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Coronavirus 2019 (Covid-19) cases in Rivers State, Nigeria are on the increase day by 
day. It became imperative to investigate the survival rate of covid-19 patients in this 
state. The survival quantile regression was applied assuming right censoring to 
estimate the effect of   age, sex, fever, anosmia, comorbidity, and cough on the survival 
time of patients. The results  show that on admission into the hospital the survival time 
of the patients depended on the age and the presence of anosmia, comorbidity, and 
fever. By the mid survival period only anosmia and fever were seen to be significant but 
at the 75th quantile comorbidity was also seen to be  significant along with fever and 
anosmia. The result also shows that having fever is associated   with longer stay in the 
hospital based on the size of the effect at different quantiles. We also noticed that 
though the effect of anosmia and comorbidity were significant at the 25th and 75th 
quantile the sizes of the effects were minimal, but comorbidity was seen to have a 
bigger effect  than anosmia. Comparing the survival time of groups, the results showed 
that males and females have the same survival time and patients with and without 
comorbidity equally have the same  survival time. Patients  without fever, anosmia and 
cough had a shorter survival time than those that had fever, anosmia, and cough. We 
then concluded that fever, comorbidity, and anosmia are the major factors that affect 
the survival time of covid-19 patients in Rivers State, Nigeria.      
 

Contribution/Originality: This study is one of the very few studies that have investigated the effect of different 
covariates at different points on the distribution of the survival time of Covid-19 patients in Rivers State, Nigeria. 

 
1. INTRODUCTION 

Coronavirus 2019 (Covid-19) cases in Rivers State, Nigeria are on the increase day by day. It became 
imperative to investigate the survival rate of Covid-19 patients. Survival analysis is widely used in modelling and 
analyzing time-to-event data. Survival analysis is said to be a collection of statistical procedures for data analysis for 
which the outcome variable of interest is time until an event occurs, often referred to as a failure time, survival time, 
or event time. Survival time refers to a variable which measures the time from a particular starting time (e.g., time 
diagnosed of sickness) to a particular endpoint of interest, say time discharged/case resolved. The special feature 
about survival analysis is that in real life situations some of the event times cannot be observed due to a variety of 
reasons, like drop out or death before the issue is resolved. When there is sure missing information, it is termed 
censoring. Most researchers are often interested in estimating the survival function (or distributions of survival 
times), comparing survival among groups and finding the relationship between covariates and survival times. In the 
regression model approach for survival analysis the Cox proportional hazards model and accelerated failure time 
model are widely used. The introduction of quantile regression has attracted considerable interest in survival 
analysis. It offers a more valuable complement to the Cox proportional hazards model Cox [1] and the accelerated 
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failure time model Buckley and James [2] in survival analysis. Quantile regression allows the covariate effects to 
vary at different tails of the survival time distribution. Such important heterogeneity in the population may be 
neglected by using the Cox model and the accelerated failure time model, hence making survival quantile regression 
the best alternative.  

The Covid-19 virus which was first confirmed in China towards the later part of 2019 has been on the rampage 
across the globe. The projections of its havoc in Africa was met with a lesser impact compared to the rest of the 
world. Report from the World Health Organization (WHO) as at December 31st 2020, has it that there are 
41,329,493 confirmed cases in America and 30,488,064 in Europe while Africa is tailing with a total number of 
2,313,130 confirmed cases. Some researchers have proposed that this could be as a result of weather conditions, etc, 
being that as it may, we decided to investigate the effect of some factors on the survival time of covid-19 patients. 
Using a covid-19 dataset this paper provides a practical guide to using quantile regression in survival analysis of 
covid-19 patients. Thus this paper therefore focuses on application of survival quantile model to a covid-19 data. 
The rest of the paper is as follows; the first section presents the basic notations in survival analysis, followed by 
explanations of censoring, Cox proportional hazards model and accelerated failure time model, following this 
section is; survival quantile regression model, methodology, results and conclusions. 
 

2. BASIC NOTATIONS IN SURVIVAL ANALYSIS 
In survival analysis the function that gives the probability of the survival time occurring at exactly time t is 

the density function in Equation 1 ; 

       (1) 
The function that gives the probability that the survival time occurring before or exactly at time t is 

the cumulative distribution function F(t), given in Equation 2; 

        (2) 
While the survival function S(t) given in Equation 3 gives the probability that a person survives longer than 

some specified time t: that is, S(t) gives the probability that the random variable T exceeds the specified time t. 

  

       (3) 
 Some important characteristics of survival function are: 

● It is non-increasing; that is, it heads downward as t increases. 

● At time ; that is, at the start of the study, since no one has gotten the event yet, the 
probability of surviving past time zero is one. 
 

●  

● At time , that is, theoretically, if the study period increased without limit, 
eventually nobody would survive, so the survival curve must eventually fall to zero.  

The hazard function  given in Equation 4 is the survival rate at time t given the survival time ; 

       (4) 
Also the hazard function can be expressed as a function of the probability density function and the survival function; 

 
where P(.) is probability. 
 The hazard function h(t) has the following characteristics: 
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● It is always nonnegative, that is, equal to or greater than zero. 

● It has no upper bound. 
 

3. CENSORING 
When event times cannot be fully observed due to a variety of reasons, data are subject to censoring which 

makes statistical estimation and inference for survival quantile regression more involved. Censoring is of different 
types, including; Right censoring, left censoring and interval censoring and censoring can be classified into fixed 
and random censoring. Any procedure which completely ignores censoring may give highly biased estimates 
Koenker [3]. Powell [4] first studied censored quantile regression with fixed censoring. Ying, et al. [5] proposed a 
semiparametric median regression model for random censoring. Despite the simplicity of the method in Ying, et al. 
[5] this procedure requires the unconditional independence of the survival time and censoring time. Relaxing the 
independence condition Portnoy [6] developed a novel estimating approach motivated by the classical Kaplan–
Meier estimator in the one sample analysis. He provided a recursive estimator for right censored data, which only 
requires conditional independence between the survival time and censoring time given the covariates. Peng and 
Huang [7] also proposed a quantile regression for right censoring motivated by Nelson-Aalen estimator of the 
cumulative hazard function in univariate cases.  
 

4. COX PROPORTIONAL HAZARDS MODEL 
The Cox proportional hazards (CPH) model is one of the widely used models in survival analysis. It evaluates 

simultaneously the effect of the covariates on survival. Cox proportional hazards models links the hazard (the 
instantaneous rate of failure) to the covariates. In other words, it allows us to examine how specified variables 
influence the rate of a particular event happening at a particular point in time. This rate is commonly referred to as 
the hazard rate. The Cox model is expressed by the hazard function denoted by h(t) and it is usually given in 
Equation 5 as; 

          (5) 

● t represents the survival time. 

● h(t) is the hazard function . 

●  is a vector of coefficients that measure the impact (i.e., the effect size) of covariates. 

● (t) is the unspecified baseline hazard function.  
 

The model presumes that the conditional hazard of the event being modeled is the product of a baseline hazard 

 (that is common to all individuals) and the multiplicative effect of the covariates. The quantities   are 
called the hazard ratios (HR), a hazard ratio greater than one, indicates that as the value of the covariate increases, 
the event hazard increases and thus the length of survival decreases.  

The integrated or cumulative baseline hazard is defined in Equation 6 as; 

                  (6) 

and it can be related to the conditional survival function  in Equation 7 as;    
     

,        (7) 

where,  denotes the conditional survival function. Now evaluating both sides at the random event time T, i.e 
evaluating at t = Ti, we have the model; 

          (8) 

Where , since  is a uniformly distributed random variable, it follows that  are 
independent identically distributed with distribution function in Equation 9        

          (9) 

 
5. ACCELERATED FAILURE TIME MODEL 

The accelerated failure time (AFT) model provides an alternative approach to the Cox proportional hazard 
model. The AFT models the linear relationship between log-transformation of survival times and covariates. More 
specifically AFT is of the form; 
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          (10) 

With the distribution of  specified by some parameters. The AFT directly links log of the response that is the 
survival time (T) to the covariates. Koenker and Geling [8] pointed out that the CPH and AFT are limited and that 
they can be treated as a special case in the quantile regression model where some appropriate transformation of the 
survival time T is applied to make the errors independent and identically distributed.  
 

6. SURVIVAL QUANTILE REGRESSION MODEL 
Since the inception of Quantile regression in 1978, it has emerged as a powerful and natural approach to model 

the heterogeneous effects of covariates for a non-homogeneous population. Unlike the Cox proportional hazards 
model and accelerated failure time model, quantile regression models the quantile of survival time and links it to the 
covariates. It is robust to outliers in the data and compared to CPH and AFT models, quantile regression relaxes 
the proportional hazards assumption and links the whole distribution of an outcome to the covariates of interest. 
Quantile regression is by far a natural choice as it helps decipher the various roles each covariate plays on different 
quantile levels of survival. A right censoring is considered because in this research some patients died before the 
covid-19 is resolved/discharged and thus the exact discharge time is unobserved. Thus this work shows the 
usefulness of the survival quantile regression formulation for right censored outcome and transformation models, 
generally.  

The most basic quantile regression survival model was introduced by Koenker and Geling [8]. Given any τ 

where , the τ-quantile is a value at or below which a τ-fraction of the data lies. When the quantile is defined 
based on the distribution of T alone, without considering covariates, X, it is called the marginal quantile or 
unconditional quantile. When we consider the quantile of T [or log(T)] within subgroups defined by X, for 

example, we refer to  the τ-th conditional quantile of T given X, as denoted by . This Quantile regression 
models the relationship between the event time and the covariates using the quantile function in Equation 11; 

        
          (11) 

where X is a vector of covariates, β(τ) is to the effect of X on the τth quantile. This model in Equation 11 allows the 

covariate effect to change with τ. The regression quantile estimator  when there is no censoring, is the 
minimizer of the objective function over beta, given in Equation 12 as; 

        (12) 

Where the “check function” . 

When the responses are subject to censoring, we observe . In a right censoring situation,  = min ( , 

) where  is the right censoring times and the censoring indicator . To deal with the censoring, we 
follow Portnoy [6] that proposed reweighting of the censored observations for the Kaplan-Meier estimator. He 
proposed estimation methods for this model that accounted for the almost inevitable presence of censoring and built 
it upon an analogy with the well-known univariate Kaplan-Meier estimator. Portnoy expressed the quantiles of 

Kaplan-Meier distribution function  as solutions to a weighted optimization problem in which the 

weight associated with censored observations are split into two parts. A part of the weight associated with 

each censored observation is left in its initial position of the censoring time with weight  and the other 

part is shifted to the right towards positive infinity (+ ) with weights  Koenker [3]. By choosing 

different values of τ between 0 and 1, we can obtain distinct sets of estimated quantile regression coefficients and 
also predict the conditional quantiles of outcomes based on the given covariates. This method has been implemented 
using the quantreg package in R software. 
 

7. THE LOG-RANK TEST 
The log-rank test is used to compare two or more survival curves of the null hypothesis of a common survival 

curve;    
Given two groups, the log–rank statistic is based on the summed observed minus expected score for a given 

group and its variance estimate. Taking G to be the number of groups being compared, the test statistic is given in 
Equation 13 as: 
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 under          
       (13) 

Where ; is the observed number of events is,  is the expected number of events and   is the variance of the 
observed number of events. 
 

8. METHODOLOGY 
In this analysis the „event‟ considered here is „discharge‟ from the hospital at which time covid-19 is assumed 

resolved. The data set for this work relates to 641 patients diagnosed with covid-19 in Rivers State Nigeria from 
May 2020 to August 2020. In this covid-19 research, we estimate and infer the relationship between outcomes, say, 
time a covid-19 patient is admitted into the hospital to the time when  he/she is discharged from the hospital 
(denoted by T(survival time)), and various covariates, like sex, age, fever, anosmia (absence of taste and smell), 
comorbidity (presence of hypertension and or biabetes) and dry-cough. The individuals admitted in the hospital and 
their data were available up until the end of August 2020, by which time 9 (1.4%) cases were censored while 632 
(98.6%) cases were resolved and discharged from the hospital. We considered the survival analysis situation with 

right censoring where patients are followed until censoring occurs at time   which follows the continuous 

distribution of the random variable T. Each patient has a censoring time  (time to lose to follow up or death 
before discharged). The sample of right-censored survival data of size n= 641 consists of three factors; 

. 

   

Algorithm:- Kaplan-Meier quantiles can be computed by solving, Equation 12 starting at , Until we 

encounter a censored observation. Once a censored observation is encountered, i.e. when , with , we 

split  into two parts: 

   with weight    (the censored part left at its initial position). 

  with weight   (the censored part shifted to the right towards infinity). 

Then representing the mass set of censored observations encountered up to τ by K(τ) we can solve the Portnoy‟s 

regression quantile estimator  given in Equation 14 as; 

   (14) 
With our  model given in Equation 15 as; 

                  (15) 
The log-rank test was applied to compare survival curves for the different covariates considered in this work.  

 

9. RESULTS 
From the life table.1, it is seen that the marginal probability of covid-19 cases being resolved is 0.299  and the 

number of resolved covid-19 cases peaked between 6-7 days. The hazard rate also confirms    this by telling us that 
the covid-19 resolved rate was highest from the 7th to the 8th day. The probability of survival is approximately 1 
from the first day of admission to the next 3 days, and  drops as the number of days increases. 

The time interval is given in days. The graph shows an increasing hazard rate (hazard rate is the theoretical 
measure of the probability of occurrence of an event per unit time at risk, in this paper the event is covid-19 being 
resolved) which implies that as time of hospitalization increases and the symptoms drops (basically due to 
treatment) and the patient‟s potential of covid-19 being resolved increases.  
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Table-1. Life Table. 

Time 
interval 

N events dropouts At risk Hazard 
Rate 

Survival 
rate 

Cumulative 
Hazard rate 

Marginal 
Probability 

of event 

[0,1) 353 3 1 352.5 0.00851 0.99148 0.00851 0.00851 

[1,2) 349 3 3 347.5 0.00863 0.98293 0.01714 0.00856 
[2,3) 343 7 1 342.5 0.02043 0.96284 0.03758 0.02009 
[3,4) 335 44 1 334.5 0.13153 0.83619 0.16913 0.12665 

[4,5) 290 54 0 290.0 0.18621 0.68048 0.35533 0.15570 
[5,6) 236 70 0 236.0 0.29661 0.47865 0.65193 0.20184 
[6,7) 166 104 0 166.0 0.62651 0.17877 1.27844 0.29987 
[7,8) 62 61 1 61.5 0.99187 0.00145 2.27031 0.17732 
[8, 9) 288 71 0 288.0 0.2465 0.3429 0.9683 0.1122 
[9,10) 217 52 0 217.0 0.2396 0.2607 1.2080 0.0822 
[10,11) 165 65 1 164.5 0.3951 0.1577 1.6031 0.1030 
[11,12) 99 44 0 99.0 0.4444 0.0876 2.0476 0.0701 
[12,13) 55 11 0 55.0 0.2000 0.0701 2.2476 0.0175 
[13,14) 44 17 0 44.0 0.3864 0.0430 2.6339 0.0271 
[14,15) 27 8 1 26.5 0.3019 0.0300 2.9358 0.0130 

 
 

Table-2. Survival Quantile Regression Model Results. 

 
 Coefficients Exp(coeff.) Std error T-value P(>|t|) 

Intercept 12.0000 16.2754e+4 84.4991 14.119 0.0000* 
Sex 0.0000 1.0000 0.0000 0.6231 0.5333 
Fever 2.0000 7.3891 0.0674 0.2968 0.0000* 
Anosmia -4.0000 0.0183 0.8508 -4.7013 0.0000* 
Cough 0.0000 1.0000 0.0000 -1.9478 0.8456 
Age 0.0000 1.0000 0.0000 2.2085 0.0027* 

Comorbidity -2.0029 0.1349 0.8441 -2.3727 0.0177* 

 
 Coefficients Exp(coeff.) Std error T-value P(>|t|) 
Intercept 13.4056 66.3709e+4 2.1096 6.3546 0.0000* 
Sex 0.0000 1.0000 0.0000 -0.08770 0.9301 
Fever 3.0000 20.0855 0.5630 5.3286 0.0000* 

Anosmia -3.2650 0.0382 0.3648 -8.9497 0.0000* 
Cough -0.8594 0.4234 1.1395 -0.7542 0.4507 
Age 0.0000 1.0000 0.0000 0.4697 0.6386 
Comorbidity -2.1406 0.1176 2.2658 -0.9447 0.3448 

 
 Coefficients Exp(coeff.) Std error T-value P(>|t|) 
Intercept 20.488 79.0360e+6 0.7232 28.3297 0.0000* 

Sex -0.4278 0.6519 0.2994 -1.4290 0.1530 
Fever 2.6107 13.6086 0.2746 9.5062 0.0000* 
Anosmia -9.9084 0.0001 0.4713 -21.0225 0.0000* 
Cough 0.3437 1.4101 0.2881 1.1929 0.2329 
Age 0.0229 1.0231 0.0167 1.3695 0.1709 
Comorbidity -1.6177 0.1983 0.4591 -3.5234 0.0004* 

 
 Coefficients Exp(coeff.) Std error T-value P(>|t|) 
Intercept 17.5008 39.8566e+6 1.1593 15.0960 0.0000* 
Sex 0.0580 1.0597 0.5207 0.1115 0.9113 
Fever 2.7852 16.2030 0.9426 2.9547 0.0031* 
Anosmia -3.2078 0.0404 2.7159 -1.1811 0.2376 
Cough -0.3498 0.7048 0.9171 -0.3814 0.7029 
Age 0.0446 1.0456 0.0437 1.0191 0.3082 
Comorbidity 0.5989 1.8201 0.9249 0.6475 0.5173 
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Figure-1. Margiinal hazard curve. 

 
Table 2 presents the results of the survival quantile regression model in Equation 14, the  results show that at 

the 25th quantile all the covariates were significant except sex and cough which tells us that on admission into the 
hospital the survival time of the patients depended on their age and the presence of anosmia, comorbidity and fever. 
But by the mid survival time only anosmia and fever were seen to be significant and by the 95th quantile i.e as the 
length of stay in  the hospital increases the effect of anosmia disappears while the fever effect was still seen to be  
significant. The exponentiated coefficients known as the hazard ratio shows the size of the effect of the covariates. 
The result shows that the size of the effect of fever increases the hazard by 7.9389 at the 25 th quantile and peaks at 
the 50th quantile by 20.0855 and drops at the 75th quantile to  13.6086 but increases a bit at the 95th quantile to 
16.2030, which means that having fever is associated with longer stay in the hospital. We also noticed that the 
effect of anosmia and  comorbidity at the 75th quantile were significant but the sizes of the effects were minimal 
though comorbidity has a bigger effect than anosmia. 
 

10. RESULTS BASED ON SEX 
         

 
Figure-2a. Kaplan-Meier Survival Curve. 

 

 
Figure-2b. Cumulative Hazard Plot. 
Source: survival and survminer packages in R software 

 
Based on the graph both male and female patients have the same probability of survival and the  probability of 

survival is 0.74. The cumulative hazard plot also confirms that the survival time of both sex are similar. 
 

Table-3. The Log-rank test results: 

Sex N Observed Expected 
  

Female 171 171 174 0.0628 0.112 
Male 470 461 458 0.0239 0.112 

 Note: Chisq= 0.1  on 1 degrees of freedom, p= 0.7. 
 

The test result is not significant; therefore the probability of survival of male and female are not different, 
agreeing with the graph.  
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Table-4. The Confidence interval of survival time: 

Sex N Events Median 0.95 LCL 0.95 UCL 

Female 171 171 7 7 8 
Male 470 461 7 6 7 

 

 
The table shows that female patients‟ survival time was between 7-8 days with a median of 7 days while men 

patients‟ survival time was between 6-7 days also with a median of 7 days which is the same for both. 

 
11. RESULTS BASED ON FEVER 
   

 
Figure-3a. Kaplan-Meier Survival Curve. 

 

 
Figure-3b. Cumulative hazard plot. 

Source: survival and survminer packages in R software 

 
The plot shows that the probability of survival of patients with fever and those without fever is different. The 

patients without fever survive at a shorter time interval than the patients with fever with a probability of 0.0001 
more than the patients with fever. The cumulative hazard plot also shows the gap in survival between those with 
fever and those without fever. 
 

Table-5. The Log-rank test results. 

Fever N Observed Expected 
  

No fever 478 473 393 16.4 59.7 

Yes fever 163 159 239 26.9 59.7 
Note: Chisq= 59.7  on 1 degrees of freedom, p= 1e-14  

 
This test confirms what the graphs in Figure 4 & 5 shows, that there is a significant difference between the 

probability of survival for patients with fever and those without fever. 
 

Table-6. The Confidence interval of survival time. 

Fever N events median 0.95 LCL 0.95 UCL 

No fever 478 473 6 6 7 
Yes fever 163 159 9 9 10 

 

 
The patients that had fever were hospitalized between 9-10 days with a median of 9 days while those without 

fever were hospitalized between 6-7 days with a median of 6 days before the covid-19 issue was resolved. This 
shows that those with fever stayed longer on admission than those without fever. 
 

12. SURVIVAL ANALYSIS BASED ON ANOSMIA 
 

 
Figure-4a. Kaplan-Meier Survival Curve. 

 

 
Figure-4b. Cumulative Hazard plot. 
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The survival curve in Figure (6a) shows that there is a significant difference in the survival times between the 
patients that have anosmia and those that do not have anosmia. The cumulative  curve hazard in Figure (6b) above 
also confirms the difference. 
 

Table-7. The Log-rank test results. 

Anosmia N Observed Expected 
  

Yes anosmia 79 79 103.36 5.74 9.13 
No anosmia 560 551 522.58 1.55 11.97 

Non response 2 2 16 11 NA 
 Note: Chisq= 13.6  on 2 degrees of freedom, p=0.001. 

 
The log-rank test confirms that there is a significant difference in survival time between those that have 

anosmia and those that do not have anosmia. 
 

Table-8. The Confidence interval of survival time. 

Anosmia n Events Median LCL UCL 

Yes anosmia 79 79 9 7 9 
No anosmia 560 551 7 6 7 

Non response 2 2 16 NA NA 
 

 
The table shows that patients who had anosmia were hospitalized between 7-9 days with a median of 9 days 

while those without anosmia were hospitalized between 6-7 days with a median of 6 days before the Covid-19 issue 
was resolved. This shows that those with anosmia stayed longer on admission than those without anosmia. 
 

13. SURVIVAL BASED ON COUGH 
 

 
 

Figure-5a. Kaplan-Meier Survival Curve. 

 

 
 

Figure-5b. Cumulative Hazard Plot. 

 

 
The plot in Figure (5a) shows that the probability of survival of patients with cough and those without cough is 

different. The patients without cough survive at a shorter time interval than the patients with cough with a 
probability of 0.01 more than the patients with cough. The cumulative hazard plot of Figure 5b also confirms that.  
 

Table-9. The Log-rank test results. 

Cough N Observed Expected 
  

No cough 526 522 499 1.06 6.61 
Yes cough 115 110 133 3.97 6.61 

Note: Chisq= 6.6  on 1 degrees of freedom, p= 0.01. 

 
The log-rank test confirms that there is a significant difference in survival time between those that have cough 

and those that do not have cough. 
 

Table-10. The Confidence interval of survival time. 

Cough N Events median LCL UCL 

No cough 526 522 7 6 7 

Yes cough 115 110 8 7 9 
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The patients that had cough were hospitalized between 7-9 days with a median of 8 days while those without 
cough were hospitalized between 6-7 days with a median of 7 days before the covid-19 issue was resolved.  This 
shows that those with cough stayed longer on admission than those without cough.   
 

14. SURVIVAL BASED ON COMORBIDITY 
 

 
Figure-6a. Kaplan-Meier Survival Curve. 

 

 
Figure-6b. Cumulative Hazard Plot. 

 

The plot in Figure 6a shows that the probability of survival of patients with hypertension and or diabetes and 
those without either of them is not different. The cumulative hazard plot of Figure 6b also confirms this claim. 
 

Table-11. The Log-rank test results. 

Comorbidity N Observed Expected 
  

No comorbidity 385 380 377.6 0.0148 0.0474 
Yes comorbidity 208 208 193.2 0.6071 1.1310 

No response 48 48 61.2 2.8432 4.1358 
Chisq= 4.5  on 2 degrees of freedom, p= 0.1. 

 
The log-rank test confirms that there is no significant difference in survival time between those     that have 
hypertension and or diabetes and those that do not have either or both. 
 

Table-12. The Confidence interval of survival time. 

Comorbidity N Events median LCL UCL 

No comorbidity 385 380 8 7 9 
Yes comorbidity 208 204 7 7 8 

No response 48 48 11 11 11 
 

 
The patients that had hypertension and or diabetes were hospitalized between 7-8 days with a median of 7 days 

while those without hypertension and or diabetes were hospitalized between 7-9 days with a median of 7 days 
before the covid-19 issue was resolved.  This confirms the results of the log rank test that those with or without the 
presence of comorbidity had the same survival time.   
 

15. CONCLUSION 
In conclusion we state that; 

● Most covid-19 cases were resolved after about 7-8 days of being admitted.  

● As survival time increases the anosmia symptoms and comorbidity effect disappears and the probability of 
being discharged (case resolved) increases. 

● Sex and cough have no significant effect on survival time of covid-19 patients. 

● Fever, comorbidity, age and anosmia have significant effects on the survival time of covid-19 patients at the 
25th quantile. 

● Fever had a significant effect at all quantiles, with effect size of 7.3890 at the 25th quantile, effect size of 
20.0855 at the 50th quantile, effect size of 13.6086 at the 75th and effect size of 16.2030 at 95th quantile. 

●  Male and female patients have the same probability of survival and their  probability of survival is 0.74 

● Patients with comorbidity and those without have the same probability of survival, and their survival time is 
between 7-9 days. 

● The patients without fever survive at a shorter time interval than the patients with fever with a probability of 
0.0001 more than the patients with fever. 

● The survival time of patients with fever is between 9-10 days while those without fever are between 6-7 days. 
This shows that those with fever stayed longer on admission than those without fever. 
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● There is a significant difference in the survival times between the patients that have anosmia and those that 
do not have anosmia. 

● Patients that had anosmia were hospitalized between 7-9 days while those without anosmia were hospitalized 
between 6-7 days before the covid-19 issue was resolved. This shows that those with anosmia stayed longer 
on admission than those without anosmia. 

● The patients without cough survive at a shorter time interval than the patients with cough with a probability 
of 0.01 more than the patients with cough. 

● Patients with cough were hospitalized between 7-9 days while those without cough were hospitalized 
between 6-7days before the covid-19 issue was resolved.  This shows that those with cough stayed longer on 
admission than those without cough.   

● At the onset of covid-19, the survival time of patients depends on fever, age, comorbidity and anosmia. But as 
patients are being treated the effects of these factors becomes non-significant except the effect of fever. 
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