain through electrodes placed 

on the temples or elsewhere on the head, depending on the condition and type of ECT. Usually ECT treatments are 

done 2 to 3 times a week for 2 to 3 weeks and continuing for several months to a year by reducing time frequency, 

to reduce the risk of relapse. ECT is usually given in combination with medicine, psychotherapy, family therapy, 

and behavioral therapy. 

EEG is the recording of electrical activity along the scalp and measures the voltage fluctuating result from 

ionic current flows within the neurons of the brain.  In clinical contexts, EEG refers to the recording of the brain's 

spontaneous electrical activity over a short period of time, usually 20–40 minutes, as recorded from multiple 

electrodes placed on the scalp. The EEG is used in the evaluation of brain disorders. Most commonly it is used to 

show the type and location of the activity in the brain during a seizure. The EEG is typically described in terms of 

rhythmic activity and transients. The rhythmic activity is divided into bands by frequency. To some degree, these 

frequency bands are a matter of nomenclature, but these designations arose because rhythmic activity within a 

certain frequency range was noted to have a certain distribution over the scalp or a certain biological significance. 

Most of the cerebral signal observed in the scalp EEG falls in the range of 1–20 Hz. The activity below or above 

this range is likely to be artifactual, under standard clinical recording techniques. However, brain wave EEG has a 

complex pattern of frequencies. Experimentally, it has been established that there are several frequently bands 

that’s associated with particular processes in the brain  delta waves (<4 Hz), thetawaves (4-8 Hz), alpha waves (8-

13 Hz), beta waves (13-36 Hz) and gamma waves (> 36 Hz).  

In the next section, analysis and assessing the complexity of EEG signals will be discussed. 

 

2.1. Analysis and Assessing Complexity of EEG Signals  

Multivariate analysis of variance is one of the techniques for analyzing multivariate data. Now-a-days, 

multivariate statistical analysis is a very popular technique applied in such research fields as education, biology, 

medicine and social sciences.  If there have categorical independent variables with two or more levels and a set of 

dependent variables and one can interested in determining if the categorical independent variables affect the 

dependent variables. MANOVA can be used to address of the preceding problem. One reason for conducting a 

http://en.wikipedia.org/wiki/Clinical_depression
http://en.wikipedia.org/wiki/Mania
http://en.wikipedia.org/wiki/Catatonia
http://en.wikipedia.org/wiki/Electrical
http://en.wikipedia.org/wiki/Scalp
http://en.wikipedia.org/wiki/Neurons
http://en.wikipedia.org/wiki/Brain
http://en.wikipedia.org/wiki/Electrodes
http://en.wikipedia.org/wiki/Scalp
http://www.emedicinehealth.com/script/main/art.asp?articlekey=5442
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MANOVA is to determinate how variates can be combined to maximally discriminating between district subgroups 

of the responses. Many research articles and books have been devoted to MANOVA in the last twenty five years. 

Weinfurt [22] and Huberty and Petoskey [23] introduced complex and conceptually powerful statistical procedure 

for MANOVA in their books.  

Amplitude, frequency, and degree of synchronization constitute three basic parameters of background EEG 

activity. The first two parameters are easy to quantify, but recently synchronization only has become a subject of 

computerized EEG analysis. The opposite of synchronization is complexity of EEG signal. Signal complexity [24] 

can be analyzed either in frequency domain, or in time domain, or in the system's phase space. Analysis in the 

frequency domain   requires   fourier or wavelet transform of the signal, while analysis in the phase space requires 

embedding of the data in a multidimensional space.  Complexity in time domain may be characterized by fractal 

dimension, Df. It characterizes complexity of the curve representing the signal on a plane. The fractal dimension D f 

has values between 1 and 2. Df calculated in time domain should not be confused with fractal dimension of the 

attractor in the system's phase space. An object in Euclidean space, like a coastline of an island, may also be 

characterized by a fractal dimension. In a rough sense, it measures 'how many points' belong to a given set. A plane 

is 'larger' than a line, while Sierpinski triangle sits somewhere in between these two sets. On the other hand, all 

three of these sets have the same number of points in the sense that each set is uncountable. Somehow, though, 

fractal dimension captures the notion of 'how large a set is' while its fractional part captures the notion of 'how 

complex a set is'.  In 1988, Higuchi proposed an efficient algorithm for measuring the fractal dimension (FD) of 

discrete time sequences [25]. Higuchi’s algorithm calculates the FD directly from time series. Higuchi’s fractal 

dimension (HFD) has already been used to analyze the complexity of brain recording [13, 26] and other some 

biological signals [27].  

Let the curve of fractal dimension fD is denoted by L(k), representing amplitude of the signal under 

consideration in a plane as a function of time. If the length of this curve is scales as 

L(k) ,fD
K


  1< fD <2, 

the curve is said to have fractal dimension fD .  

If fD =1 then it is a simple line and if fD =2 then the curve nearly fills out the whole plane. In general, 

using fD
 
a huge number of data points would be summarized in an interpretable way. Higher values of fD

 

correspond to the presence of higher frequencies in the signal’s Fourier spectrum.  

Let us define x(1), x(2), ..., x(N) be the values of a finite set of time series observations, which are taken in a 

regular interval, where i= 1,2,…,N  and N is the number of points in the time series. Here x are the successive EEG 

values.  

For a ranges of k values, k= 1,2, …, kmax, construct k new times series ,K
mx  

K
mx = {x(m), x(m+k),… ,x(m+ik ),..., 















 
 k

k

mN
mx int },  m=1,2,…,k, 
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where k and m are intergers and int(•) is the integer part, k indicates the discrete time interval between points, 

whereas m=1,2,…,k, represents the initial time value. Now the length )(kLm of each new time series, i.e. the 

length of the curve 
K
mx , can be defined as follows; 

 
,

1
))1(()(

1
)(

*
1
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 
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1
 is a normalization  factor, and 
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 


k

mN
N int*

. 

Thus, the length of the curve for the time interval k is defined as the average of the average of the k values )(kLm , 

m= 1,2,…,k,
  

),(
1
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1

kL
k

kL m

k

m





 

ln L(k) = constant – fD  ln (k) + error(k), 

where k= kmin,...,kmax.
 

The value of kmin and kmax have to be chosen in advance. Finally, when )(kL is plotted against (1/k) on a double 

logarithmic scale, with k= 1,2,…,kmax, the data should exhibits a straight line, with a slope fD
 
equal to the FD of 

EEG. Thus HFD is defined as the least square estimator of a slope of the line that fits the {ln [L(k)], ln (1/k)}.  

In the next section, we will discuss about the multivariate tests that are common used in MANOVA. Also 

multivariate tests based on contrasts will discuss and multivariate modeling of fractal dimension with estimation of 

parameters.  

 

3. MULTIVARIATE ANALYSES  

Let us consider the following MANOVA model: 

X= BC + E, 

where X: p×n, B: p×k, C: k×n and ENp,n(0,∑, I). Matrices B and ∑ are unknown parameters. X is the data matrix; 

C is known between individual design matrix and the columns of E are independent and the dispersion of each 

column equal to .  

To test the following null hypothesis about equality of the mean responses with the assumption; the covariance 

matrices of the different groups of responses are assumed to be equal, Wilks’ lamda, Lawley-Hotelling’s trace, 

Pillai’s Trace and Roy’s largest root tests [28] can be used to test the equality of the mean responses. These tests, 

however, may become seriously biased when the assumption of equality of covariance matrices is violated.   

Now we will discuss test statistics for contrasts.  

 

3.1. Multivariate Significance Test for the Contrasts 

A contrast is a linear combination of two or more group means. We have a contrast among the population 

mean vectors µ1, µ2, …, µk,  given by  
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k21i μμμC iki2i1 c...cc  , 

where µk is the mean vector for the kth group and Ci is the ith contrast vector.  

This contrast is estimated by replacing the population mean vectors by the sample vectors: 

.c...ccˆ
iki2i1 k21i μμμC   

The test statistic for the above contrast with the null hypothesis H0: Ci=0 versus Ha: Ci0 is given by  

,CSCT i

1

wi

1
k

1j

2 














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


 

j

2
ij

n

c

 

where    
 


iij

k

1i

iij

n

1j

w X-XX-XS 1f is the sample pooled within-group covariance matrix. The test 

statistic T2 can be transformed into an F statistic with p and (dfe – p+1) degrees of freedom,  

21
T

pdf

pdf
F

e

e













 , 

where dfe is the error degrees of freedom. 

 

3.2. Multivariate Modeling of Fractal Dimension 

In the model X= BC + E, our interest is to test the hypothesis GB=0, where G is known and formulated 

according to null hypothesis . However, we shall extend the model (3) and consider   

X= BC + E,            GBF=0,                                (5) 

where F is known. According to Kollo and Rosen [29] this model is equivalent to an extended Growth Curve 

model, i.e.   

X= A1B1C1+A2B2C2 + E,                                          

where EN(0,∑,I) and A1=  oG , C1= C, A2=  G and C2= CF ,  oG is any matrix spanning the orthogonal 

complement to the space generated by column of   .G  It is important to observe that the column space of 2
C  is 

included in the column space of 1
C . According to Kollo and Rosen [29] the estimator of B1, B2 and  of this model 

obtained as well as moments and density approximations for each of them.  

In this work we are interested in model (5) and the following hypotheses  

H0: GBF=0  against Ha: GBF≠0 

The test statistic is  

U=
WV

V


=

WVI 1

1
,               (6) 

where 

 

(7) 

 

,GA)SAG(V 11  
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,ˆˆ )GBF(RF)FF)(B(GW 1  

   (8) 

,ˆ 1111 )C(CCXASA)SA(B  
   (9) 

,1  )C(CC)XSAA)SAA(S(SXC)C(C)C(CR 1111111

 

,XC))C(CCX(IS 1  

   (10) 

To test the  H0: GB=0, i.e. F= I ,the identity matrix, Srivastava [30] suggested to use the likelihood ratio test 

statistic. The null hypothesis H0 is  rejected if  

,U c



SSTRSSE

SSE

 

where c is chosen such that the error of first type is , and 

)x(x)x(xVSSE
.ji j

K

j

nj

i
.ji j

 
 

 
K

j
...j...jj
)xx)(xx(nWSSTR

 

where f= n-k, i= 1,2,3,…,nj and j= 1, 2, 3,…,k.  

The following asymptotic expansion gives a good approximation for any constant z>0,    

P[-(f-
2

1
(p-m+1))lnU>z] = P[

2
pm >z]+     zχPzχPγ

f

1 2
pm

2
4pm2

 +O(f-4) 

where m= k-1, 
48

)5( 2 


mppm
 , 

2
pm denotes the chi-square random variate with DF pm, and O(f-4) 

represents terms that goes to zero.  

 

For large f , 

P( -(f-
2

1
(p-m+1))lnU >z)  P(

2
pm >z) 

Therefore the H0: GB=0 is rejected if -(f-
2

1
(p-m+1))lnU ≥ 

2
pm .  

Next, we present the hypotheses which will be of interest when analyzing EEG data. 

Let µijk is the mean Df of kth phases with jth electrode locations and ith diagnosis groups. Here i =1,2,3;  j=1,2; 

and k= 1,2. Also define the following matrices that will use in different types of null hypothesis:  

G1= ,
1010

0101












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G2= ,
1100

0011












 

F = ,

1

1

0

0

1

1



















  

and the parameter B in (4)  is defined as, 

B= .

322222122

321221121

312212112

311211111





























 

The following hypotheses are of interest: 

(1) H01: There is no difference between the two electrodes locations ( Fp1 and Fp2), which is equivalent to  G1B= 

0, where G1 is defined earlier.  

If  H0: G1B= 0 then 

–(f – Utr ln))1(
2

1
  

.

~

0

asym

H
2
rt    (11) 

       where r = rank of G1 and  t= rank of F. U  and f is defined in page 14.  

(2)  The  second hypothesis of interest is  

H02: There is no difference between the two phases (Phase I-III and Phase IV), 

i.e. which is equivalent to  H02:G2B= 0, where G2 is defined above. 

  To test G2B= 0, the test statistic in (11) will be used.   

(3) The third hypothesis of interest is  

H03: There is no difference between the diagnostic groups, i.e. H0: BF= 0, where F is defined in previous page. 

To test BF= 0, the test statistic in (11) will be used.   

Now, one can extend the null hypothesis from H0: GB=0 to H0: GBF=0.  

(4) The fourth hypothesis of interest is   

H04: There is no interaction effect between electrodes locations and the diagnostic groups, i.e. H0: G1BF= 0, 

where G1 and F are defined in previous page. 

To test G1BF= 0, the test statistic in (11) will be used.  

(5) The fifth hypothesis of interest is   

H04: There is no interaction effect between phases and the diagnostic groups. 

i.e. H0: G2BF= 0, where G2 and F are defined in previous page. 

To test G2BF= 0, the test statistic in (11) will be used.  

 

In next section, we will focus on model validation. 

 

3.3. Checking the Equality of Variance-Covariance Matrices 

Another important assumption of MANOVA is that the covariance matrices across all groups are equal. It 

implies that there exists no substantive difference between the variances of different groups of dependent variables. 

In a simple regression model, it is defined as the homogeneity of residual variances. 
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Let Xij be the jth set of response variables in the ith cell; ni is number of cases in the ith cell; total sample size 

, n= n1+n2+…+nk. Hence 

Means, 



kn

j in1

i j

i

x
x , 

Cell covariance matrix; )x)(xx(xSΣ ii j

n

1j

ii jii

i




 
1n

1ˆ

i

, 

Pooled covariance matrix; i

k

1i

)S(SΣ 





 1n
kn

1ˆ
i , 

Box’s M test statistic is used to test the null hypothesis about the homogeneity of covariance matrices.  In 

the next section, about the data are discussed.  

 

4. DATA 

The data used in this example are synthetic data, i.e. responses from patients are created so that they resemble 

responses from real study patients. The sample consists of 28 patients with severally depressed patients and with 

three different diagnoses. Five patients have psychotic depression (PD), seven have bipolar disorder (BD) and 

sixteen patients have unipolar depression (UD). Two channels of EEG of left and right prefrontal-to-ipsilateral 

coded Fp1 and Fp2, respectively, were recorded. The Fp1 and Fp2 were assessed according to the international 10-

20 system (see Figure1), an internationally recognized method to describe and apply the location of scalp electrodes 

in the context of an EEG test. This system is based on the relationship between the location of an electrode and the 

underlying area of cerebral cortex. The "10" and "20" refer to the actual distances between two electrodes are either 

10 or 20 percent of the total front–back or right–left distance of the scalp.  

The digitalized data from the digital port of MECTA equipment were simultaneously recorded and transferred 

to computer hard disc drive. The continuous EEG signals were digitalized at a sampling frequency of 128 Hz. None 

of the patients had received ECT during the last three months. Every patient was treated 6-12 times with recording 

of EEG and the average of the readings was used in the analysis.  

 

 

 

Figure-1. Map of locations of the EEG electrodes/channels 
Source: Map of locations of the EEG electrodes/channels on the scalp according to International 10-20 System. EEGs were recorded from Fp1 
and Fp2, which are the standard locations for treating patients with ECT. 
 
 

http://en.wikipedia.org/wiki/Scalp
http://en.wikipedia.org/wiki/EEG
http://en.wikipedia.org/wiki/Cerebral_cortex
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Now we will discuss the obtained results. 

 

5. STATISTICAL ANALYSIS 

5.1. Descriptive Statistics 

Table 5.1 contains the mean values of D f of two phases Phase I-III and Phase IV for the two different 

electrodes/channels from different diagnoses groups of depressed patients. The result shows that the mean values 

of Df for phase I-III are lower than those for phase IV. Lower SE values implies lower variability of D f  are observed 

for the both channels Fp1 and Fp2 for Phase I-III.  
 
Table-5.1. Average of fractal dimension Df (SE) value for different diagnoses groups of depressed patients; from Phase I-III and Phase IV at 
different electrode locations. 

Diagnosis N Fp1 Fp2 

Phase I-III Phase-IV Phase I-III Phase-IV 

Psychotic depression 5 1.210 
(0.018) 

1.538 
(0.049) 

1.194 
(0.022) 

1.712 
(0.064) 

Bipolar disorder 7 1.266 
(0.025) 

1.513 
(0.053) 

1.261 
(0.023) 

1.553 
(0.069) 

Unipolar depression 16 1.250 
(0.015) 

1.584 
(0.036) 

1.251 
(0.015) 

1.630 
(0.044) 

 

 

5.2. Multivariate Analysis of Variance 

Multivariate tests discussed in Section 3.1, are conducted to determine if the mean vectors for three different 

groups (PD, BD and UD) of the four dependent variables are significantly different or not (an overall or global test 

for equality of mean vectors). The results presented in Table 5.2 (significant that indicates at the 5% level of 

significance) indicate that mean vectors for three groups are statistically different. 

 
Table-5.2. Different test statistics for the null hypothesis; H0: there is no significance vector mean difference between 
the different diagnosis groups of the fractal dimension Df 

Name of the statistic’s Statistic p-value 

Wilks’ Lamda 0.4918 0.0342 
Pillai’s Trace 0.5404 0.0499 
Hotelling-Lawley Trace 0.9677 0.0236 
Roy’s Greatest Root 0.8945 0.0041 

         

The univariate test for individual dependent variables with the null hypothesis about equality of the means of 

the different groups, are not significant at 5% level (see Table 5.3).  

 
Table-5.3. Univariate analysis of variance for individual response variables with   H0: there have no mean differences between 
the different diagnoses of the individual fractal dimension Df. 

Variables Between Group 
MSS 

Between Group 
MSS 

F Statistics 
(p-values) 

Bartlett's Chi-
Square 

Fp1_Phase I-III 0.0061 0.0032 1.88(0.173) 1.299 (0.522) 
Fp1_Phase IV 0.0126 0.0192 0.66(0.526) 0.702(0.704) 
Fp2_Phase I-III 0.0090 0.0034 2.68(0.089) 0.985(0.611) 
Fp2_Phase IV 0.0484 0.0290 1.67(0.209) 0.333(0.847) 

                  

5.3. Analysis of Contrasts 

The overall multivariate test showed significant (see the Section 3.2), which means that considerable differences 

between different groups exit. We proceed with studying pair wise difference and some predefined contrasts. We 

set the multivariate test of PD versus the average of BD and UD, then BD versus the average of PD and UD, and 

UD versus the average of PD and BD. To find where the differences are, some contrasts shown in Table 5.4 are 

studied. PD shows statistical difference with the average of BD and UD, BD is also different from the average of PD 
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and UD but UD is not significantly differ from the average of PD and BP. Further the pair wise comparison shows 

that in every pair the average are statistically different from one diagnosis group to another except (PD, UP) pair.    
 

Table-5.4. Test statistics for different types of contrasts testing equality of group means of the fractal dimension Df. 

Contrasts Wilk’s  Pillai’s 
Trace 

Hotelling-
Lawley Trace 

Roy’s Greatest 
Root 

F Statistic p-value 

Contrasts with three groups of diagnoses 
2(PD)-BD-UP=0 0.6169 0.3831 0.6211 0.6211 3.42 0.0257 
2(BD)-PD-UP=0 0.5410 0.4590 0.8484 0.8484 4.67 0.0070 
2(UD)-PD-BP=0 0.8511 0.1489 0.1750 0.1750 0.96 0.4476 

Pair wise contrasts 
PD-BD=0 0.5331 0.4669 0.8757 0.8757 4.82 0.0061 
PD-UP=0 0.8613 0.1387 0.1611 0.1611 0.89 0.4886 
BD-UP=0 0.6305 0.3695 0.5859 0.5859 3.22 0.0317 

           PD, BD and UP stand for the mean vector of fractal dimension for psychotic depression, bipolar disorder and unipolar depression respectively. 

 

5.4. Multivariate Modeling of Fractal Dimension 

For the modeling of fractal dimension Df  will use the general multivariate model defined in Section 3.2,  i.e.  

X= BC+E, 

where X: 4×28, B: 4×3,C: 3×28 and EN4,28(0,, I). Matrices B and  are unknown parameters. In this model, each 

column of X represents one individual in Phase I-III and Phase IV for FP1 and FP2, respectively.  

Here, the data matrix X is the following  

X   =





















1.781.291.511.28

1.571.231.491.24

............

1.621.191.401.19

1.551.131.451.22

, 

The columns here represent 4 repeated measurement on patients, i.e. Fp1_phase I-III,  Fp1_phase IV,  

Fp2_phase I-III,  Fp2_phase IV.  

The between-individual design matrix C corresponds to the 3 diagnoses groups is  

C=























16

7

5

100

010

001

 

where 1/
5,1/

7, 1/
16 denote row vectors of  size 5, 7 and 16  respectively having all element equal to one.

 

 

Now, we would like to test the following hypothesis i.e. equality of two multivariate means,  

H01: There is no difference in the average Df between the two electrodes locations Fp1 and Fp2, is equivalent to 

G1B= 0,  

where G1 and B is defined in Section 3.2.  

Under the null hypothesis the test statistic (described in the Section 3.2) 

–(f- Utr ln))1(
2

1
 , 

approximately follows chi-squared distribution wit rt DF as f is large. Here f= n- number of column in 1G= 28-

2=26, r = ρ(G1)= 2 and   t =ρ(F)= 2.  

We obtain the following results: 
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The estimated total sum squared matrix described in (10), 

S=



















7476229.00689314.04519629.00115857.0

0689314.00870995.00239677.0 0.0736429

4519629.00239677.04772166.0 0.0154857

0115857.0 0.0736429 0.0154857 0.0835714

 

where  

Σn.S ˆ  

and the estimated B describe in (9) is,  

B̂ =



















630000.1552857.1712.1

250625.1261429.1194.1

584375.1512857.1538.1

250000.1265714.1210.1

 

Further, V in (7) is,  

V= ,
6968595.04900523.0

4900523.05298166.0








 

 and  W in (8) is, 

W= .
150012.0051062.0

051062.0038726.0








 

So V= 0.129056, and V+W= 0.188678, giving U = 0.684004. 

Now the observed value of the test statistic is –(f- Utr ln))1(
2

1
  = 9.685, leading to the p-value 

0.046. Thus the null hypothesis is rejected at 5% level of significance which implies that there is a significant 

difference in the average Df between the two points Fp1 and Fp2. 

The second hypothesis to test is  

H02: There is no difference the average Df between the two phases (Phase I-III and Phase IV), i.e. which is 

equivalent to  

H02:G2B= 0, 

where G2 and B is defined in Section 3.2.  

Under the null hypothesis the test statistic  

–(f- Utr ln))1(
2

1
 , 

approximately follows chi-squared distribution wit rt df as f is large. 

So V= 0.005117  and V+W= 0.007873, and U = 0.649965. 

where 

V= 







150012.0048864.0

048864.0023385.0
, 

W= 











069658.000795.0

00795.0001058.0
. 
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The observed value of test statistic is –(f- Utr ln))1(
2

1
 =10.986, leading p-value 0.027 . Here r = ρ(G2)= 

2 and t =ρ(F)= 2. We reject the null hypothesis at 5% level of significance which implies that there is a significant 

difference in mean response of the average Df between the two phases PhaseI-III and Phase-IV. 

Now the third null hypothesis is; 

H03: There is no difference between the three diagnostic groups, i.e. BF= 0, where B and F is defined in Section 3.3.  

The following test statistic is used  

–(f- Utr ln))1(
2

1
 . 

Under H0 it approximately follows chi-squared distribution wit rt DF as f is large. 

We have V= 0.155 and V+W= 0.698, giving U = 0.222. here 

V= 











1727706.10260233.0

0260233.01326523.0
, 

W= 











2400094.10009620.0

0009620.01568740.0
. 

The observed value of the test statistic –(f- Utr ln))1(
2

1
  = 38.38741 leading p value <0.001 , where  r 

=ρ(G2)= 2 and  t =ρ(F)= 2. We reject the null hypothesis at 5% level of significance which implies that there is a 

significant difference in mean response of Df between the three diagnoses. 

Next null hypothesis is; 

H04: There is no interaction effect between electrodes locations and the diagnostic groups, i.e. G1BF= 0,  

       where G1, B and F is defined in Section 3.3.  

The following test statistic is used  

–(f- Utr ln))1(
2

1
 . 

Under H0 it approximately follows chi-squared distribution wit rt DF as f is large. 

 

We have V= 0.00512 and V+W= 0.007873, giving U = 0.649962.  

here 

V= 







320914.0048864.0

048864.0023385.0
, 

W= 











0696577.00079495.0

0079495.00010577.0
. 

The observed value of the test statistic –(f- Utr ln))1(
2

1
  = 10.986 leading p value = 0.0267 , where  r 

=ρ(G2)= 2 and  t =ρ(F)= 2. We reject the null hypothesis at 5% level of significance which implies that there is 

interaction effect between electrodes locations and the diagnostic groups. 

Next null hypothesis of our interest is; 

H05: There is no interaction effect between phases (Phase I-III and Phase IV) and the diagnostic groups, i.e. 

G2BF=0, where G2, B and F is defined in Section 3.3.  
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The following test statistic is used  

–(f- Utr ln))1(
2

1
 . 

Under H0 it approximately follows chi-squared distribution wit rt DF as f is large. 

We have V= 0.12906 and V+W= 0.188678, giving U = 0.684004.  

here  

V= 







696859.0490052.0

490052.0529817.0
, 

W= 







 150012.0051062.0

051062.00387263.0
, 

The observed value of the test statistic –(f- Utr ln))1(
2

1
  = 9.684 leading p value = 0.04608 , where  r 

=ρ(G2)= 2 and  t =ρ(F)= 2. We reject the null hypothesis at 5% level of significance which implies that there is 

interaction effect between phases and the diagnostic groups. 

 

5.5. Assessing Equality of Group Covariance Matrices 

The value of Box’s M statistic to test the equality of these three group covariance matrices is 17.82 with p-

value greater than 0.10, indicates that there exists no substantive difference between the variances of different 

response groups. 

 

Now we will summarize the results of this study. 

 

6. DISCUSSION 

In this work, multivariate analysis of EEG data comprises multivariate analysis of variance and discriminant 

analysis. We also assessed local complexity of EEG signals by fractal dimension. Usually in ECT, data for EEG is 

obtained from a small sample. The main goal of the master thesis was to work on diagnostic of the multivariate 

model that we used to study the complexity of EEG. In particular, the performance of a newly proposed method for 

identifying outliers based on the eigenvalues of the sample covariance matrix was investigated here, and compared 

to Mahalanobis distance as based method.  

The descriptive statistics showed that the mean values of fractal dimension D f for phase I-III are always lower 

than that for phase IV, also with lower SE values. That implies the low variability of Df with low mean are observed 

for the both channels Fp1 and Fp2 for Phase I-III. At the 5% level of significance, mean vectors for the three group 

diagnoses are statistically different.  

There is a significant difference in mean response of D f between the electrodes locations Fp1 and Fp2 as well as 

significant difference between the phases Phase I-III and PhaseIV. Furthermore, it has been shown that there is a 

significant difference in mean response of Df between the three diagnoses. There have been detected significant 

interaction effects between electrode locations and diagnoses. Significant interaction effects were found between 

phases and diagnoses group.  

Using graphical method, the response variables also do not deviate from multivariate normality. Insignificant 

Mardias statistic based on skewness and kurtosis showed that there is no significant deviation from the multivariate 

normal distribution. Chi-square (2) test statistic based on skewness and kurtosis shows all the response variables 

are normal individually except Fp1_PhaseIV. The value of Box’s M statistic to test the equality of these three group 
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covariance matrices is not significant, indicates that there exists no substantive difference between the variances of 

different response groups. 

The outlying observations were identified based on Mahalanobis distance and MED method. By MD method, 

there are identified two multivariate outlying observations whereas using MED method four multivariate outlying 

observations were found. In general, one could see that MED works better compare to MD method as we can 

identify the outlying observations at first time calculation whereas in MD method needs fourth time calculation. 

This result confirms [31] results. According to Gao, et al. [31] MED method is a quite powerful tool for 

identifying multivariate outlying observations. This thesis also gives mathematical ideas from multivariate 

statistical analysis to find a quick solution or a good approximation of a complex scientific problem.  Further 

simulation studies are needed to investigate the performance of MED method in case of small samples with 

covariance matrices having different structures, for example with specific pattern or heteroscedastic covariance 

matrices.  
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Appendix-1. SAS Code to test the null hypothesis described in Section 3.2.  

proc iml;                                                                                                                                                                                                                                                        
A= I(4); /* Get a Identity matrix */                                                                                                                                                                                                                                      
C={1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,                                                                                                                                                                                                      
   0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,                                                                                                                                                                                                     
   0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1};  

/* Get a between individual design matrix C*/                                                                                                                                                                                  
X={1.22 1.19 … 1.28,  
   1.45 1.40 … 1.51, 
   1.13 1.19 … 1.29,  
   1.55 1.62 … 1.78}; /* Get the data matrix */ 
G1={1 -1 0 0, 0 0 1 -1};  /* For testing the equality of mean between two phases MpI-III and MpIV */                                                                                                                                                                                                                                 
G2={1 0 -1  0, 0 1 0 -1}; /* For testing the equality of mean between two points Fp1 and Fp2 */                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
F={1 0,-1 1,0 -1;   /* Get a matrix F */    
CCt= C*C`;        /* Get a matrix (CC’) */                                                                                                                                                                                                                                                   
Cctin=inv(CCt);          /* Get a matrix (CC’)-1 */                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
Ctcctinc= C`* Cctin*C;  /* Get a matrix C’(CC’
Sm=I(28)-ctcctinc;                                                                                                                                                                                                                                               
S=X*Sm*X`;    /* Get a matrix S=X(I-C’(CC’)-1C)X’ */                                                                                                                                                                                                                                                    
Si= inv(S);              /* Get a matrix (S)-1 */                                                                                                                                                                                                                                   
AtSinA= A`* Si*A ;         /* Get a matrix A’(S)-1A */                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
B= inv(AtSinA)*A*Si*X*C`*Cctin; /* Get B matrix
R1=Si*A*inv(AtSinA)*A`*Si;                                                                                                                                                                                                                                            
R2= Si-R1;                                                                                                                                                                                                                                                       
R3= C*X`*R2*X*C`*Cctin;                                                                                                                                                                                                                                          
R= Cctin+Cctin*R3;           /* Get R matrix
V1=G1*inv(AtSinA)*G1`;        /* Get V matrix for first test*/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         
W11= G1*B*F;                                                                                                                                                                                                                                                     
W12= inv(F`*R*F);                                                                                                                                                                                                                                                
W13= F`*B`*G1`;                                                                                                                                                                                                                                                  
W1=W11*W12*W13;   /* Get W matrix
VpW1=V1+W1;                                                                                                                                                                                                                                                       
detV1=DET(V1);               /* Get determinant of V matrix
detVpW1=DET(VpW1);           /* Get determinant of V+W matrix
U1=detV1/detVpW1;         /* Get U statistic
V2=G2*inv(AtSinA)*G2`;       /* Get V matrix for second test
W21= G2*B*F;                 
W22= inv(F`*R*F);                                                                                                                                                                                                                                                
W23= F`*B`*G2`;                                                                                                                                                                                                                                                  
W2=W21*W22*W23;            /* Get W matrix for second test
VpW2=V2+W2;                                                                                                                                                                                                                                                      
detV2=DET(V2);               /* Get determinant of V matrix
detVpW2=DET(VpW2);           /* Get determinant of V+W matrix */                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
U2=detV2/detVpW2;                                                                                                                                                                                                                                                
Print S,B, R,V1,W1,V2, W2,U1,U2; /* output of S,B and test statistic
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Appendix-2. SAS code to test the normality of the fractal dimension Df  of EEG data. 

proc iml ; 
x ={ 
1.22 1.45 1.13 1.55, 
1.19 1.4 1.19 1.62, 
. . . . 
. . . . 
1.28 1.51 1.29 1.78} ; 
/* Matrix x can be created from a SAS data set as follows: 
data eeg; 
infile 'eeg.dat'; 
input x1 x2 x3 x4; 
run; 
proc iml; 
use eeg; 
read all into x; 
*/ 
/* Here we determine the number of data points and the dimension of the vector. The variable dfchi is the degrees of freedom for 
the chi square approximation of Multivariate skewness. */ 
n = nrow(x) ; 
p = ncol(x) ; 
dfchi = p*(p+1)*(p+2)/6 ; 
/* q is projection matrix. s is the maximum likelihood estimate of the variance covariance matrix. g_matrix is n by n the matrix 
of g(i.j) elements. beta1hat and beta2hat are respectively the Mardia's sample skewness and kurtosis measures. statistic1 and 
statistic2 are the test statistics based on skewness and kurtosis to test for normality and pvalskew and pvalkurt are 
corresponding p values. */ 
q = i(n) - (1/n)*j(n.n.1); 
s = (1/(n))*x`*q*x ;  
s_inv = inv(s) ; 
g_matrix = q*x*s_inv*x`*q; 
beta1hat = ( sum(g_matrix#g_matrix#g_matrix) )/(n*n); 
beta2hat =trace( g_matrix#g_matrix )/n ; 
statistic1 = n*beta1hat/6 ; 
statistic2 = (beta2hat - p*(p+1) ) /sqrt(8*p*(p+2)/n) ; 
pvalskew = 1 - probchi(statistic1.dfchi) ; 
pvalkurt = 2*( 1 - probnorm(abs(statistic2)) ); 
print s ; 
print s_inv ; 
print 'TESTS:'; 
print 'Based on skewness: ' beta1hat statistic1 pvalskew ; 
print 'Based on kurtosis: ' beta2hat statistic2 pvalkurt; 
/* mjb is multivariate JB test statistic to test for normality and pvaljb is corresponding p values. */ 
mjb=n*(beta1hat/6+((beta2hat-p*(p+2))*(beta2hat-p*(p+2)))/(8*p*(p+2))); 
pvaljb= 1 - probchi(mjb.dfchi) ; 
print beta1hat beta2hat mjb pvaljb; 
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