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Survival analysis deals with failure time data. The presence of censoring makes the 
application of the classical parametric and nonparametric methods of survival analysis 
inadequate and as such need’s modifications. Parametric mixture models are applied 
where a single classical model may not suffice. The parametric mixture needs to be made 
more robust to address the heterogeneity of survival data. This paper proposed a mixture 
of two distributions for the analysis of survival data, the models consist of Gamma-
Gamma, and Loglogistic-Gamma distributions. Data was simulated to investigate the 
performance of the models, and used to estimate the maximum likelihood parameters of 
the models by employing Expectation Maximization (EM). Parameters of the models 
were estimated and were all close the postulated values. Simulations were repeated to 
test the consistency and stability of the models through mean square error (MSE) and 
root mean square error (RMSE), and were all found to be stable and consistent. Real data 
was applied to determine the best fit among the mixture models and classical 
distributions using information criteria. Mixture models were found to model the data 
and the mixture of two different distributions gives the best fit. 
 

Contribution/Originality: The study is significant in the sense that, all existing studies of mixture models need 

to be extended to enrich the study of the analysis of heterogeneous survival data, because of its wide application, such 

as, in biomedical sciences, industrial reliability or reliability engineering, social sciences, and business. 

 

1. INTRODUCTION 

Survival or reliability study is an area with its unique characteristic; it deals with the statistical methods of 

analysing survival data obtained from clinical studies of humans, laboratory study of animals and investigation of the 

durability of manufactured items, among other appropriate applications. Survival time can broadly be defined as the 

time to the occurrence of the event of interest, the event of interest can be the time to failure of a manufactured item, 

the time to occurrence of a disease, time to relapse, response to treatment, death, etc. The study of survival data has 

paid attention on predicting the probability of response, survival, or mean lifetime, comparing the survival 

distributions of experimental animals or, of human patients and the identification of risk and/or prognostic factors 

related to response, survival, and the development of a disease, [1]. Parametric and nonparametric methods are 

usually employed [2, 3]. 
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Mixture models are being explored in survival and reliability analysis in recent times. Mixture models can be 

used to analyze failure-time data in a variety of ways. As a flexible way of modelling data, mixture models have several 

applications in situations where a single model may not suffice. They are applied where the data is heterogenous. 

Some authors proposed a mixture of three classical distributions [4] to analyze survival data that has three different 

time overlapping phases [5]. 

Similarly, two component mixture models of different distributions were also studied [6] therefore, this paper 

wish to enrich the study of two component, different distributions, mixture models for the analysis of survival data. 

 

2. SURVIVAL ANALYSIS 

Let T denote the survival time, which is a non-negative absolutely continuous random variable that represents 

the life time of individuals. If F(t) is the cumulative distribution of T, the survival function is defined to be; 

 S(t) = P (an individual survives longer than t). 

= 𝑝(𝑇 > 𝑡) 

= 1 − 𝐹(𝑡)                                                                                                                                         (1) 

Equation 1 represent the survival function of an individual with survival time T. 

 

2.1. The Probability Density Function 

Similar to any other continuous random variable, the survival time T has a probability density function defined 

as the limit of the probability that an individual fails in the short interval (t, t + Δt) per unit width Δt. 

It can be expressed as; 

𝑓(𝑡) = lim
𝛥→𝑡

𝑃{𝑎𝑛 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑑𝑦𝑖𝑛𝑔 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑡,   𝑡+𝛥𝑡)}

𝛥𝑡
                                                                                          (2) 

Equation 2 is the probability density function as explained above in 2.1. 

 

2.2. The Hazard Function 

The hazard function h (t) of survival time T gives the conditional failure rate; it is defined as the probability of 

failure during small interval of time, given that the individual has survived to the beginning of the interval. It can be 

expressed as; 

𝐻(𝑡) = lim
                    𝛥→0

𝑃{𝑎𝑛 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑜𝑓 𝑎𝑔𝑒 𝑡 𝑓𝑎𝑖𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑡,   𝑡+𝛥𝑡)}

𝛥𝑡
                                                           (3) 

The hazard function h (t) can also be defined in terms of the cumulative distribution function F (t) and the 

probability density function   f (t). 

            ℎ(𝑡) =
𝑓(𝑡)

1−𝐹(𝑡)
                                                                                                                                        (4) 

The hazard function is also known as the force of mortality, conditional mortality rate, and age-specific failure rate [1]. 

The survival function, S(t), probability density function, f(t), and hazard function, h(t), are mathematically equivalent.  

The relationship is expressed thus: 

ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
                                                                                                                                        (5) 

𝑓(𝑡) =
𝑑

𝑑𝑡
[1 − 𝑆(𝑡)]                                                                                                                        (6) 

ℎ(𝑡) =
𝑆′(𝑡)

𝑆(𝑡)
=  − 

𝑑

𝑑𝑡
𝑙𝑜𝑔𝑒 𝑆(𝑡)                                                                                                       (7) 

𝑆(𝑡) = exp [− ∫ ℎ(𝑥)𝑑𝑥]
𝑡

0
                                                                                                               (8) 
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𝑓(𝑡) = ℎ(𝑡)exp [− ∫ ℎ(𝑡)𝑑𝑥]
𝑡

0
                                                                                                         (9) 

Equations 5 through 9 presents the relationship between the hazard function, the probability density function 

and the survival function. 

  

2.3. Gamma Distribution 

The Gamma distribution has the pdf of the form: 

𝑓(𝑡) =
𝜆(𝜆𝑡)𝑘−1𝑒−𝜆𝑡

Г(𝑘)
     𝑡 > 0                                                                                                                    (10) 

Where k > 0 and t > 0 are parameters, λ-1 is the scale parameter and k is the shape parameter. 

The survival function 1 - F(t) is 

S(t) =  ∫
𝜆

Г(𝑘)

∞  

𝑡
(𝜆𝑡)𝑘−1𝑒−𝜆𝑡𝑑𝑥.                                                                                                      (11) 

The hazard function,  

h(t) is f(t)/S(t) =   
𝜆(𝜆)𝑛−1

(𝑛−1)! ∑ (1/𝑘!)(𝜆𝑡)𝑘𝑛−1
𝑘=0

                                                                                      (12) 

It can be shown to be monotone increasing for   k > 1.    

                        

2.4. Log-Logistic Distribution 

The log-logistic distribution is related to the logistic distribution in an identical fashion to how the log-normal 

and normal distributions are related with each other.                                

A logarithmic transformation on the logistic distribution generates the log-logistic distribution. Because of its 

flexible shapes, the log-logistic distribution has been illustrated to provide useful fits to data from many different 

fields, including engineering, economics, hydrology, and medical sciences. 

The log logistic distribution is characterized by two parameters, γ (positive shape parameter) and η (positive 

scale parameter). A log-logistic random variable X with parameters γ and η has probability density function and 

survival function as follows; 

𝑓(𝑥) =
𝛶𝜂𝑥𝜂−1

(1 + 𝛶𝑥𝜂)2
           

           𝑆(𝑥) =  
1

(1+𝛶𝑥𝜂)
                                                                                                                          (13) 

For ϒ > 0, η > 0. The log logistic distribution can be used to model the lifetime of an object, the lifetime of an 

organism, or a service time [1]. 

The cumulative distribution function,  

F (x) = P(X ≤ x) = 
(𝛶𝑥)𝜂

1+(𝛶𝑥)𝜂                   x > 0                                                                                   (14) 

The hazard function is 

ℎ(𝑥) =
𝑓(𝑥)

𝑆(𝑥)
 = 

𝛶𝜂(𝛶𝑥)𝜂−1

(1+(𝛶𝑥))
𝜂                                   x > 0                                                                        (15) 

The cumulative hazard function,   

H(x) = − ln(𝑆(𝑥)) = ln[1 + (𝛶𝑥)𝜂]                 x > 0.                                                                     (16) 

The log-logistic distribution was used in survival analysis [7] Similarly, it was used to model economic data [8]. 
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3. METHODOLOGY 

The Expectation maximization algorithm (EM) was used to achieve the maximum likelihood estimation of the 

parameters of the model, it is a way to find maximum-likelihood estimates for model parameters when your data is 

incomplete, has missing data points, or has unobserved variables. It is an iterative way to approximate the maximum 

likelihood function. A model selection criterion based on the Akaike Information (AIC) was employed to find the 

mixture model that gives the best fit. 

Data is simulated from a two-component parametric mixture of Gamma-Gamma, and Loglogistic-Gamma 

distributions. The model is evaluated by simulated data set, before it’s applied to real dataset. 

 

3.1. Parametric Mixture Model 

Let Ti, . . . ,Tn be n independent random variables, where Tj is the survival time of the jth subject. We assume that 

the probability density function f(t) of Tj is a mixture. 

𝑓(𝑡) = ∑ 𝜋𝑖 

𝑎

𝑖=1

𝑓𝑖(𝑡; 𝜃)                                                                                                                                                            (17) 

Where fi(t;𝜽i) are the component densities of the mixture, 𝜽i are the corresponding parameters of the ith density 

and the 𝝅i  are nonnegative probabilities that sum to one. That is,                  

                                             ∑ 𝜋𝑖 = 1   and    0 ≤ 𝝅i  ≤ 1       (i = 1,……,a).                                                   (18) 

The quantities 𝝅1, . . . a are called mixing proportions or weights. Since the components f1 (t;1),…,fa (t;𝜽a) are 

densities, the mixture (3.1) is a density. 

It follows the survival function of failure-time Tj under mixture model is also a mixture,  

𝑆(𝑡) = ∑ 𝜋𝑖𝑆𝑖(𝑡; 𝜃𝑖)                                                                                                                             (19) 

where 𝑆𝑖(𝑡; 𝜃) denotes the iih component survival function. 

 

3.2. Gamma-Gamma Mixture Model 

The mixture model of distributions assumes the population consist of two distinct sub groups or classes, 

therefore, the gamma mixture can be written as: 

fgm-gm (t) = πfgm(t; λ1, k1) + (1-π)fgm(t; λ2, k2)                                                                                         (20) 

where π is the mixture weight of the distributions and λ1, λ2, k1, and k1 are shapes and scales of the two 

components respectively.  

 

3.3. Log-logistic Gamma Mixture Model 

The mixture of the densities of Log-logistic and Gamma can be represented as: 

fll-gm (t) = πfll(t; γ1, η1) +  (1-π)fgm(t; λ2, k2)                                                                                            (21) 

where is the weights of the mixture and γ1, η1 are the shape and scale of the loglogistic component and λ2, k2 are the 

shape and scale of the gamma component of the distribution.   The Expectation Maximization (EM) algorithm [9] is 

a general approach to maximum likelihood estimation for problems of finite mixture models [10]. Starting value 

initialisation is very important in the EM algorithm because the likelihood surface of mixture models tend to have 

multiple modes [11]. The EM algorithm typically produces improved result when started from reasonable initial 

values [12]. The EM algorithm is a broadly applicable algorithm that provides an iterative procedure for computing 

Maximum Likelihood Estimates (MLE), [10]. 

Suppose the density of a random variable Y has an a component mixture form. 

𝑓(𝑦𝑖 ; 𝛹)= ∑ 𝜋𝑖𝑓𝑖(𝑦; 𝜃𝑖)                                                                                                                        (22) 

where Ψ = (𝝅1, . . ., 𝝅a-1, 𝜽’1, …, 𝜽’a)’ is the vector containing all the unknown parameters in the mixture model. 

Let 𝝅 = (𝝅1, 𝝅2, . . . ,a)’ be the vector of mixing proportions. Suppose y1, y2, . . .,  yn is an observed sample of size n, the 

likelihood for Ψ can be written as: 

mhtml:file://C:/Users/othmanyakubu/Documents/Bluetooth%20Exchange%20Folder/EM%20Algorithm%20(Expectation-maximization)_%20Simple%20Definition%20-%20Statistics%20How%20To.mhtml!https://www.statisticshowto.datasciencecentral.com/what-is-a-parameter-statisticshowto/
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𝐿(𝛹) = ∏ 𝑓(𝑦𝑖 ; 𝛹)

𝑛

𝑗=1

 

                                  = ∏ [∑ 𝜋𝑖 𝑓𝑖(𝑦𝑖; 𝜃𝑖)𝑖 ]                                                                                                                               (23)𝑛
𝑗=1  

Maximum likelihood estimation of mixture model is cumbersome to solve using the traditional method of taking 

derivative with respect to each parameter. These, and some other difficulties made modelling heterogeneous data 

unattractive for a long time [13]. 

 

3.4. Mixture Model Selection 

Regarding the mixture density estimation problem, the problem of determining the proper number of 

components and proper mathematical form of each component is faced. In other words, one need to determine which 

mixture model fits the data better. The question we try to answer here is a model selection problem.  

The statistic Akaike Information Criterion (AIC) appears to be adequate for model selection in the mixture 

density estimation [13]. Here, we follow the model selection approach using AIC proposed by Akaike [14]. 

AIC =  −2𝑙𝑜𝑔𝐿(Ѱ) + 2𝑑                                                                                                                                   (24) 

where d is the total number of independent parameters, n is the number of observation and Ψ is the estimate of 

the vector containing all the parameters. 

 

4. RESULTS 

The simulated data contains n = 100 observations. The Maximum Likelihood Estimates (MLE), of the 

parameters of each component of a mixture, and the Akaike Information Criteria (AIC) are used for model selection 

in each case, mean square error (MSE) and root mean square error (RMSE) are also employed, the MSE and RMSE 

are among the many ways to quantify the difference between an estimator and the true value of the quantity being 

estimated. 

 

4.1. Gamma-Gamma 

Dataset is simulated from a two-component parametric mixture of Gamma model. The simulated data contains 

n = 100 observations and the proportion parameters for each component is λ1=0.5, λ2 =0.5. Table 1 list the MLEs of 

the parameters and the mixing proportions of the mixture model, it can be seen that, the parameters of the model 

were estimated successfully, because the estimated parameters are closed to the postulated values. Table 2 shows that, 

the EM is also consistent and stable in its estimation because of the relatively small values of MSE and RMSEs.   

 

Table 1. MLEs of gamma-gamma model with no repetitions. 

Gamma-Gamma 

Parameter λ1 λ2 α1 α2 β1 β2 
Postulate 0.5 0.5 40 6 20 1 
Estimate   0.485 0.515 39.999 6.007 19.752 0.963 

 

 

Table 2. MLEs of gamma-gamma model with 300 repetitions. 

Gamma-Gamma 

Parameter λ1 λ2 α1 α2 β1 β2 
Postulate 0.5 0.5 40 6 20 1 
Estimate   0.495 0.515 41.412 5.787 20.661 0.946 
MSE  1.46e-06 1.45e-06 1.70e-01 2.78e-03 4.00e-02 1.14e-04 
RMSE 0.001 0.001 0.412 0.053 0.200 0.011 

 

 

To assess the consistency of the model, simulation was repeated 300 times, the Mean Square Error (MSE), and 

the Root Mean Square Error were obtained. It can be seen that, both MSE and the RMSE values are very small which 
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shows the model is consistent. Figure 1 compares the density function of classical parametric model and the density 

of the mixture model, it can be seen that, the mixture model fits the data better. 

 

 
Figure 1. Density of survival mixture model of gamma-gamma. 

 

Table 3 shows that, the model estimates are very close to the postulated values, hence the model can be said to 

be efficient.  

 

Table 3. MLEs of log-logistic-gamma model with no repetitions. 

Log-logistic-Gamma 

Parameter λ1 λ2 α1 α2 β1 β2 
Postulate 0.5 0.5 10 2 4 0.1 
Estimate   0.521 0.480 10.523 1.887 3.956 0.111 

 

 

Simulations were repeated 300 times to test for consistency of the model and it is found to be consistent as can 

be seen from the MSE and RMSE in Table 4, which are very close to zero. 

 

Table 4. MLEs of log-logistic - gamma model with 300 repetitions. 

Log-logistic-Gamma 

Parameter λ1 λ2 α1 α2 β1 β2 
Postulate 0.5 0.5 10 2 4 0.1 
Estimate   0.440 0.561 10.692 1.556 4.341 0.111 
MSE  4.19e-06 4.19e-06 1.34e-02 2.24e-04 2.26e-03 1.43e-06 
RMSE 0.002 0.002 0.116 0.015 0.0478 0.001 

 

 

The densities of the two classical distributions were also compared to the model as shown in Figure 2 it can be 

seen that, the model fits the data better. 

 

 
Figure 2. Density of survival mixture model of Gamma – log-logistic model. 
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4.2. Real Data Application 

The data used is the Acute Myelogenous Leukemia (aml) dataset in R statistical software, it was first used by 

Rupert [15]. The question at the time was whether the standard course of chemotherapy should be extended 

(“maintained”) by additional cycles.   

The MLEs of aml dataset using Gamma-Gamma model is in Table 5 and Figure 3, it shows the survival function 

alongside the K-M of the model. 

 

Table 5. MLEs and AIC of the AML dataset using gamma-gamma model. 
 

Model  Estimate LL AIC 

Gamma-Gamma �̂�1   = 0.791,  �̂�2 = 0.213  
-98.934 

 
209.866 �̂�1 = 1.335    �̂�2 =18.094 

�̂�1 = 21.333    �̂�2 =1.867 

 

 
Figure 3. Kaplan meier (K-M) survival curve of gamma-gamma. 

 

Figure 3 shows that, the mixture model fits the K-M curve better than the classical model as it is closer to the 

K-M curve.  

 

Table 6. MLEs and AIC of loglogistic-gamma model. 
 

Model  Estimate LL AIC 

Loglogistic-
Gamma           

�̂�1 = 0.133       �̂�2 = 0.877  
-98.842 

 
209.690 �̂�1 = 179.512   �̂�2 =1.442 

�̂�1 = 0.173     �̂�2 = 20.691 

 

Table 6 presents the results of the loglogistic-gamma model after it’s application on real data, the aml dataset, �̂�1 

and �̂�2 are the mixing proportions, while �̂�1, �̂�2 and �̂�1, �̂�2 are the shapes and scale parameters of the model 

respectively. The AIC measures the amount of information lost in using the model to fit the data. 

 

 
Figure 4. Kaplan meier (K-M) survival curve of loglogistic-gamma model. 
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Figure 4 shows the Kaplan meier survival curve of the loglogistic-gamma distribution. 

It is observed that, the Gamma-Gamma fits both the simulated and real data well, however Loglogistic-Gamma 

model gives the best fit to both datasets, because it has the lowest Akaike Information Criteria (AIC), and comparing 

the Kaplan Meier (K-M) survival curves it can also be seen that, the K-M survival curve of the loglogistic-Gamma in 

gives a better fit than the single classical distributions. The estimation of the parameters of the model were successful 

in both the simulated and the real data, as estimated values were relatively close to postulated values. As can be seen 

the mixture model of Loglogistic-Gamma gives the best fit for the real data among the proposed models. 

 

5. CONCLUSION 

The paper proposed a two-component mixture model of classical distributions, namely, Gamma-Gamma and 

Loglogistic-Gamma distributions to analyze heterogenous survival data, simulated and real data were employed to 

assess the performance of the models, the models were found to estimate the parameters successfully as the estimates 

were close to the postulated values. It is found that, the mixture of two different distributions i.e. Loglogistic-Gamma 

gives a best fit to the real data applied.  
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