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ABSTRACT

The space-time fractional modified equal-width equation is a class of fractional partial
differential equations which have been used widely in nonlinear optics, solid state

physics. In this article, the improved (G' / G) - expansion method has been proposed to

construct more new exact solutions of the space-time fractional modified equal-width
equation in the sense of modified Riemann-Liouville derivative. The traveling wave
transform has been extended to convert the fractional order partial differential equation
into an ordinary differential equation. In the end, three families of exact analytical
solutions are obtained and expressed them in terms of the hyperbolic, trigonometric,
and rational functions with arbitrary parameters, Which reveals that the

Derivative

Hyperbolic function
Trigonometric function
Rational function.

improved (G’/ G) -expansion method is very effective and reliable for solving

fractional order partial differential equations. Moreover, the graphical representation of
solution is given at different values of & , Which is helpful for people to better study the
physical structure of solutions and to analyze the nonlinear optical problems in
nonlinear systems.

Contribution/Originality: This study contributes in the existing literature through the improved (G'/G) -
expansion method. By applying this method, more new exact solutions of the space-time fractional modified equal-

width equation are obtained. The resulting solutions are useful for analyzing nonlinear optics problems.

1. INTRODUCTION

Nonlinear differential equations involving fractional order derivatives are general forms of integer-order
classical differential equations. It is well known that nonlinear fractional differential equations (FDEs) cover many
fields such as physics, biomechanics, chemistry, biology, power-law non-locality, relativity, nonlinear optics,
engineering, solid mechanics, electricity, signal processing and so on Kaplan and Bekir [17; Sakar and Saldir [27];
Chen and Jiang [37; Ilie, et al. [47; Roy, et al. [57]; Ortigueira, et al. [67]; Abrahim [77; Subasi, et al. [87; Agom, et
al. [97]. These fractional differential equations (FDEs) play a crucial role in almost all areas of life. In order to better
understand the motion law of nonlinear phenomena in natural sciences, it is essential to find the traveling wave
solutions of FDEs.

In the literature, problems involving nonlinear differential equations and systems are solved by many different
powerful methods, such as the extended quantum Zakharov—Kuznetsov equation by Raza, et al. [10] the
generalized nonlinear Klein-Gordon equation by Gepreel, et al. [117] the Korteweg-de Vries-Bejamin-Bona-

Mahony equation by Simbanefayi and Khalique [127] the generalized Radhakrishnan-Kundu-Lakshmanan
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dynamical equation with power law nonlinearity by Lu, et al. [137] the nonlinear complex fractional generalized
Zakharov dynamical system by Lu, et al. [147] the nonlinear complex fractional Schrodinger equation by Khater, et
al. [157] modified KdV—Zakharov—Kuznetsov dynamical equation by Abdullah, et al. (167 the (2+1)-dimensional
Boussineq dynamical equation by Alj, et al. [17] coupled Drinfel’d-Sokolov-Wilson equation by Tariq and Seadawy
(187 the symmetric regularized long wave equation by Lu, et al. [197.

The nonlinear modified equal width equation is an important mathematical model used for describing various
fluid mechanics in nonlinear systems, plasma physics, and nonlinear optics [207]. So far, with the development of
symbolic computation software such as Maple, many effective techniques have been proposed to study traveling
wave solutions of the nonlinear modified equal width equation. In Pinar and Ozis [217 the solutions of an original
auxiliary equation of first-order nonlinear ordinary differential equation with the sixth-degree nonlinear term are
given to obtain exact solutions of the modified equal width equation. Application of the dynamical system method is
shown in Su and Tang [227] to study the exact travelling wave solutions of the modified equal width equation.

Solitary waves of modified equal width equation are presented by direct integration in Yang and Xu [237. The
extended simple equation method and the exp (-(0(&;)) expansion method are used for solving the modified equal

width equation in Lu, et al. [247]. K.R. Raslan and Khalid K. Ali employ the modified extended tanh method for
solving the space-time fractional modified equal width equation in Raslan, et al. [257]. Alper Korkmaz implements

various ansatz method to construct solutions of the space-time fractional modified equal width equation [267. In the
. ! . . . ~ .
present paper, the improved (G /G) -expansion method is applied to find more new and comprehensive exact

solutions of the space—time fractional modified equal-width equation.

The structure of this paper is as follows. In Section 2, the basic definitions and properties of fractional calculus
are discussed, and the analysis of the improved (G' / G) -expansion method is formulated in Section 3. The

complex exact solutions of the space-time fractional modified equal-width equation are obtained in Section 4.

Finally, the conclusions and the advantages of the method are given in Section 5.

2. THE DEFINITION OF THE FRACTIONAL CALCULUS AND ITS THEORY
The Jumarie’s modified Riemann—Liouville [27, 287 derivative (RLD) operator of order & for the continuous

function f: R —>R is defined by the following expression:

D f(x) = ﬁ%ﬁ(x—f)“(f(é)—f(O))d5,0<a<1

(F™(x)*™n<a<n+ln>1

which will be applied in the following content, where the Gamma function is denoted as

() = lim btp® |
e a(a+D(a+2)---(a+p)

Some meaningful parts of the modified RLD can be listed as below:

Dex’ = 1_‘l(l_i_}/)
X IFl+y—«)

y—o

D {af (x) +bg(x)}=aby f (x) +bD{g(x).
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where a, D are constants and Y€ R

DI{f ()9(x)}=g()D{f ()}+ f () D{g(x)}-
3. DESCRIPTION OF THE IMPROVED (G'/ G)-EXPANSION METHOD

In this section, the improved (G’ / G) -expansion method [297 has been discussed to obtain the solutions of

nonlinear partial differential equations of fractional order. For this, consider the nonlinear fractional partial

differential equation in the form:

2 2
f (u,D*u,D/u,D¥*u,D’u,DF D y,--) =0,0< o, B <1. (2)
Where & and IB are fractional orders defined in the sense of the modified Rieman-Liouville derivative and

u= U(X, t) is an unknown function, fisa polynomial in U and its fractional derivative involving nonlinear terms
and highest derivatives, U is the time variable and X is the space variable. Then the following four steps of the
improved (G' / G) -expansion method are given:

ke ctf
r@+p) I'd+p)

Step1: Combine the independent variable Xand t into 17 = .We use the traveling wave

variable transformation in Equation 2:
kS t?
Id+p) I'd+p)

where K and Care non-zero constants. By substituting Equation 3 into Equation 2, then Equation 2 is reduced to a

ux,ty=u), n (3)

nonlinear ordinary differential equation of the polynomial in the form:

F(u,u’,u",u”,--)=0 (4)

Where F is a function of U= U(T]) and its derivatives with respect to 77.

Step2: Suppose the traveling wave solution of Equation 4 can be expressed in the following form:
m . m -
u@m = a(G'IG) +> B (G'/G) (5)
i=0 i=1
where either &, or ,Bm may be zero, but both of them cannot be zero simultaneously such that

(07 (I =012,.. .m), ﬂl (I =12,..., m) are arbitrary constants to be determined later [307. and G= G(g}:)
satisfies the second-order nonlinear ordinary differential equation

GG" = AGG' + uG* +v(G')? (6)
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Where the derivative denoted by the prime with respect to 77,2,,/1 and Vare genuine constants. By using

Cole-Hopf transformation ¢(77) = |n(G(77))77 = (G’(T]) / G(?])) simplify Equation 6 into the Riccati equation

¢'() = u+ () + (v =D)¢* (17) (7)

The generalized Riccati Equation 7 has twenty-five distinct solutions 817 and (see Appendix 1 for details)
Step3: Balancing the higher order derivative term and the higher order nonlinear term of (4) consequently, the

value of the positive integer M can be obtained. The detailed expression is the same as the following formula

Dlu(m)]=n; D[%] =m+n; D[(u" %)S] =nm+ S(n+ K). (8)

Step4: By Substituting Equation 5 into Equation 4 and using Equation 7, we get polynomials in

(G’ / G)' (I =01..., m) and (G' / G)_i (I =12,..., m). Then equating each coefficient of the resulting

polynomials to zero, yields a system of over-determined equations for &, ,...C,, ,Bl, .. .ﬁm ,Cand V.

Steps: Solving the algebraic equations system in Step 4 and obtaining the unknown constants. Substituting
values of the constants together with the solutions of Equation 7, new abundant and general type exact traveling

wave solutions will be obtained for Equation 2.

4. THE APPLICATION OF THE METHOD

In this section, we consider space-time fractional modified equal-width equation [25, 267:
D’u(x,t) + D/’ (x,t) —oDFu(x,t) =0. (9)

Where & and O are real parameters. Utilize the complex transformation for fractional differential Equation 8 of
Step 1:
Irt+p T@Q+p)

Then Equation 9 can be reduced into the following nonlinear ordinary differential equation:

u(x,t) =u(m),n = (10)

—cu’ + &k (u®)' +ock’u” =0 (11)

Integrating Equation 11 once with respect to 77, we obtain
—cu +&ku® +ock’u” =0 (12)

According to the third step of the improved (G’/G) -expansion method, using the balancing principle

between U” and U° in Equation 12 gives M = 1. Therefore, Equation 5 can be written as:
G’ G’
-1
U(f):ao+%(6)+ﬂ1(6) oy #0,0rf #0 (13)

where &, ¢ and ,Blare constants to be determined later. Inserting Equation 13 and its derivative with Equation 6

-

and Equation 7 into Equation 12, the left-hand side 1is transformed into polynomials in
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(G’ / G)I (I = 0,1, 2, o m) and (G' / G)_i (I =1, 2,3, ceo m). Assembling each coefficient of the resulting

polynomials to zero. Subsequently, we attain a set of algebraic equations for &, OLl,ﬁl, Vand C(which we do not

include it here for simplicity). To obtain the following two different sets of values, we can solve the over-determined

system of algebraic equations by any computer program like Maple, Mathematica.

Case-1:
_.cks - 2J2c + k2002 2+k2512 +4k?5,
o =FIA NeE g =+ ( \/_3/2 J2c) b= 2 a (14)
2¢ Ak 1 O 4k ou
Case-2:

Jeks 0.4 -5 J2cks  2+K*SA% +4k*Su ]
oy =0,5 =Flu WV . (15)
J2¢ Je 4k 51

Substituting Equation 14, Equation 15 into Equation 13, we obtain respectively:

oy =FIAl——

VGG (zJ_+k25/12J_) G

W) =FA- e T (Ej (16)
Jeks . J2cks (G

U (X, 1) =FA—==Fiu = (Gj (17

Inserting the solutions of the Equation 7 see Appendix 1 into Equation 16 and simplify, we achieve the following

solutions.

When Q=A?-41(v-1)>0and A(v—1) =0 (oru(v—1)=0)
Vs _ (ZJZ+ k2sa2/2c
«/E 4k¥? ,u\/g

{-ﬂ{zw— tanh( ) 77)}}

u, (x,t)=Fik

(18)

Jeks _ (ZJZ+ k25122c)
V2 | Kl

u, (xt)=Fil

{_ﬂ{pﬂ/—ceth( \/_77)}} (19)
V&G _ (27 +eor )
u( ) +I/At\/Z IO
{_ﬂ{}w\/_ (tanh(—\/_ 77)+'36Ch(_*/_77))}} (20)
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ks . (2v2c+k?a222c
u, (x,t)=Fid cko ii( )
! J2¢ 4k¥? 1N Se

{-ﬂ{ﬁ+\/_(C0th(— VQr) £ eseh(5 \/_77))} (21)

Jeks (2@+ k25122c)
N-ZIAR TN

{_L[Q;H\/_(tanh( Q) +coth(= \/_77))}

Uy (x,t)=Fid

4( 1) (22)
s (2@+k25/w%)
u i
L (1) =7 @ A foe
1|7 O A*+B?) - AVQ cosh (V)
d—=| -1+
2(v-1) Asinh/Qr+B (29)

And the plot of U16 fork=c=A1 :1, U= —].,V = 2, o= 2, c=—landax= 025, 05, 075,1 is displayed in
Figurel (a)-(d). Consider

Jeks _ (2@+ k25122c)
\/E 4k3/2y«/£

1|5 [ A* +B?) + AVQ cosh (Ve

1 2(v-1) Asinh</Qn+B (24)

U (xt)=Fid

Where A and B are non-zero constants. Consider the following:
R coaia
2uCcosh((1/2)VQ)
' \/ﬁsinh(\/ﬁ)+;tcosh((]/2)\/§)
k3 _ (2@ +k25122c)
Ve | ules
2uQsinh (12)V22)
. JQ cosh(v2) - Asinh((1/2)vQ2)

u, (xt)=Fil

(26)
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J&ks (22 +k2ori)
2% Fi NS
2uQcosh((1/2)VQ)
\/ﬁsinh(\/ﬁ)+ﬂcosh((]/2)«/5)ii\/§ (27)
J&s _ (22c+kesr* )
2% Fi NS
2u/Qasinh (12)V22)
Jﬁcosh(@)—ﬂsinh((]/Z)Jﬁ)i\/ﬁ (28)

u, (xt)=Fil

u, (xt)=Fil

. S

o e e

D iy s —

,.?%&'1‘ e =

R R
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() a=0.75 d) a=1
Figure-1. (a)- (d) show the dark solitary wave solutions for u:le at different values of O .

Source: The figure is plotted by Mathematica.

When Q= /12-4/,1(1/—1) <0 and A(V-l) 0 (or ,Ll(V—l) #0)

Jks _ (v2c +kesr2 2

u, (x,t)=Fil Fi

J2e 4K¥2 e
1 1
|G | »
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k5 _ (2@ +ko122c )
«/E 4k3/2,u\/£

1|, + /Q(A2 +B?) - AVQ cosh(~/Cor)

u, (xt)=Fil

2(v-1) Asinh/Qr+B (30)
o (x)= NG (2v2c +k25222c)
J2e 4k%? 1[5
{2( 1){1+\/5(tan( \/577)+sec( \/577))}} o
o\ (x)= S (2v2c+k2o22c)
J2e 4k il
-{—ﬂ{ﬂw\/ﬁ(cot(—\/ﬁﬂﬂcsc( J—_an)}} .
0, (xt) =Fi2 YK ¢ (Z@LKZ&Z@)
16 J2¢ 4k¥? 1S
{4(11{2/‘L+\/5(tan(—\/ﬁr7)+cot( @nﬂ} "
u, ( ) +lﬂm (2\/%:!( i \/Z)
v NP L SINE
1|t -Q A*-B?) - AV-Q cos(v/-C)
2(v-1)| " Asin</-Qn+B (34)

Vo _ (2@ +ko1*2c )

N2z | &loe

1|, +,/-Q( A-B?) + AV-Qcos(v-Q)
2(v-1) Asinv-Qn+B

u, (xt)=Fil

Where A and B are non-zero constants such that A2 — 82 > 0. Consider the following:
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Joko _. (22 +k*sa2zc
2% Fi YIS
{ 24 -QCOS((]/Z)\/E) ]
~Qsin(v=Q )+ 1cos((12)V-Q)

VoS (2v2e +k2ortzc)

J2e ST E
21 -Qsin((]/Z)«/E)
. —Qcos(\/ﬁ)—;tsin((]ﬁ)\/ﬁ)
Joko _. (22 +k*sa2yzc

u, (x,t)=Fik Fi

J2e i SSINE
2u-Q COS((]/Z)\/E)
' —Qsin(\/ﬁ)+ﬂcos((]/2)m)i\/—_9
Joko _. (22 +k*522 2

+1

J2e 4k¥2 /S
21 -Qsin((]/Z)«/z)
| VQcos(v=0) - sin((12)V0 )£ V0

When /,120 and ﬂ(V—l) #0

u, (xt)=Fil

U (xt)=Fid

Uy, (x,t)=Fid

ks (2v2c +k?62%\2¢
U (x,t)=Fil c 5$i( )

\/E 4k3? ,u\/g

K
' ((V—l)(k+cosh(/177)—isinh(/177))J

T (ks )
u,, (xt)=Fi1 N e
. cosh(An) + Asinh(An)
(v—1)(k +cosh(277) + Asinh(177))

Where k is an arbitrary constant.

When ‘Ll:ﬂ:O and (V —1) #0

© 2018 Conscientia Beam. All Rights Reserved.
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Joko _.(2V2e +KPsa* 2 1

N7 AR T<CIN £ = Y P s

U, (xt)=Fil
(12)
Where C, is an arbitrary constant. Substituting the solutions of the Equation 7 (see Appendix 1) into Equation

17 and  simplify. We obtain the following solutions. when €= A2 -4ﬂ(V —1) >0 and

A(v-1)#0 (or u(v-1)=0)

: LAY

2555 '
WA /
LALFSE

Figure-2. (a)-(d) shows the solitary wave solutions for u21 at different values of (¥ .

Source: The figure is plotted by Mathematica.
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Jcko - iﬂ\/ZCké‘
J2¢ Je
1

g

U, (x,t)=FiA

{ 2(v-)

(43)

and the plot of U21 for K :c:l:l,u:—lv:Z,é:—Z,g:l and a:0.25, 05, 0.75,1'15 displayed in

Figure 2(a)-(d). Consider

Jeks Tiu J2¢cko
J2¢ Je

gl ()

and the plot of U22 for K :C:l:l,u:—],v:Z,éz—Z,gzl and a:0.25, 05, 0.75,1is displayed in

Uy, (X,t)=Fid

(44)

Figure 3(a)-(d). Consider

Jcks Tiu J2cko
J2¢ Je

{ 37 il) {/1 +/Q (tanh G x/ﬁn) +isech (% x/@]jﬂ}_l »

Uy, (X,t)=Fid

A T
o, T Y e
.".0..'#

4::\_1“ @ «45!,
() a=0.75 d)a=1
Figure-3. (a)-(d) shows the dark solitary wave solutions for Uzz at different values of O .

Source: The figure is plotted by Mathematica.
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N
~
>

. C
i

+

-~ 512
&

{/H\/ﬁ

VR

=

0 coth @ \/577) +csch ( % \/ﬁﬁjﬂ}_l

Jeks . J2cks

s T
{4(31 {21%/5 tanh(%\/@])+coth(% \/anjﬂ}—l

—
N

Uy, (X,t)=Fid

VR

N—"

U, (x,t)zmgiiu ‘3355
| { , [_“im.mcosm@)]}l
2(v-1) Asinh/Qz7+B
Uy, (x,t)=$il\/jg¢iﬂ\/3c—?
L [ o) Ay ||
12(-1) A Asinh/Qry + B

Where A and B are non-zero constants. Consider the following:

Uy, (x,t)=Fi

NS . N2cks -241:/Q cosh ((]/ Z)Jﬁ)
VRN

Uy, (X,t)=Fid \/jzzjiiy\/f;_?
2u\/Qsinh((1/2)v2) .
' \/ﬁcosh(\/ﬁ)—lsinh((l/z)\/ﬁ)

_..\JckS _. J2cko
u, (Xt)=FIA |
2 (X ) =FIA—=Fiu=

| -2u3/Q cosh ((]/ Z)Jﬁ) )
JQsinh (\/5)+/1cosh ((J/Z)Jﬁ)i iVQ

© 2018 Conscientia Beam. All Rights Reserved.

\/ﬁsinh(\/ﬁ)w’tcosh((]/Z)\/ﬁ)

(46)

(47)

(48)

(19)

(51)

(52)

12



International Journal of Mathematical Research, 2019, 8(1): 1-20

JekS _ . J2cks
\/Z+I,u T
2u\/Qsinh((1V2)V22) .
' \/ﬁcosh(\/ﬁ)—ﬂsinh((l/z)\/ﬁ)i\/ﬁ (53)

U, (xt)=Fid

When Q=2 -4u(v—1) <0 and A(v-1)%0 or z(v—1)#0

Jeks Tiu J2cko
J2¢ Je

{ﬁ [-/1 +/-Qtan e x/ﬁnﬂ}_l

and the plot of U212 fork=Cc=A =:L MU= —:L V= —2, o= —2, c=landar= 025, 05, 075,1 is displayed in

u, (xt)=Fil

(54)

Figure 4(a)-(d). Consider

b))  a=075 d) a=1

Figure-4. (a)-(d) Show the periodic solitary wave solutions for u212 at different values of (X .

Source: The figure is plotted by Mathematica.

13
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Jeko . J2cks

u, (xt)= +I/1\/Z i1 7
{2(3 1)[/1+\/5cot( \/ﬁnﬂ}_l .

Uy, (X, )+|/1\f/czk_j lu\/?/cgfé

{ e mnjise‘:@m”m}_l

{2(1/ 1)

R

ek _; 20k
J2e Je

-%m(tan Gm}w{%@W

u, (xt)=Fid

[N
1

'{4(v-1)

Jck& J2cks
NrZIRN

1 +/-Q( A*-B?)-AV-Q cos(-Cuy)
' 2(v-1) Asin</-Qn+B

u, (xt)=Fil

-1

(59)

1|, +,/-0( A*-B?) + AV-Q cos(v-)

' 2(v-1) AsinJ-Qn+B

(60)

Where A and B are non-zero constants such that A2 — 82 > 0. Consider the following

u, (xt)=F g \/3:_?

2 -Qcos((]/ 2)\/5) 4
_Qsin(\/ﬁ)wlcos((lﬁ)m) (61)
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_..Jcko _. J2cks
u, (Xt)=Fi4 Fi
2 (Xt) =FIA——Fiu—"

2u\-sin((1/2)v-02) .
' —Qcos(@)—isin((l/z)\/ﬁ)

(62)
\/cké J2cks
u, (x,t)=7Fil N Fiu I
24 -Qcos((l/z)\/ﬁ) )
. —Qsin(m)+ﬂcos((]/2)\/ﬁ)i e} (63)
\/ck5 J2cks
U, (xt)=Fid N Fiu I
| 2u3-sin((1/2)v=02) .
—Qcos(m)—/lsin((]/Z)m)i\/E (64)
When /,120, and /1(1/—1) #0
u, (xt)= +|/1\/\/Cg “?/Cg
. K N
(v—=1)(k+cosh(4z)—Asinh(1n)) (65)
u, (xt)= +|/1\/\/Cg ,3%(5
. cosh(A7) + Asinh(A1) i
(v—=1)(k+cosh(4n7)+Asinh(47)) (66)
Where k is an arbitrary constant.
When ,u=/1=0, and /1(1/—1)-‘#0
Voo 2k 1)
(-3 T )
(67)

where C1 is an arbitrary constant.

5. DISCUSSION

From the above examples, we can see that many new and complex exact solutions of the space-time fractional

modified equal width equation can be obtained by using the improved (G' /G)-expansion method. The modified

15
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extended tanh method is employed to solve the space-time fractional modified equal width equation in Raslan, et al.
[257]. As a result, the solution is expressed in the form of hyperbolic function and triangular function. Comparing
with the solution in this paper, if the parameters take specific values, the results (18), (19), (22), (29), (33), (43), (44),
(47), (564), (55), (58) are consistent with the solutions in Raslan, et al. [25]. In addition, solutions (20), (21),
(23)~(28), (30)~(32), (84)~(42), (43), (46), (48)~(53), (56), (567), (59)~(67) are new exact solutions of the space-time
fractional modified equal width equation.

Alper Korkmaz use various ansatz method to solve the space-time fractional modified equal width equation
[267]. The bright soliton solutions and singular solutions are expressed in the form of hyperbolic functions.
However, the solutions (18)~(67) in this paper are obviously different from the results in the literature [267. In
addition, the solutions (29), (31)~(89), (64)~(64) obtained in this paper are in the form of trigonometric functions.
The solutions expressed by (42), (67) are rational functions, which can be seen as new solutions obtained by
improved (G' /G)-expansion method.

Through the above comparative analysis, the validity, accuracy, superiority and wide applicability of the

method are illustrated. It can be extended to different types of fractional partial differential equations.

6. CONCLUSION

In this paper, the improved (G' /G)-expansion method has been employed successfully to obtain the exact
solutions of the space-time fractional modified equal-width equation, in the sense of modified Riemann-Liouville
derivative. First, we convert the space-time fractional modified equal-width equation into an ordinary differential
equation by the fractional complex transformation. As a result, we get new and more general exact solutions which
are not found in the previous literature [25, 267]. The obtained exact solutions are reported in terms of the
hyperbolic, the trigonometric and the rational functions with some parameters. All the solutions presented in this
paper have been checked with Mathematica by putting them back into the original Equation 9. In addition, it is
obvious that the method would be a reliable and effective mathematical tool to handle other fractional differential

equations from natural sciences.
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Appendix-1

When Q=12 -4,LI(V—1) >0 and ﬂ(V—l)?’-‘O(OI’ﬂ(V—l)?’—'O)

1 1
uy(x,t)= “29) A+/Qtanh > Jon

Uy(x,t)=— o0 )/1+J_cotr( j

Uy(x,t)=— %D _1) 2+JQ tan}‘( JOn +|sech(% Qn

u,(xt)= %) _1) «/_cotk(z ) G Qn
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Ug(x,t)= —4%_1){2/1 + \/ﬁ(tanh(% «/ﬁﬂj + COU’(% Vo jﬂ

1 [, + JO[A? + B7) - AVQ coshlvex)

)=

Us(x.t) 2(v-1) Asinhv/Qn +B

0, ()= 1 _/1_w_ﬂ/QiA2+B2 )+ A\/ﬁcosh(\/ﬁn)
T (v-1) AsinhJ/Qr+B

Where A and B are non-zero constants

(0 t)= — 2/ coshl(1/2VQ)
JQsinhVQ )+ A coshi(l 2V

0y (x.t)= 2,3/Qsinh((1/21Q)
JQcoshlVQ )~ 2sinhi(1 2V

. t)= — 2/ coshl(/2VQ)
. JQsinhVQ )+ Acosh(L 2V Q )+ iV

(1) = 2,/Qsinh(12W0)
. JQcoshlVQ )~ 2sinh((1 2VQ £ VO

‘When Q:ﬂz -4/1(V—l) <0 and i(v—l);tO(ory(v—l);t O)

Uy, (X, t)= ﬁ(—ﬂ +/-Q tan(% «/EUD

Uys(x,t)= ﬁ(—ﬂ +/-0Q co(% \/EUD

u14(x,t)=2(%_—/1+\/—_ tan( \/577 +sec( NIy j_

! _—/1+\/—_ cot[ \/377 +csc( @nj

Uye(X,t)= 4(1/1 1){ 2+-Q (tan( \/En +cot( @77 }

1 { +J-O(A - B?) —A\/_cos\/_j
/1+

Asin/-Qn+B
1 [_/1_ J—O[R°—B?)+ AV=QcosV=0

Asinv-Qn+B
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Where A and B are non-zero constants and satisfy the condition A? - B2 > 0

x,t) = —2/~Qcodl12W=0Q)
T - QsinlV-Q )+ 2cod 12V -Q)

Upo(X,t) = 2,7/~ Qsin(V2W=Q)
P J-Qeody-Q)- Asin|L2V-Q)

—2u —Qcos((]/Z)x/ﬁ)
—Qsin(\/ﬁ)+ﬂ,cos((]/2)\/5)im

. 2~ Csin((12V-0)
2 J-Qeody-Q)-Asin|V2V-Q )V -O

Uy (X, 1) =

When ‘u:O and /I(v-l)th

AK
UpsX,t)= (v—1)k +cosh(A7)- Asinh(17))

u (x t): cosh(in)+/15inh(}_m)
2 (v=1)k +cosh(An)+ Asinh(A7))

Where k is an arbitrary constant.

When uzO and V=10

Ups(X,1) G —1p+c
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