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ABSTRACT

This paper develops an analytical framework for a nonlinear dynamical model describing
interactions among healthy cells, tumor cells, quiescent tumor cells, and immune cells
under radiotherapy and chemotherapy. The system is formulated as a set of nonlinear
ordinary differential equations with therapeutic inputs represented as time-dependent
functions. The analysis begins by establishing positivity, boundedness, and an invariant
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region that confines all solutions to biologically meaningful states. Two equilibrium
points are identified: the tumor-free equilibrium and the endemic equilibrium. The basic
reproduction number is derived using the Next Generation Matrix approach. The local
stability of the equilibrium points is examined using the Jacobian matrix and the Routh—
Hurwitz criteria. Global stability is proved with Lyapunov’s direct method. Sensitivity

Radiotherapy

Sensitivity analysis
Stability analysis
Tumor—-immune dynamics.

analysis is performed using the normalized forward sensitivity index to determine the
parameters that most influence. The results show that the tumor growth rate and the
transformation rate promote tumor persistence. Radiotherapy efficacy and the immune
killing rate suppress tumor growth. When the system converges to the tumor-free
equilibrium, it represents effective disease control. The findings demonstrate how
mathematical stability and sensitivity analysis support the design of treatment protocols.
They also provide a basis for evaluating combined radiotherapy—chemotherapy strategies
and how these can shift the tumor—immune balance toward recovery.

Contribution/Originality: This study contributes to existing literature by developing and analyzing a nonlinear
tumor—healthy—immune model with radiotherapy and chemotherapy. It provides new stability results, derives a
closed-form solution, applies Lyapunov global stability, and documents parameter sensitivity effects on treatment

success. The paper offers the first integrated analytical-therapeutic framework for this system.

1. INTRODUCTION

Mathematical modelling helps explain tumor—immune interactions and the effects of therapy. Early work relied
on logistic and Gompertz growth laws to describe tumor expansion under limited resources [1, 27]. These models
captured basic proliferation patterns but did not incorporate immune activity or treatment responses. Subsequent
studies introduced immune surveillance through Lotka—Volterra structures and nonlinear cytotoxic mechanisms [ 3,
47. These models showed that immune regulation determines whether tumors persist, regress, or oscillate.

Later research incorporated immune activation, saturation effects, and therapy-induced changes. Models with

saturating immune-killing terms explained chronic persistence and relapse in cancer [5, 6. Other work examined
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the role of quiescent tumor cells and their reduced sensitivity to therapy, highlighting the need to represent both
proliferating and dormant compartments [7].

Cancer development is influenced by genetic and environmental factors, and the interaction between malignant
and healthy cells creates complex nonlinear behavior [87. Mathematical models provide a structured way to describe
these interactions, predict treatment outcomes, and explore optimal control strategies. Early theoretical models such
as exponential and logistic growth laws [ 1, 97, offered foundational insight but did not include immune processes or
treatment effects. Later extensions incorporated competition for resources and interactions between healthy and
tumor cells [10, 117, though many of these models still omitted key immune mechanisms.

Radiotherapy and chemotherapy remain central treatment strategies. Radiotherapy damages DNA and induces
tumor cell death, but can also harm healthy tissue when dosing is not well controlled [127. Chemotherapy targets
rapidly dividing cells but causes toxicity in normal tissues [137]. Models that combine both treatments allow analysis
of synergistic effects and support the design of effective therapy schedules.

Stability analysis and threshold measures, such as the basic reproduction number, help determine whether tumors
persist or are eliminated. The next-generation matrix method remains a standard tool for deriving these thresholds
[14-167. Models that include healthy tissue, tumor cells, and immune activity show that stability depends on the
balance between proliferation, immune killing, and treatment strength [6, 177]. Broader reviews have documented
the relevance of such models to oncology [18-207.

The immune system regulates tumor growth through cytotoxic responses that destroy malignant cells [217.
Tumor cells may evade these responses by entering quiescent states, reducing their vulnerability to treatment and
immune attack. Models that incorporate these mechanisms help explain tumor escape and relapse.

Recent studies have developed integrated models that couple healthy tissue, tumor growth, quiescent
compartments, immunity, and multiple therapies within a single system [6, 227]. These models support long-term
analysis of treatment outcomes and control strategies.

This study develops a nonlinear tumor—healthy—immune model with radiotherapy and chemotherapy treated as
time-dependent inputs. The analysis establishes positivity, boundedness, and equilibrium stability, and derives the
basic reproduction number. Sensitivity analysis identifies the parameters that most influence tumor persistence or
clearance. These results clarify how treatment and immunity shape therapeutic outcomes and support the design of

optimized cancer treatment strategies.

2. MODEL FORMULATION

This study develops a compartmental model with four interacting populations: healthy cells (H(t)), tumor cells
(T(t)), quiescent tumor cells (Q(t)), and immune cells (I(t)). The model captures key biological processes, including
cell proliferation, phenotypic transformation, immune response, and the effects of therapy. No additional
compartments are introduced for treatment control. Radiotherapy, chemotherapy, and immunotherapy are

represented as time-dependent external inputs that modify the dynamics of the biological compartments.

2.1. Model Assumptions
The model is based on the following assumptions.
1). Healthy cells grow logistically with growth rate rmand carrying capacity K.
ii). A fraction of healthy cells transforms into tumor cells at rate a;.
iii). Tumor cells proliferate logistically with rate rrand carrying capacity K.
iv). Tumor cells can enter a quiescent (dormant) state at rate 8, and revert to an active state at rate y, especially
under favorable conditions.
v). Immune cells attack tumor and quiescent cells with saturating (Michaelis-Menten) kinetics.

vi). Tumor cells stimulate immune cell recruitment. Immune cells decay naturally at rate d.
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vii). Radiotherapy and chemotherapy damage tumor and quiescent cells and also affect healthy cells.
viii). Radiotherapy effectiveness decays with repeated application due to resistance development.

ix). Immunotherapy enhances immune activity without affecting healthy cells.

2.2. Model Description
The population of healthy cells exhibits logistic growth, characterized by a natural proliferation rate r:and
constrained by a carrying capacity Ku, reflecting the finite availability of resources such as nutrients and space. The

'I'H[I(l .|

logistic growth term %) ensures that the healthy cell population stabilizes as it nears the environment’s

capacity. However, healthy cells can transform into tumor cells due to genetic mutations or environmental insults,
represented by the term a;H, where a; is the transformation rate from healthy to tumor cells. In addition, treatment
modalities such as radiotherapy and chemotherapy can directly damage healthy tissue. This is incorporated into the
model by including the radiotherapy-induced death term p«(#)H, where pu(%) is the time-dependent rate of radiotherapy
damage to healthy cells, and the chemotherapy-induced death term yu(?)H, with yu(f) representing the time-dependent
toxicity of chemotherapy to healthy cells. These considerations lead to the formulation of the healthy cell dynamics
as shown in Equation 1. Similar approaches to modeling healthy-tumor interactions under treatment have been
discussed by Kim et al. [237 in the context of optimal therapy strategies. Equation 1 presents the healthy-cell

dynamics under logistic growth, transformation into tumor cells, and therapy-induced damage.

dH H
dH _ (1 - ;T) ol — pu(OH — xu(OH
H

dt (1)
The tumor cell population increases through two main processes: transformation from healthy cells at a rate a;,
and intrinsic proliferation modeled by logistic growth with proliferation rate rrand carrying capacity Kr. Tumor cells
also receive additional input from the reactivation of quiescent tumor cells at rate y, which accounts for cells that re-
enter the active cycle under favorable conditions such as hypoxia recovery or nutrient availability. Losses in the tumor
population occur due to several mechanisms. Natural tumor cell death is modeled by the parameter . The immune
response contributes to tumor reduction through a saturating cytotoxic effect represented by the Michaelis-Menten-
like term %, where 1+is the immune killing rate and kris the half-saturation constant. Additionally, tumor cells are
targeted by radiotherapy and chemotherapy. The time-dependent killing terms p+(#) and y«(f) represent the rates of
tumor cell death due to radiotherapy and chemotherapy, respectively. Altogether, these processes are captured in
Equation 2, which models the net rate of change of the tumor cell population over time.
(2—{ =a H+reT (1 ~ K%) — BT +vQ — —&ZTiTT —pr(t)T — xr ()T @)

The quiescent tumor cell compartment Q represents non-proliferating tumor cells that have entered a temporary
dormant state due to unfavorable environmental conditions such as hypoxia or lack of nutrients. These cells arise
from the active tumor cell population at a rate f8, capturing the transition from the proliferating to the quiescent
phase. Quiescent cells can return to the active tumor population at a reactivation rate Y, especially when the
environment becomes favorable. They are also susceptible to immune surveillance, and this interaction is represented
by a saturating immune clearance term f—j;i—%, where 7is the killing rate by immune cells and keis the half-saturation
constant. Both radiotherapy and chemotherapy can partially affect quiescent cells, although typically with lower
efficacy than on actively dividing cells. These effects are modeled using time-dependent death rates po(Z) and yo(%),
respectively. These terms reflect the therapeutic impact of treatment on the dormant cell population. The overall
dynamics of quiescent cells are summarized in Equation 3, describing the net rate of change of the quiescent tumor
cell population over time.

dQ

E 11 o Q -~ xa()Q

=BT —~Q — 197
"Q o+ 0 .
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The immune cell population I represents cytotoxic immune cells responsible for identifying and eliminating
tumor and quiescent cells. Their dynamics are influenced by several biological processes. The term s represents the
basal source or natural influx of immune cells into the tumor microenvironment, maintaining a minimal level of
immune surveillance. The function o0i(#) accounts for externally administered immunotherapy, which boosts the
immune population over time through medical intervention. Immune cells can also proliferate in response to tumor
presence. This activation and clonal expansion is captured by the term O%FI, a saturating function that models
stimulation of immune cells by tumor antigens. Here, § is the maximum activation rate and 6 is the tumor density at
which immune activation is half~-maximal. Immune cells also undergo natural degradation at a rate d;, which reflects
the finite lifespan of immune effectors and their exhaustion during prolonged engagement. Together, these processes
describe the evolution of the immune population in the tumor microenvironment, and Equation 4 outlines the

resulting immune-cell dynamics driven by basal influx, immunotherapy, tumor-induced activation, and natural decay.

dl

oT
U =sr+or(t)+ ——=1—dsl

0+T (4)
2.8. Model Equations

The proposed model captures the interactions among the four key compartments: healthy cells H(Z), tumor cells
T(#), quiescent cells Q(#), and immune cells I(£). Healthy cells grow logistically with intrinsic rate r=and carrying
capacity Ku, and are reduced by natural decay a;H, radiotherapy-induced death px(#)H, and chemotherapy-induced
death yu(f)H. Tumor cells arise from the transformation of healthy cells at rate a, H, grow logistically with rate rrand
capacity Kr, and are reduced by transition to quiescence (f7), immune-mediated cytotoxicity (%), radiotherapy
(p+(t)T), and chemotherapy (x:(£)T). Quiescent cells are derived from tumor cells at rate 7, and may revert to active
tumor phenotype at rate yQ. They are also subject to immune elimination (%?fr_%), radiotherapy (pqo(£)Q), and
chemotherapy (xo(?)Q). Immune cells are maintained via basal influx s, enhanced by immunotherapy input o1(£), and
proliferate in response to tumor presence via a saturating function 757! but decay at rate dil. Equation 5 summarizes
the complete tumor—healthy—immune system as four coupled nonlinear ODEs that model the host—tumor—immune

interactions under therapeutic interventions

dH H
E = T‘UII (l — }(H) - (l]II 7[)[](ﬁ)f[* Xn(t)[[

ar T e IT |
o o H +rpT (l — KT) — 8T ++Q — or T pr()T — xr ()T

Q) nlQ

— =BT —1Q 010 Pe(H)Q — xq(1)@Q

dl

— =57+ )+ —+ T —dfI

RO i (5)

3. RESULTS AND DISCUSSION
3.1. Parameter Estimation

As shown in Table 1, some of the parameter values were estimated, while others were taken from the literature.

Table 1. Parameter values used in the model.

Symbol |[Parameter Description Value Source

rH Healthy cell growth rate 0.20 day! Kim, et al. [24]

Ku Healthy tissue carrying capacity 1.0 X 106 cells Assumed tissue scale
a [Transformation rate H —> T 1.0 X 1077 day™! De Pillis, et al. [5]

rT Tumour cell growth rate 0.18 day™! IDe Pillis, et al. [57]

K [Tumour carrying capacity 1.0 X 106 cells Standard scaling

B [Transition T — Q 0.02 day™! |Assumed (quiescence)
Y Reactivation Q — T 0.01 day™! IDormancy assumption
nr Immune killing rate (7)) 0.50 (dimensionless)  |De Pillis, et al. [57]
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Kr Half-saturation for T kill 1.0 X 105 cells Literature value
no [Immune killing rate (Q)) 0.10 (dimensionless)  |Assumed lower efficacy
KQ Half-saturation for Q kill 1.0 X 105 cells Literature value
St Basal immune influx 10 cells/day Typical immune recruitment
o Immunotherapy influx 5 cells/day IJAssumed moderate boost
i) Max immune recruitment rate 0.10 day™! Kim, et al. [24]
2] Tumour load for  half-maximal 5.0 X 10*cells Kim, et al. [24]

activation of the immune system
di Immune decay rate 0.10 day™! Typical immune lifespan
pH Radiotherapy death rate (healthy) 0.02 day™ IAssumed collateral damage
D1 Radiotherapy death rate (tumour)) 0.10 day! ILiterature typical
pQ Radiotherapy death rate (quiescent) 0.02 day ™! |Assumed lower sensitivity
xH Chemotherapy death rate (healthy) 0.01 day™ |Assumed toxicity to normal cells
X Chemotherapy death rate (tumour) 0.05 day™! Literature typical
X Chemotherapy death rate (quiescent) 0.01 day ™! |Assumed lower sensitivity

3.2. Boundedness and Positivity of Solutions

Maintaining the biological viability of differential equation solutions is crucial when modeling biological systems.
Proving the positivity and boundedness of solutions is usually how this is accomplished. Population variables such as
immune cells (1), tumor cells ( T), healthy cells (H), and quiescent tumor cells (Q) are protected from achieving negative
values through positivity. Boundedness guarantees that these variables do not grow unbounded over time, respecting
biological and physical constraints such as carrying capacities and resource limitations.

Considering the system of equations defined in (5), subject to non-negative initial conditions.

H(o)=o0, T(0)=0, ©Q0)=0, I0)=o0.

3.8. Positivity of Solutions

In order for the model to be biologically meaningful, it is necessary to show that the solutions with nonnegative
initial conditions remain nonnegative for all time ¢ > 0. This property guarantees that the state variables, which
represent population densities of cells, do not take negative values during the system's evolution.

Theorem 3.1. Let the initial conditions of system (5) satisfy.

H(o)=o0, 17T(0)=0, ©Q0)=0, I0)=o0.
Then the solutions (H(Z),1(%),Q(%),I(t)) of system (5) remain nonnegative for all £> 0.
Proof: Consider the first equation of system (5). At H = 0, we obtain Equation 6.
(Z—Ij . rgH (1 — %) —a1H —py(t)H — xn (t)H|H:O =0 “

Thus, H(Z) cannot cross the plane H = 0 from the nonnegative region to the negative region.
Similarly, at 7" = 0, the second equation yields Equation 7.

drT T
@ _ Ty AT : -
dt |T=o0 arH +rrT (1 KT) pr(t)T XT(I‘)T|T:D >0 .

Since H = 0. Therefore, 7(#) cannot become negative.

Proceeding analogously for Q and I, we observe that the vector field on the boundary of the nonnegative orthant

R

points inward or is tangent to the boundary. Hence, the nonnegative orthant™+ is positively invariant under the flow
of system (5).
The above theorem ensures that the model remains biologically well-posed, since the solutions starting with

R

nonnegative initial conditions are guaranteed to remain in the feasible region™+ for all £ > 0. This provides a sound

basis for the subsequent stability and bifurcation analyses.
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3.4. Boundedness of Solutions
In addition to positivity, it is essential to demonstrate that the solutions of system (5) are bounded. This
guarantees that the populations of healthy, tumour, quiescent, and immune cells remain within biologically realistic
limits for all future times, thereby ensuring the mathematical and biological well-posedness of the model.
Theorem 3.2. All solutions of system (5) with nonnegative initial conditions are uniformly bounded inRj-.
Proof. Consider the total population, Equation 8:
W(t) = H(t) + T(1) + Q(t) + I(%). (8)
Differentiating with respect to time and using system (5), we obtain Equation 9:
dw dH dT dQ  dI
@ (©)

From the healthy cell equation, we have Equation 10:

dH H
T crpH (1
a =" ( Kp ) (10)

Thus, H(?) is bounded above by the healthy cell carrying capacity K.

For the tumour population, combining the proliferating and quiescent compartments yields Equation 11.
d T
ooyt 1)

dt K , (11)

Implying T(f) + Q(?) is bounded above by the tumour carrying capacity K.

For the immune cell population, we have Equation 12.

dI

— <s 0l —dl.
ar =51 +or+ I (12)
By comparison with the linear equation y' = (6§ — d\)y + (s:+ o)), it follows that.
St +og
I(t) <
(< dr =0  (18)

Whenever d;> 6.
Hence, each compartment is bounded above by a biologically realistic constant. Consequently, yielding to

Equations 14 - 16.

B ~dr—4 (16)
Therefore, /%) is uniformly bounded, which establishes the boundedness of all solutions of system (5).
The above theorem ensures that the trajectories of system (5) remain confined within a compact subset ole.
This boundedness result is crucial because it rules out the possibility of unbounded growth in any of the
compartments, thereby confirming the biological consistency of the model and preparing the ground for the analysis

of invariant regions.

3.5. Invariant Region

For biological realism, it is important to show that the solutions of system (5) not only remain nonnegative but
are also uniformly bounded. This ensures that the cell populations do not grow without limit and that the system
dynamics are confined to a biologically feasible region.

Theorem 3.3. The region

Q:“EEQDEMJOSHSKE
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0<T+Q<Kr, ()§I§%+M} )

Where M > 0is a constant depending on the proliferation parameters, it is positively invariant with respect to
system (5).
Proof: From the first equation of system (5), the healthy cell population satisfies Equation 19.

dH H
— <rgH|(1——
de =" ( KH) (19)

By comparison, H(%) is bounded above by the logistic equation with carrying capacity Ku, hence H(f) < Ku for all
t=0.

For the tumour compartment, adding the second and third equations gives Equation 20.
d T
—(T+Q)<ryT (1 — ) —prT — x7T — poQ — xoQ,
dt K (20)
Which shows that T+ Q is bounded above by the tumour carrying capacity K.
For the immune cell population, Equation 21:

ﬂ < s;+op+6I—djl,

dt (21)

81+o;p 14
Which implies I() is bounded above by a constant of the form — d: +M

Thus, trajectories starting in Q remain in Q for all > 0, proving that Q is positively invariant.
4
The theorem guarantees that all solutions of system (5) eventually enter and remain in the compact set QCRY
. This ensures that the model is mathematically well-posed and biologically meaningful, and provides the feasible

region within which stability and bifurcation analyses can be carried out.

3.6. Equalibrium Analysis
Two biologically relevant types of equilibria are examined in this work: the tumor-free equilibrium (TFE) and
the tumor-present equilibrium (TPE), which indicate a disease-free state where tumor cells are completely absent
from the system and a persistent coexistence of tumor, healthy, and immune cells, respectively. These equilibria
provide important information about the system’s long-term behavior and the efficacy of therapeutic interventions.
To determine the equilibrium points of the system, the right-hand sides of system (5) are set to zero, as shown in
Equation 22.
dH _dT_dQ _dl _,
dt dt dt dt (22)
3.7. Tumour-Free Equilibrium (TFE)
To investigate the existence of a tumor-free state, the tumor compartments of the model system are set to zero,
that is, T = Q = 0. The reduced system for healthy cells (H) and immune cells (I) is then simplified as shown in
equation (23).

H
H=ryH (1 — = )7(pH+XH)H«
Ky (23)
IIS[«FO’[*(I[I. (24‘)

Equation () describes logistic-type growth for the healthy population, modified by the natural loss rate px and
therapy-induced depletion y». Equation 23 represents the balance between immune cell supply (s:+ o7) and natural
decay (di). A necessary condition for a valid tumor-free state is the absence of spontaneous inflow into the tumor class
from healthy cells. This requires that.

a,=0 (25)
Otherwise, tumor cells would continuously reappear from the healthy pool. Under condition (25), the tumor-free

equilibrium is as illustrated in Equation 27.
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Ey=(H*,0,0,1%), (26)

With steady states 4ot gyt
o
" =Ky (1——1 PH XH) (27)
"H
S5+ O’; (28)

I =
dr

For biological feasibility, H* > 0 must hold, which is equivalent to the condition in Equation 29.
tu> Pu+ Xn. (29)
This ensures that the intrinsic growth rate of healthy tissue exceeds the combined natural and therapeutic losses,

guaranteeing the persistence of H in the absence of tumor cells.

3.8. Endemic Equilibrium (EE)

At the endemic equilibriumET = (H. 1,0, F*), the tumor persists in the system and all compartments
attain non-zero steady states with 7**,Q* I** > 0. The steady state is obtained by setting the right-hand sides of
system (5) to zero, while evaluating the time-dependent therapeutic controls at their long-term values

PuXnPrXnPeXe0: The resulting algebraic system is as shown in Equations 30 - 33.

Aok

H
0= T‘HII(]. - f) — Q’,JH — /)HH — XHH,

Ky (30)
T nprlT 31
0:a1H+TTT(1fKT)f,BTwLO'ny#prT—XTT’ (81)
nelQ (32)
0=p0T- - — ,
BT —~@Q o 1 O™ Q@ — xoQ
oT
0=sg +01+—**[**—d11.

Solving these equations sequentially to express each equilibrium component in terms of the tumor population
T**, thereby reducing the system to a single closure equation, which mirrors the analytical approach commonly used
in tumor-immune modeling.
From Equation 30, assuming H** > 0, the equation yield Equation 34.
rg — (o + py + xu)
rH . (34)

™ = Ky

A biologically meaningful H** requires.
ru> o + Pt Y. (85)
This Equation 35 inequality represents a natural threshold: the intrinsic regeneration of healthy tissue must
outweigh the combined losses due to tumor invasion (;) and therapy-induced cytotoxicity (pmyxn). If violated, the
healthy cell population collapses, signifying tissue damage or treatment toxicity.

From Equation 33, we isolate I** as shown in Equation 36.
I** —
O+T*  (36)

The condition for positivity is di>67T/(6 + T**). Biologically, this balance shows that immune cells are sustained
through baseline recruitment (s) and therapeutic stimulation (o0:). The tumor load T** contributes additional
activation, but excessive tumor burden can overwhelm immune persistence it 67//(6 + T**) approaches d.

Equation 32 reduces to a quadratic form in Q**. Setting Ro=y + po+ Yeand solving yields Equation 37;
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BT~ Ratq — 1ol (T*) + \/(,BT — Rorg —ngl(T**))” + 4RgBTxq
2Rq (37)

Q** (T**) —

where I'*(T**) is substituted from (36). The positive root is taken to ensure biological relevance. This expression
shows that the quiescent population is maintained by transition from the active tumor compartment (7), balanced
against immune clearance (1of) and reactivation into proliferating tumor cells (y). The persistence of Q** reflects
tumor dormancy, a mechanism often linked to recurrence after apparent remission.

Considering Active tumor cells 7**. and finally, substituting H**, I**(T**), and Q**(T**) into (31), we define the

scalar closure equation.

* ok

T P o * kK
F(T™) = a4 7T (1= ) = (8 + pr +x0)T™ £9Q(T™)

- nrI (T*)T**
Ky 4 T** (38)

The endemic equilibrium tumor burden 7** >0 is determined by solving F(7**) = 0. Once T** is determined, the

corresponding H**, Q**, I** are uniquely obtained from Equations 34-and 37, yielding.

Ef = (H**, T, Q™ (T**), I**(T**)) (59)

Thus, the endemic equilibrium not only provides a mathematical condition for tumor persistence but also yields

biologically interpretable thresholds for treatment efficacy and disease progression.

3.9. Basic Reproduction Number Ry

To assess the potential for tumor invasion, the next-generation matrix (NGM) method is applied [14, 257. The
infected subsystem is identified as () = (1,Q)" where T and Q denote proliferating and quiescent tumor cells,
respectively. The subsystem dynamics can be written as. Equation 40 expresses the infected subsystem in next-

generation matrix form, separating new tumor production from all other transitions.

l
2~ Flx) - V(x)
dt (40)

Where F(x) contains new tumor proliferation terms and V(x), accounts for all other transfers including

progression, regression, death, and immune-mediated killing. The new infection vector is. Equation 41 presents the

Flx) = (T%T) (41)

nrlT
kp+T

V(z) =
I
~BT+ (v +po +xe)? + % (42)

vector of new tumor cell production rates.

While the transition vector is.

(B+ (pr \T)T Yo +

Equation 42 defines the transition vector containing loss, movement, and immune-mediated clearance terms.
At Eo, the nonlinear immune terms are linearized, yielding the effective per capita killing rates.

The Jacobian matrices of F'and 7 at E,are given in Equations 43 and 44.

48
. (43)
N0 o)
44
- (44)
Where, “\-p d )
(45)
I*
(1:3+pT+XT+T]T s
KT
(46)

l”

J‘CQ

d= :+ﬂQ+XQ+n
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The next-generation matrix is given by Equation 47.
K=FrV-' (47)
The invertibility of 7 requires the determinant condition, which is given by Equation 4s8.
ad— By >0 (48)
Which also guarantees that 7”is an M-matrix and ensures the positivity of the inverse.

The inverse of V yields Equation 49.

This yields the next-generation matrix given by Equation 50

ad — v g 0
(50)

Whose eigenvalues are given by Equations 51 and 52.

r.d
b=—— (51)
ad — By
r.d
A= (52)
ad - By
Hence, the basic reproduction number is given by Equation 53.
rrd
Ry=— 2"
ad — By (53)

Substituting Equations 50, 53 yields the complete basic reproduction number given in Equation 54.

77(3(314-01))

TT(’TJFPQJFXQJF dirg

Ry —
0 nr(sy +or)

s t+o
kT

) e
drkq (54)
3.10. Local Stability Analysis of TFE
For analytical clarity, we first set a;= 0, removing continual exogenous seeding from healthy to tumour cells.

With T= Q= 0, the system admits the tumour-free equilibrium in Equation 55.

Ey = (H*,0,0,1%), H*=KH(1—M), o St or
T dr (55)

Which is biologically feasible provided ru> pu-+ xu.

The computation of the Jacobian matrix of system (5) at Eoresults in Equation 56
air 0 0 0
0 ax 7 0 (56)
g aszz 0
0 a4 0 —dj

with J(Fo) =

a1 = —(ru — (pu + xu)),

-
aza =rp — B —pr —xr — L,
_ nel”
ss = =7~ PQ — XQ T Tug v (57)
-
Ay = ne .

10
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Two eigenvalues are immediate: a1 < O (under feasibility) and —d: < 0. Thus, stability reduces to the 2 x 2

) @22 Y
M=1" '
( A ﬂ%) (58)

tumour—quiescent Equation 58.

Defining;
nrl™ I
a:=p3+pr+xr+ 1L, d2=’}'+pQ+XQ+”ij (59)
so that age = rr— a and ass = —d. The characteristic polynomial of M is Equation 60.

A2 — (@90 + ass)A + (azeass — Py) =0  (60)
By the Routh—Hurwitz criterion, both roots have negative real parts if and only if Equation 61 holds.
Qoo+ a3s <O and aseass— fy >0. (61)
The determinant condition simplifies to Equation 62.
d(rr—a) + By <0 (62)

which is equivalent to Equation 63.

7d
L <1
ad — By (63)
We therefore define the effective tumour reproduction number as shown in Equation 64.
’f‘Td
Ry = ad — G~
aa — P, (ad — By >0). (64)

Theorem 3.4. Suppose a; = 0 and ru> pu+ yu. Let Robe as in (64). Then.
1. If Ry < 1, all eigenvalues of J(E,) are negative, and the tumour-free equilibrium E, is locally asymptotically
stable.
2. If Ry > 1, J(Eo) has a positive eigenvalue and Eo, is unstable.
Proof. Under feasibility, a;1 <0 and —di < 0. The remaining eigenvalues are roots of the quadratic Equation 64
above. Routh—Hurwitz reduces to conditions already shown equivalent to R, < 1. Hence, R, < 1 ensures stability of
Eo; if Ro > 1, one eigenvalue is positive and E, is unstable.

From the equations above and the numerical substitution of the parameter values in Table 4.1, and a;= 0, it is

determined that.

I*

10+5
L 150, a~0.17075, d~0.04015, ad — B~ ~ 0.0066556 > 0
0.10 (65)

Thus

_ 0.18 x 0.04015

R ~ ~ 1.0859 > 1

0.0066556 (66)
Indicating that under baseline parameters, the TFE is unstable, and tumor invasion occurs.
The threshold R, balances tumor transitions (f,y) and tumor proliferation (rr) against immune clearance and
therapy (via a,d).
Any minor introduction of tumor cells is eliminated and o is stable if R, < 1. Tumor cells persist if B, > 1, which
destabilizes Eo. Therefore, increasing immunological stimulation (s,0:) and treatment (YuXe) reduces R, and

encourages tumor control.

3.11. Global Stability of the TFE
To complement the local analysis, we now establish conditions for global stability of the tumour-free equilibrium.

Consider the Lyapunov candidate function in Equation 67.

LT Q=T+Q (67)
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Which is positive definite in the tumour subspace (7, Q > 0) and vanishes only at T'= Q = 0. Differentiating
along the trajectories of the full system yields Equation 68.
ac _ it dQ
dt dt dt (68)
Using the tumour equations, this can be expressed in the form given in Equation 69.

dL )
7 S (Ro —1)¥(T.Q) (69)

where Y(7, Q) is a non-negative function representing the effective tumour growth.

darc
Hence, if Ry, < 1, we have dt <0 for all 7, Q > 0, implying that L(7,Q) decreases monotonically to zero. By

LaSalle’s

Invariance Principle, all trajectories converge asymptotically to

E,= (H"0,0,I"). (70)

Theorem. The tumour-free equilibrium E, exists whenever conditions (25)— (29) hold. Moreover, if R, < 1, then
E, is globally asymptotically stable in the feasible region Q.

The result demonstrates that when the effective reproductive capacity of tumour cells falls below unity, not only
is tumour invasion locally prevented, but the entire system evolves globally to a tumour-free state regardless of the
initial tumour burden. This highlights the effectiveness of therapeutic and immune mechanisms in ensuring complete

tumour eradication.

3.12. Local Stability Analysis of the Endemic Equilibrium
By assessing the local stability of the endemic equilibrium point E* = (H*,T*,Q"I) of system (5), where all state
variables are positive. Let:
X()= (HT.QIT (11)

The Jacobian matrix J{E*) of the system evaluated at the endemic equilibrium is given in Equation 72.

Ji 0 0 0
Jor Jao Jaz Jaa

J(E*) =
(E7) 0 Jz2 Jzz I
The partial derivatives of Equation 72 yields Equation 73.
Ji = %L;C”‘€=T’H ( - %) — Q1 — pPH — XH
Ja =92 = o
Jog = % =rr (1 - %) =B = prxr — —(,:';iiff)z
Afp
Jaz = % =7
_ Ofr _ ™
Jag = d—}" = —,{T;T+T*
Jp =92 =5
Jon = 9 _ _ ., o o nol” kg
3B=T3Q T T TP TXQT Ghor@r)?
— 2fe _ _ n@"
Ja=f = kG
_Ofr 61
Ji2 = 51 = @y
_ 9fr __ _8T"
Ju =3¢ = gr= —dr (73)

Since Ji; <0 whenever ru> a; + pu+ xu, the healthy compartment is locally stable and decouples near equilibrium.
Thus, stability of EY is determined by the tumour—quiescent—-immune subsystem where the focus is on the X3 matrix:

Tumor—quiescent-immune subsystem.

Y=(T.Q0) (74

12
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The subsystem matrix A is shown in Equation 75.
Jag  Joz Jog
A=\ T2 sz Jn
Jip 0 Jy (75)
The characteristic polynomial of 4 is given in Equation 76.
M4+ a2+ ad +as=0 (76)
Lemma 3.1. The endemic equilibriumE‘f is locally asymptotically stable if
a, >0, a, >0, as >0, a,d0 > as. (77)
Theorem 3.5. If Ry > 1, so that &1 exists, and the Routh—-Hurwitz conditions in the lemma ( 3.1) hold, then EY s
locally asymptotically stable. Otherwise, it is unstable.
The condition a; > 0 ensures that overall losses dominate tumour proliferation, a, > 0 guarantees stabilising
pairwise feedbacks (tumour—immune and tumour—quiescent), and as > O prevents runaway amplification. The
inequality a;4. > asrules out oscillatory instabilities. The stability of the endemic state therefore requires a delicate

balance between tumour proliferation, immune clearance, quiescence dynamics, and therapeutic pressure.

3.13. Global Stability of the Endemic Equilibrium
We now turn to the global dynamics of the endemic equilibrium shown in Equation 78.
ET — (H**‘T**“Q**?I**), (78)
of system (5). Recall thatE1 exists whenever R, > 1 and all state variables are strictly positive and by establishing
global stability of it using a Lyapunov approach, we consider the Volterra-type Lyapunov function shown in

Equation 79.

V(H,T,Q,1) = Z ('Z*_ln 'Z*_l)
JE{H.T.Q.I} J / ) (79)
where j* denotes the corresponding coordinate of E*. Each scalar summand is nonnegative and C' on (0,%0) and
vanishes only at j = j* Thus > 0 on D and /' = 0 if and only if (H,7,Q,1) = E*.
Differentiating along solutions of system (5) gives Equation 80.

dv e 1 dj

av o 1 i ) .Y

a- 2 (5

Je{H.T.Q.I} .

(80)

Substituting system equations and using equilibrium conditions (H =T=Q=1I=0at EI) shows that
%SU’ %z(J — (H,T,Q,I):E: (81)

Since the system is bounded and positively invariant, LaSalle’s invariance principle implies.

Theorem 3.6. The endemic equilibriumET = (H"T7,Q" ™) of system (5) is globally asymptotically stable
in the interior Oijr, provided all parameters are positive and constant.

Both the local and global stability of the endemic equilibrium have been examined in this section. EY is locally
asymptotically stable whenever R, > 1, according to the local stability analysis, and the Lyapunov-based global
analysis also showed that this stability holds true for the whole feasible region. From a biological perspective, this
implies that if tumor cells become established in the host, the system will unavoidably move toward a state of
continuous cohabitation between the tumor and host cells. To eradicate tumor cells, the basic reproduction number
R, must be lowered below unity.

This is the only effective control method.
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4. NUMERICAL SIMULATIONS

The nonlinear system of ordinary differential equations defined in Equation 5 was simulated numerically to
analyze the dynamics of tumor—host interactions under different therapeutic interventions. Since closed-form
solutions are not available, numerical simulations provide insight into the qualitative behavior and long-term
outcomes of the system. Parameter values were obtained from published studies, while a few were estimated within
biologically plausible ranges. Computations were carried out using Python, and the results are presented graphically.
This section presents the baseline dynamics, the effects of radiotherapy and chemotherapy, the role of treatment

timing, and the impact of combined therapeutic strategies.

Model Dynamics with Time (log scale)

100 4
105 B
T
n
u 4
2 10%;
[ -3
=]
=
3 1074
2 -
o P
3 s e
102 A —— Healthy H(t)
—— Tumor T(t)
—— Quiescent Q(t)
10t 4 —— Immune I(t}
0 25 50 75 100 125 150 175 200

Time (days)
Figure 1. Model dynamics on a logarithmic scale showing the relative sizes of H(t), T(t), Q(t), and I(t) populations.

4.1. Model Dynamics

Figure 1 uses a logarithmic scale to highlight differences in order of magnitude. While H(?) stabilizes near 109,
tumor cells 7(%) and quiescent cells () remain significantly smaller but continue to increase steadily. Immune cells
I(t) show an initial burst followed by a plateau. These dynamics confirm that tumors can persist at low levels even

when dominated by healthy tissue.
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BO0000 -
"é 400000 -
2
200000
o
0 25 50 75 100 125 150 175 200 0 25 S0 75 100 125 150 175 200
Time (days} Time (days)
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100
5 1501 £
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k=
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Time (days) Time [days)

Figure 2. Temporal dynamics of all cell populations under baseline conditions.

14
© 2025 Conscientia Beam. All Rights Reserved.



International Journal of Mathematical Research, 2025, 14(1): 1-22

As seen in Figure 2, the four populations exhibit distinct temporal patterns consistent with earlier plots: healthy

cells dominate, tumor and quiescent cells persist at low levels, and immune cells plateau after an initial response.

Impact of Radiotherapy Schedules on Tumor Dynamics

500 { —— Continuous low dose
Pulsed high dose

—— Fractionated schedule

400

300

200 4

Tumor population T(t)

100

0 25 50 75 00 125 150 175 200
Time (days)

Figure 3. Impact of different radiotherapy schedules on tumor cells T(t): continuous low dose, pulsed high dose, and fractionated delivery.

4.2. Radiotherapy Effects

Figure 3 compares radiotherapy schedules. Continuous low-dose therapy drives tumor levels near zero. Pulsed
high-dose therapy produces sharp declines followed by regrowth between cycles, creating oscillatory tumor
dynamics. Fractionated therapy moderates growth but fails to achieve eradication. These outcomes highlight that

continuous delivery is most effective for long-term tumor control.

Effect of Radiotherapy Efficacy on Tumor Cells
6000

5000 A

B
[=]
o
o
L

2000

Tumor cell population
w
o
o
o
!

1000 4

0 25 50 75 100 125 150 175 200
Time (days)

Figure 4. Effect of radiotherapy efficacy € on tumor cells T(t). Curves correspond to € = 0.0,0.02,0.05,0.1.

Figure 4 illustrates the threshold role of £. Without treatment (¢ = 0.0), tumor growth is unchecked. At € = 0.02,
growth slows but persists. At € = 0.05, partial suppression occurs, while £ = 0.1 nearly eradicates the tumor. This

confirms the analytical condition that tumor eradication requires reducing R, below one.
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Effect of Radiotherapy Efficacy

Tumer Dynamics under Radiotherapy Healthy Cell Dynamics under Radiotherapy
700
800000
500 1
£ 500 1 § 600000
g E
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§ 400 EI.
= T 0
Bt g 400000
£ 200 E
200000
100 4
04 0
0 > 50 75 100 125 150 175 200 0 P 50 75 100 125 150 175 200
Time (days) Time (days)

Figure 5. Radiotherapy efficacy € and its effect on T(t) (left) and H(t) (right).

Figure 5 shows that radiotherapy efficacy alters tumor dynamics while leaving healthy cell recovery largely

unchanged. For all values of &, H({) returns to its carrying capacity, demonstrating selective tumor suppression.

Effects of Radiotherapy on All Cell Populations

Healthy Cells (H) Turmor Cells (T)
700+ — =00
00000 e=0.02
gog - — =003
— =01
£00000 1 500 1
§ 5 400
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2 400000 | 3
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Figure 6. Effect of radiotherapy efficacy € on all compartments: H(t), T(t), Q(t), I(t).

Figure 6 confirms that radiotherapy strongly reduces 77(#) and Q(f), while H(Z) and () remain stable. Thus, the

treatment primarily targets malignant cells in this model.
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Tumor Dynamics under Different Radiotherapy Timing Strategies

— None
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Figure 7. Tumor trajectories under no treatment, early therapy, late therapy, and continuous therapy.

4.8. Treatment Timing
Figure 7 demonstrates the influence of timing. Early therapy suppresses tumors before they expand, while late

therapy reduces tumor size but leaves residual populations. Continuous therapy maintains near-zero tumor levels

throughout.
Comparison of Radiotherapy Timing Strategies
Tumor Cells under Radiotherapy Timing Healthy Cells under Radiotherapy Timing
— None — None
25004 — Early aooogo { — Early
— late — late
—— Continuous —— Continuous
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. 600000 1
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£ 1000 -
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500
0 0
0 P 50 75 100 125 150 175 200 0 25 50 7 100 125 150 175 200
Time (days) Time {days}

Figure 8. Comparison of radiotherapy timing: tumor dynamics (left) and healthy cells (right).

Figure 8 highlights that tumor suppression depends strongly on timing, while healthy cells H(#) are robust and

recover regardless of schedule.
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Effect of Chemotherapy Scheduling on All Compartments

Healthy cells H(t) Tumor cells T(t)
900000 4 ! ! f| e YONE 50000 1 —— none
—— continuous — continuous
890000 — puised — pulsed
— fractionated 40000 4 — fractionated
880000
5 870000 § 30000
= k]
2 2
£ 860000 2
20000
850000 4
56001 v 10000
830000 t 3
0 2 50 75 100 125 150 175 200 0 % 50 75 100 125 150 175 200
Time (days) Time (days)
Quiescent cells Q(t) Immune cells I(t)
— none — rione
—— continuous 275 1 —— continuous
20000 f i
— pulsed — pulsed
- fractionated 250 + = fractionated
15000 225
S S
s = 200
5 =
3 2
¥ 10000 + 2 1754
150
5000
125
100
0 25 50 75 100 125 150 175 200 0 25 50 s 100 125 150 175 200
Time (days) Time (days)

Figure 9. Chemotherapy schedules: no therapy, continuous, pulsed, and fractionated. Effects shown for all cell populations.

4.4. Chemotherapy Effects
Figure 9 shows that continuous chemotherapy best suppresses 7(f) and Q(f). Pulsed chemotherapy produces
oscillations, while fractionated therapy only partially controls growth. Healthy and immune cells remain relatively

stable, though continuous therapy slightly reduces H(#) compared to no therapy.

Tumor Dynamics under Radiotherapy, Chemotherapy, and Combined Treatment
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Figure 10. Comparison of tumor trajectories under no therapy, radiotherapy alone, chemotherapy alone, and combined therapy.
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4.5. Combined Therapies
Figure 10 shows that radiotherapy and chemotherapy alone reduce tumor burden, but their combination achieves

the most rapid and complete suppression.

Cell Dynamics under Early vs Late Combined Therapy
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Figure 11. Cell dynamics under early versus late combined therapy compared with no therapy.

Figure 11 illustrates that early combined therapy is more effective, maintaining low tumor and quiescent
populations with fewer oscillations, whereas late combined therapy results in higher peaks and larger fluctuations

across compartments.

5. DISCUSSION

This study examined a nonlinear model describing interactions among healthy cells, tumor cells, quiescent cells,
and immune cells under radiotherapy and chemotherapy. The analytical results show that the system remains positive
and bounded for all biologically meaningtul initial conditions. This confirms that the model structure reflects realistic
cell population dynamics and avoids unphysical behaviors such as negative or unbounded growth.

The stability analysis established that the tumor-free equilibrium becomes globally asymptotically stable when
the basic reproduction number is less than one. In this regime, treatment and immune activity are strong enough to
suppress tumor growth and drive the system toward a healthy steady state. The result aligns with earlier work
showing that tumor—immune systems can switch between persistence and elimination depending on a threshold
balance between proliferation and immune-mediated killing [8, 47]. The presence of quiescent cancer cells does not
change the core threshold structure but can delay convergence to the tumor-free state, reinforcing the clinical

observation that dormant cells contribute to long-term relapse.
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When (R >1), the model predicts sustained tumor presence despite immune activation and treatment exposure.

This outcome is consistent with studies showing that insufficient immune pressure or suboptimal therapy allows
tumors to persist or rebound [5, 6. The inclusion of quiescent cells captures the reduced sensitivity of non-
proliferating cells to therapy, a feature widely noted in radiotherapy and chemotherapy modeling [7, 267. These cells
form a reservoir that can repopulate the tumor, highlighting the need for treatment strategies that effectively target
both active and dormant populations.

Sensitivity analysis identified the parameters that most strongly influence tumor persistence. Higher
radiotherapy efficacy, stronger immune killing, and increased activation of immune cells reduce tumor survival. In
contrast, higher tumor proliferation and faster transition to quiescence increase tumor resilience. These findings
support observations from radiotherapy and immunotherapy studies, where enhanced cytotoxicity and improved
immune activation correlate with better outcomes [27, 287. The results also suggest that optimizing therapy
schedules may shift system dynamics across the (r =1) threshold, improving treatment success.

The model provides a useful framework for understanding how treatment and immune activity interact, but
several limitations remain. The system does not include spatial effects, angiogenesis, or detailed pharmacokinetics,
all of which can influence treatment outcomes. Radiotherapy and chemotherapy are modeled as time-dependent killing
functions rather than through dose distribution or repair mechanisms. The immune response is simplified and does
not incorporate regulatory cells or cytokine signaling. These omissions keep the model tractable but limit its ability
to reproduce complex biological responses.

Future work may extend the model by incorporating adaptive therapy strategies, dose-fractionation schemes, or
more detailed immune mechanisms. Parameter calibration using patient-specific data would allow exploration of
personalized treatment planning. Spatial extensions using partial differential equations or agent-based models can
capture heterogeneity in tumor structure and microenvironmental effects.

Overall, the results demonstrate how mathematical models can clarify the balance between tumor proliferation,
immune regulation, and treatment strength. The stability threshold and sensitivity findings provide a foundation for
designing optimized treatment strategies and highlight the potential for using mathematical models to guide

personalized cancer therapy.

6. CONCLUSION

This study developed and analyzed a nonlinear model describing interactions among healthy cells, tumor cells,
quiescent cells, and immune cells under radiotherapy and chemotherapy. The analysis showed that the system remains
positive and bounded for all biologically meaningful initial conditions. The tumor-free equilibrium is globally
asymptotically stable when the basic reproduction number (R <1), indicating conditions under which treatment and
immune response are sufficient to eliminate the tumor. Sensitivity analysis identified key parameters governing tumor
persistence, including radiotherapy efficacy, chemotherapy strength, immune-killing capacity, and tumor
proliferation rates. The results showed that increasing radiotherapy effectiveness and strengthening immune-
mediated killing reduce tumor survival, while high tumor proliferation and quiescence transition rates promote
persistence. The findings highlight how mathematical models can clarify the interplay between tumor growth,
immune regulation, and therapeutic interventions. The model provides a useful framework for evaluating treatment

strategies and supports the design of personalized and optimized therapeutic regimens.
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