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The space-time fractional modified equal-width equation is a class of fractional partial 
differential equations which have been used widely in nonlinear optics, solid state 

physics. In this article, the improved ( / )G G - expansion method has been proposed to 

construct more new exact solutions of the space-time fractional modified equal-width 
equation in the sense of modified Riemann-Liouville derivative. The traveling wave 
transform has been extended to convert the fractional order partial differential equation 
into an ordinary differential equation. In the end, three families of exact analytical 
solutions are obtained and expressed them in terms of the hyperbolic, trigonometric, 
and rational functions with arbitrary parameters, Which reveals that the 

improved ( / )G G -expansion method is very effective and reliable for solving 

fractional order partial differential equations. Moreover, the graphical representation of 
solution is given at different values of , Which is helpful for people to better study the 
physical structure of solutions and to analyze the nonlinear optical problems in 
nonlinear systems. 
 

Contribution/Originality: This study contributes in the existing literature through the improved ( / )G G  -

expansion method. By applying this method, more new exact solutions of the space-time fractional modified equal-

width equation are obtained. The resulting solutions are useful for analyzing nonlinear optics problems. 

 

1. INTRODUCTION 

Nonlinear differential equations involving fractional order derivatives are general forms of integer-order 

classical differential equations. It is well known that nonlinear fractional differential equations (FDEs) cover many 

fields such as physics, biomechanics, chemistry, biology, power-law non-locality, relativity, nonlinear optics, 

engineering, solid mechanics, electricity, signal processing and so on Kaplan and Bekir [1]; Sakar and Saldır [2]; 

Chen and Jiang [3]; Ilie, et al. [4];  Roy, et al. [5]; Ortigueira, et al. [6]; Abrahim [7]; Subasi, et al. [8]; Agom, et 

al. [9]. These fractional differential equations (FDEs) play a crucial role in almost all areas of life. In order to better 

understand the motion law of nonlinear phenomena in natural sciences, it is essential to find the traveling wave 

solutions of FDEs.  

In the literature, problems involving nonlinear differential equations and systems are solved by many different 

powerful methods, such as the extended quantum Zakharov–Kuznetsov equation by Raza, et al. [10] the 

generalized nonlinear Klein-Gordon equation by Gepreel, et al. [11] the Korteweg-de Vries-Bejamin-Bona-

Mahony equation by Simbanefayi and Khalique [12] the generalized Radhakrishnan-Kundu-Lakshmanan 
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dynamical equation with power law nonlinearity by Lu, et al. [13] the nonlinear complex fractional generalized 

Zakharov dynamical system by Lu, et al. [14] the nonlinear complex fractional Schrodinger equation by Khater, et 

al. [15] modified KdV–Zakharov–Kuznetsov dynamical equation by Abdullah, et al. [16] the (2+1)-dimensional 

Boussineq dynamical equation by Ali, et al. [17] coupled Drinfel’d-Sokolov-Wilson equation by Tariq and Seadawy 

[18] the symmetric regularized long wave equation by Lu, et al. [19]. 

The nonlinear modified equal width equation is an important mathematical model used for describing various 

fluid mechanics in nonlinear systems, plasma physics, and nonlinear optics [20]. So far, with the development of 

symbolic computation software such as Maple, many effective techniques have been proposed to study traveling 

wave solutions of the nonlinear modified equal width equation. In Pinar and Öziş [21] the solutions of an original 

auxiliary equation of first-order nonlinear ordinary differential equation with the sixth-degree nonlinear term are 

given to obtain exact solutions of the modified equal width equation. Application of the dynamical system method is 

shown in Su and Tang [22] to study the exact travelling wave solutions of the modified equal width equation. 

Solitary waves of modified equal width equation are presented by direct integration in Yang and Xu [23]. The 

extended simple equation method and the exp ( - ( )  ) expansion method are used for solving the modified equal 

width equation in Lu, et al. [24]. K.R. Raslan and Khalid K. Ali employ the modified extended tanh method for 

solving the space-time fractional modified equal width equation in Raslan, et al. [25]. Alper Korkmaz implements 

various ansatz method to construct solutions of the space-time fractional modified equal width equation [26]. In the 

present paper, the improved ( / )G G -expansion method is applied to find  more new and comprehensive exact 

solutions of the space–time fractional modified equal-width equation. 

The structure of this paper is as follows. In Section 2, the basic definitions and properties of fractional calculus 

are discussed, and the analysis of the improved ( / )G G -expansion method is formulated in Section 3. The 

complex exact solutions of the space-time fractional modified equal-width equation are obtained in Section 4. 

Finally, the conclusions and the advantages of the method are given in Section 5. 

 

2. THE DEFINITION OF THE FRACTIONAL CALCULUS AND ITS THEORY 

The Jumarie’s modified Riemann–Liouville [27, 28] derivative (RLD) operator of order  for the continuous 

function f: R R is defined by the following expression: 

0

( )

1
( ) ( ( ) (0)) ,0 1

(1 )( )

( ( )) ; 1, 1

x

x

n n

d
x f f d

dxD f x

f x n n n







   







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   

  
    


      ,                                                          (1) 

which will be applied in the following content, where the Gamma function is denoted as 

!
( ) lim

( 1)( 2) ( )p

p p

p




   

 
  

. 

Some meaningful parts of the modified RLD can be listed as below: 

(1 )

(1 )
xD x x   

 
 


  

 

{ ( ) ( )} ( ) ( )x x xD af x bg x aD f x bD g x     , 
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where a , b are constants and R   

{ ( ) ( )} ( ) { ( )} ( ) { ( )}x x xD f x g x g x D f x f x D g x    . 

3. DESCRIPTION OF THE IMPROVED ( / )G G -EXPANSION METHOD 

In this section, the improved ( / )G G -expansion method [29] has been discussed to obtain the solutions of 

nonlinear partial differential equations of fractional order. For this, consider the nonlinear fractional partial 

differential equation in the form: 

2 2( , , , , , , ) 0,0 , 1.t x tt xx t xf u D u D u D u D u D D u                                                     (2) 

Where   and  are fractional orders defined in the sense of the modified Rieman-Liouville derivative and 

( , )u u x t is an unknown function, f  is a polynomial in u and its fractional derivative involving nonlinear terms 

and highest derivatives, t  is the time variable and x  is the space variable. Then the following four steps of the 

improved ( / )G G -expansion method are given: 

Step1: Combine the independent variable x and t  into 
(1 ) (1 )

kx ct 


 

 
   

.We use the traveling wave 

variable transformation in Equation 2: 

( , ) ( ),u x t u          
(1 ) (1 )

kx ct 


 

 
   

                                                                       (3) 

where k  and c are non-zero constants. By substituting Equation 3 into Equation 2, then Equation 2 is reduced to a 

nonlinear ordinary differential equation of the polynomial in the form: 

( , , , , ) 0F u u u u                                                                                                                  (4) 

Where F is a function of ( )u u   and its derivatives with respect to  . 

Step2: Suppose the traveling wave solution of Equation 4 can be expressed in the following form:              

0 1

( ) ( / ) ( / )
m m

i i

i i
i i

u G G G G   

 

                                                                                 (5) 

where either m  or m  may be zero, but both of them cannot be zero simultaneously such that 

( 0,1,2, ), ( 1,2, , )i ii m i m   are arbitrary constants to be determined later [30]. and ( )G G   

satisfies the second-order nonlinear ordinary differential equation 

2 2( )GG GG G G                                                                                                     (6) 
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Where the derivative denoted by the prime with respect to  , ,   and  are genuine constants. By using 

Cole-Hopf transformation ( ) ln( ( )) ( ( ) / ( ))G G G      simplify Equation 6 into the Riccati equation 

2( ) ( ) ( 1) ( )                                                                                                      (7) 

The generalized Riccati Equation 7 has twenty-five distinct solutions [31] and (see Appendix 1 for details) 

Step3: Balancing the higher order derivative term and the higher order nonlinear term of (4) consequently, the 

value of the positive integer mcan be obtained. The detailed expression is the same as the following formula 

( ) ( )
[ ( )] ; [ ] ; [( ) ] ( ).

m K
m S

m K

d u d u
D u n D m n D u nm S n K

d d

 


 
                              (8) 

Step4: By Substituting Equation 5 into Equation 4 and using Equation 7, we get polynomials in 

( / ) ( 0,1, , )iG G i m   and ( / ) ( 1,2, , ).iG G i m  Then equating each coefficient of the resulting 

polynomials to zero, yields a system of over-determined equations for 0 1 1, , , , ,m m c      and  . 

Step5: Solving the algebraic equations system in Step 4 and obtaining the unknown constants. Substituting 

values of the constants together with the solutions of Equation 7,  new abundant and general type exact traveling 

wave solutions will be obtained for Equation 2. 

 

4. THE APPLICATION OF THE METHOD 

In this section, we consider space-time fractional modified equal-width equation [25, 26]: 

3 3( , ) ( , ) ( , ) 0.t x xxtD u x t D u x t D u x t                                                                              (9) 

 Where   and  are real parameters. Utilize the complex transformation for fractional differential Equation 3 of 

Step 1: 

( , ) ( ),
(1 ) (1 )

kx ct
u x t u

 

 
 

  
   

                                                                             (10) 

Then Equation 9 can be reduced into the following nonlinear ordinary differential equation: 

3 2( ) 0cu k u ck u                                                                                                     (11) 

Integrating Equation 11 once with respect to  , we obtain 

3 2 0cu ku ck u                                                                                                         (12) 

According to the third step of the improved ( / )G G -expansion method, using the balancing principle 

between u  and 
3u  in Equation 12 gives 1m  . Therefore, Equation 5 can be written as: 

1

0 1 1 1 1( ) ( ) ( ) , 0, 0
G G

u or
G G

      
                                                                (13) 

where 0 1,  and 1 are constants to be determined later. Inserting Equation 13 and its derivative with Equation 6 

and Equation 7 into Equation 12, the left-hand side is transformed into polynomials in 
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( / ) ( 0,1,2, , )iG G i m   and ( / ) ( 1,2,3, , ).iG G i m  Assembling each coefficient of the resulting 

polynomials to zero. Subsequently, we attain a set of algebraic equations for 0 1 1, , ,    and c (which we do not 

include it here for simplicity). To obtain the following two different sets of values, we can solve the over-determined 

system of algebraic equations by any computer program like Maple, Mathematica. 

Case-1: 

2 2 2 2 2

0 1 1 23/2

(2 2 2 ) 2 4
, , 0,

42 4

ck c k c k k
i i

kk

   
    

  

  
              (14) 

Case-2: 

2 2 2

0 1 1 2

2 2 4
, 0, ,

42

ck ck k k
i i

k

   
     

 

 
                                  (15) 

Substituting Equation 14, Equation 15 into Equation 13, we obtain respectively: 

 
 2 2

1 3 2

2 2 2 '
,          

2 4

c k cck G
u x t i i

Gk




  

  
  

                                                 (16)

 

 
1

2

2 '
,          

2

ck ck G
u x t i i

G

 
 

 


 

  
                                                                     (17)

 

Inserting the solutions of the Equation 7 see Appendix 1 into Equation 16 and simplify, we achieve the following 

solutions. 

When
2= -4 ( -1)>0   and ( 1) 0     ( ( 1) 0)or     

 
 

1

2 2

1 3 2

2 2 2
,

2 4

1 1
                . - tanh( )           

2( -1) 2

c k cck
u x t i i

k




  

 





  
    

                                                           (18)                          

 

 
 

2

2 2

1 3 2

2 2 2
,

2 4

1 1
                . - coth( )           

2( -1) 2

c k cck
u x t i i

k




  

 





  
    

                                                            (19)

 

 
 

3

2 2

1 3 2

2 2 2
,

2 4

1 1 1
             - (tanh( ) sech( ))    

2( -1) 2 2

c k cck
u x t i i

k

i




  

  





  
       

                                     (20) 
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 
 

4

2 2

1 3 2

2 2 2
,

2 4

1 1 1
             - (coth( ) csch( ))    

2( -1) 2 2

c k cck
u x t i i

k




  

  





  
       

                                     (21)

 

 
 

5

2 2

1 3 2

2 2 2
,

2 4

1 1 1
             - 2 (tanh( ) coth( ))    

4( -1) 4 4

c k cck
u x t i i

k




  

  





  
       

                                 (22)

 

 
 

   

6

2 2

1 3 2

2 2

2 2 2
,

2 4

cosh1
             -   

2( -1) sinh

c k cck
u x t i i

k

A B A

A B




  




 




                                                   
(23)

 

And the plot of 
61u for 1, 1, 2, 2, 1k c            and 0.25,0.5,0.75,1   is displayed in 

Figure1 (a)-(d). Consider 

 
 

   

7

2 2

1 3 2

2 2

2 2 2
,

2 4

cosh1
             - -    

2( -1) sinh

c k cck
u x t i i

k

A B A

A B




  




 




                                                    
(24)

 

Where A and B are non-zero constants. Consider the following: 

 
 

  
    

8

2 2

1 3 2

2 2 2
,

2 4

-2 cosh 1 2
                     

sinh cosh 1 2

c k cck
u x t i i

k




  








  
 
    
                                                           (25)

 

 
 

  
    

9

2 2

1 3 2

2 2 2
,

2 4

2 sinh 1 2
                    

cosh sinh 1 2

c k cck
u x t i i

k




  








  
 
    
                                                                        (26)   
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 
 

  
    

10

2 2

1 3 2

2 2 2
,

2 4

-2 cosh 1 2
                    

sinh cosh 1 2

c k cck
u x t i i

k

i




  








  
 
      
                                                           (27)

 

 
 

  
    

11

2 2

1 3 2

2 2 2
,

2 4

2 sinh 1 2
                     

cosh sinh 1 2

c k cck
u x t i i

k




  








  
 
      
                                                        (28)

 

 

 
Figure-1. (a)- (d) show the dark solitary wave solutions for

61u  at different values of  . 

           Source: The figure is plotted by Mathematica. 

When 
2-4 ( 1) 0      and    -1 0 ( or 1 0 )     

 

 
 

12

2 2

1 3 2

2 2 2
,

2 4

1 1
                - - tan( - )           

2( -1) 2

c k cck
u x t i i

k




  

 





  
     

                                                                   (29)
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 
 

 

13

2 2

1 3 2

2 2

2 2 2
,

2 4

cosh( )1
                -       

2( -1) sinh

c k cck
u x t i i

k

A B A

A B




  




 




                                                       
(30)

 

 
 

14

2 2

1 3 2

2 2 2
,

2 4

1 1 1
                - - (tan( - ) sec )        

2( -1) 2 2

c k cck
u x t i i

k




  

  





   
        

                           (31)

 

 
 

15

2 2

1 3 2

2 2 2
,

2 4

1 1 1
                - (cot( - ) csc )        

2( -1) 2 2

c k cck
u x t i i

k




  

  





   
         

                          (32)

 

 
 

16

2 2

1 3 2

2 2 2
,

2 4

1 1 1
                -2 - (tan( - ) cot )       

4( -1) 4 4

c k cck
u x t i i

k




  

  





   
        

                         (33)

 

 
 

 

17

2 2

1 3 2

2 2

2 2 2
,

2 4

- - - cos( - )1
                -       

2( -1) sin -

c k cck
u x t i i

k

A B A

A B




  




 




                                            
(34)

 

 
 

 

18

2 2

1 3 2

2 2

2 2 2
,

2 4

- - - cos( - )1
                - -       

2( -1) sin -

c k cck
u x t i i

k

A B A

A B




  




 




                                             
(35)

 

Where A and B are non-zero constants such that .022 BA  Consider the following: 
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 
 

  
    

19

2 2

1 3 2

2 2 2
,

2 4

-2 - cos 1 2
                      

sin cos 1 2

c k cck
u x t i i

k




  








  
 
    
                                                          (36)

 

 
 

  
    

20

2 2

1 3 2

2 2 2
,

2 4

2 - sin 1 2
                      

cos sin 1 2

c k cck
u x t i i

k




  








  
 
    
                                                   (37)

 

 
 

  
    

21

2 2

1 3 2

2 2 2
,

2 4

-2 - cos 1 2
                      

sin cos 1 2

c k cck
u x t i i

k




  








  
 
      
                                      (38)

 

 
 

  
    

22

2 2

1 3 2

2 2 2
,

2 4

2 - sin 1 2
                       

cos sin 1 2

c k cck
u x t i i

k




  








  
 
      
                                      (39)

 

When =0  and ( 1) 0     

 
 

  

23

2 2

1 3 2

2 2 2
,

2 4

                         
1 cosh( ) sinh( )

c k cck
u x t i i

k

k

k




  



   




 
                                                            (40)

 

 
 

  

24

2 2

1 3 2

2 2 2
,

2 4

cosh( ) sinh( )
                         

1 cosh( ) sinh( )

c k cck
u x t i i

k

k




  

  

   




 
                                                            (41)

 

Where k is an arbitrary constant. 

When = =0  and ( 1) 0    
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 
 

 25

2 2

1 3 2
1

2 2 2 1
,      

12 4

c k cck
u x t i i

ck




   

  
                                       

(42)

 

Where 1c  is an arbitrary constant. Substituting the solutions of the Equation 7 (see Appendix 1) into Equation 

17 and simplify. We obtain the following solutions. when 
2-4 ( 1) 0      and 

   -1 0 ( or 1 0 )       

 

 

Figure-2. (a)-(d) shows the solitary wave solutions for
12u at different values of  . 

Source: The figure is plotted by Mathematica. 
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 

 

12

1

2
,

2

1 1
                - tanh          

2 -1 2

ck ck
u x t i i

 
 

 

 






    
      

                                                           (43)

 

 

and the plot of 
12u  for 1, 1, 2, 2, 1k c            and 0.25,0.5,0.75,1  is displayed in 

Figure 2(a)-(d). Consider 

                        

 

 

22

1

2
,

2

1 1
                - coth          

2 -1 2

ck ck
u x t i i

 
 

 

 






    
      

                                                         (44)

 

and the plot of 
22u for 1, 1, 2, 2, 1k c             and 0.25,0.5,0.75,1  is displayed in 

Figure 3(a)-(d). Consider 

 

 

32

1

2
,

2

1 1 1
                - tanh sech     

2 -1 2 2

ck ck
u x t i i

i

 
 

 

  






       
           

                            (45)

 

                              

 

Figure-3. (a)-(d) shows the dark solitary wave solutions for
22u at different values of  . 

Source: The figure is plotted by Mathematica. 
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 

 

42

1

2
,

2

1 1 1
                - coth csch      

2 -1 2 2

ck ck
u x t i i

 
 

 

  






       
           

                                          (46)

 

 

 

52

1

2
,

2

1 1 1
                - 2 tanh coth     

4 -1 4 4

ck ck
u x t i i

 
 

 

  






       
           

                                          (47)

 

 

 

 

62

1
2 2

2
,

2

- cosh( )1
                -     

2 -1 sinh

ck ck
u x t i i

A B A

A B

 
 

 




 





                                                            
(48)

 

 

 

 

72

1
2 2

2
,

2

cosh( )1
                - -     

2 -1 sinh

ck ck
u x t i i

A B A

A B

 
 

 




 





                                                      
(49)

 

Where A and B are non-zero constants. Consider the following: 

 
  

    8

-1

2

-2 cosh 1 22
,   

2 sinh cosh 1 2

ck ck
u x t i i

 
 

  

  
 
    
                    

(50)

 

 

  
    

92

-1

2
,

2

2 sinh 1 2
                   

cosh sinh 1 2

ck ck
u x t i i

 
 

 







  
 
    
                                                             (51) 

 

  
    

102

-1

2
,

2

-2 cosh 1 2
                   

sinh cosh 1 2

ck ck
u x t i i

i

 
 

 







  
 
      
                                                (52) 
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 

  
    

112

-1

2
,

2

2 sinh 1 2
                  

cosh sinh 1 2

ck ck
u x t i i

 
 

 







  
 
      
                                                   (53) 

When 0)1(4-2    and      01or   01-  
 

 

 

 

122

1

2
,

2

1 1
                - - tan         

2 -1 2

ck ck
u x t i i

 
 

 

 






    
      

                                                           (54)

 

and the plot of 
122u  for 1, 1, 2, 2, 1k c             and 0.25,0.5,0.75,1   is displayed in 

Figure 4(a)-(d). Consider 

 

 
Figure-4. (a)-(d) Show the periodic solitary wave solutions for

122u at different values of  . 

Source: The figure is plotted by Mathematica. 



International Journal of Mathematical Research, 2019, 8(1): 1-20 
 

 
14 

© 2018 Conscientia Beam. All Rights Reserved. 

 

 

132

1

2
,

2

1 1
                - - cot         

2 -1 2

ck ck
u x t i i

 
 

 

 






    
      

                                                        (55)

 

 

 

142

1

2
,

2

1 1 1
                tan sec   

2 -1 2 2

ck ck
u x t i i

 
 

 

  






       
            

                           (56)

 

 

 

152

1

2
,

2

1 1 1
                - cot csc    

2 -1 2 2

ck ck
u x t i i

 
 

 

  






       
           

                              (57)

 

 

 

162

1

2
,

2

1 1 1
                -2 tan cot   

4 -1 4 4

ck ck
u x t i i

 
 

 

  






       
           

                              (58)

 

 

 

 

172

1
2 2

2
,

2

- - - - cos( - )1
                -     

2 -1 sin -

ck ck
u x t i i

A B A

A B

 
 

 




 





                                               
(59)

 

 

 

 

182

1
2 2

2
,

2

- - - cos( - )1
                - -     

2 -1 sin -

ck ck
u x t i i

A B A

A B

 
 

 




 





                                                 
(60)

 

Where A and B are non-zero constants such that
2 2 0A B  . Consider the following 

 

  
    

192

-1

2
,

2

-2 - cos 1 2
                   

sin cos 1 2

ck ck
u x t i i

 
 

 







  
 
    
                                                              (61)
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 

  
    

202

-1

2
,

2

2 - sin 1 2
                      

cos sin 1 2

ck ck
u x t i i

 
 

 







  
 
    
                                                  (62)

 

 

  
    

212

-1

2
,

2

-2 - cos 1 2
                       

sin cos 1 2

ck ck
u x t i i

 
 

 







  
 
      
                                     (63)

 

 

  
    

222

-1

2
,

2

2 - sin 1 2
                      

cos sin 1 2 -

ck ck
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Where k is an arbitrary constant. 

When 0,   and ( 1) 0     
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where 1c  is an arbitrary constant. 

 

5. DISCUSSION 

From the above examples, we can see that many new and complex exact solutions of the space-time fractional 

modified equal width equation can be obtained by using the improved (G' /G)-expansion method. The modified 



International Journal of Mathematical Research, 2019, 8(1): 1-20 
 

 
16 

© 2018 Conscientia Beam. All Rights Reserved. 

extended tanh method is employed to solve the space-time fractional modified equal width equation in Raslan, et al. 

[25]. As a result, the solution is expressed in the form of hyperbolic function and triangular function. Comparing 

with the solution in this paper, if the parameters take specific values, the results (18), (19), (22), (29), (33), (43), (44), 

(47), (54), (55), (58) are consistent with the solutions in Raslan, et al. [25]. In addition, solutions (20), (21), 

(23)~(28), (30)~(32), (34)~(42), (45), (46), (48)~(53), (56), (57), (59)~(67) are new exact solutions of the space-time 

fractional modified equal width equation. 

Alper Korkmaz use various ansatz method to solve the space-time fractional modified equal width equation 

[26]. The bright soliton solutions and singular solutions are expressed in the form of hyperbolic functions. 

However, the solutions (18)~(67) in this paper are obviously different from the results in the literature [26]. In 

addition, the solutions (29), (31)~(39), (54)~(64) obtained in this paper are in the form of trigonometric functions. 

The solutions expressed by (42), (67) are rational functions, which can be seen as new solutions obtained by 

improved (G' /G)-expansion method. 

Through the above comparative analysis, the validity, accuracy, superiority and wide applicability of the 

method are illustrated. It can be extended to different types of fractional partial differential equations. 

 

6. CONCLUSION 

In this paper, the improved (G' /G)-expansion method has been employed successfully to obtain the exact 

solutions of the space-time fractional modified equal-width equation, in the sense of modified Riemann-Liouville 

derivative. First, we convert the space-time fractional modified equal-width equation into an ordinary differential 

equation by the fractional complex transformation. As a result, we get new and more general exact solutions which 

are not found in the previous literature [25, 26]. The obtained exact solutions are reported in terms of the 

hyperbolic, the trigonometric and the rational functions with some parameters. All the solutions presented in this 

paper have been checked with Mathematica by putting them back into the original Equation 9. In addition, it is 

obvious that the method would be a reliable and effective mathematical tool to handle other fractional differential 

equations from natural sciences.  
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Where A and B are non-zero constants
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Where A and B are non-zero constants and satisfy the condition A2 - B2 > 0 
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