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This paper develops an analytical framework for a nonlinear dynamical model describing 
interactions among healthy cells, tumor cells, quiescent tumor cells, and immune cells 
under radiotherapy and chemotherapy. The system is formulated as a set of nonlinear 
ordinary differential equations with therapeutic inputs represented as time-dependent 
functions. The analysis begins by establishing positivity, boundedness, and an invariant 
region that confines all solutions to biologically meaningful states. Two equilibrium 
points are identified: the tumor-free equilibrium and the endemic equilibrium. The basic 
reproduction number is derived using the Next Generation Matrix approach. The local 
stability of the equilibrium points is examined using the Jacobian matrix and the Routh–
Hurwitz criteria. Global stability is proved with Lyapunov’s direct method. Sensitivity 
analysis is performed using the normalized forward sensitivity index to determine the 
parameters that most influence. The results show that the tumor growth rate and the 
transformation rate promote tumor persistence. Radiotherapy efficacy and the immune 
killing rate suppress tumor growth. When the system converges to the tumor-free 
equilibrium, it represents effective disease control. The findings demonstrate how 
mathematical stability and sensitivity analysis support the design of treatment protocols. 
They also provide a basis for evaluating combined radiotherapy–chemotherapy strategies 
and how these can shift the tumor–immune balance toward recovery. 
 

Contribution/Originality: This study contributes to existing literature by developing and analyzing a nonlinear 

tumor–healthy–immune model with radiotherapy and chemotherapy. It provides new stability results, derives a 

closed-form solution, applies Lyapunov global stability, and documents parameter sensitivity effects on treatment 

success. The paper offers the first integrated analytical–therapeutic framework for this system. 

 

1. INTRODUCTION 

Mathematical modelling helps explain tumor–immune interactions and the effects of therapy. Early work relied 

on logistic and Gompertz growth laws to describe tumor expansion under limited resources [1, 2]. These models 

captured basic proliferation patterns but did not incorporate immune activity or treatment responses. Subsequent 

studies introduced immune surveillance through Lotka–Volterra structures and nonlinear cytotoxic mechanisms [3, 

4]. These models showed that immune regulation determines whether tumors persist, regress, or oscillate. 

Later research incorporated immune activation, saturation effects, and therapy-induced changes. Models with 

saturating immune-killing terms explained chronic persistence and relapse in cancer [5, 6]. Other work examined 
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the role of quiescent tumor cells and their reduced sensitivity to therapy, highlighting the need to represent both 

proliferating and dormant compartments [7]. 

Cancer development is influenced by genetic and environmental factors, and the interaction between malignant 

and healthy cells creates complex nonlinear behavior [8]. Mathematical models provide a structured way to describe 

these interactions, predict treatment outcomes, and explore optimal control strategies. Early theoretical models such 

as exponential and logistic growth laws [1, 9], offered foundational insight but did not include immune processes or 

treatment effects. Later extensions incorporated competition for resources and interactions between healthy and 

tumor cells [10, 11], though many of these models still omitted key immune mechanisms. 

Radiotherapy and chemotherapy remain central treatment strategies. Radiotherapy damages DNA and induces 

tumor cell death, but can also harm healthy tissue when dosing is not well controlled [12]. Chemotherapy targets 

rapidly dividing cells but causes toxicity in normal tissues [13]. Models that combine both treatments allow analysis 

of synergistic effects and support the design of effective therapy schedules. 

Stability analysis and threshold measures, such as the basic reproduction number, help determine whether tumors 

persist or are eliminated. The next-generation matrix method remains a standard tool for deriving these thresholds 

[14-16]. Models that include healthy tissue, tumor cells, and immune activity show that stability depends on the 

balance between proliferation, immune killing, and treatment strength [6, 17]. Broader reviews have documented 

the relevance of such models to oncology [18-20]. 

The immune system regulates tumor growth through cytotoxic responses that destroy malignant cells [21]. 

Tumor cells may evade these responses by entering quiescent states, reducing their vulnerability to treatment and 

immune attack. Models that incorporate these mechanisms help explain tumor escape and relapse. 

Recent studies have developed integrated models that couple healthy tissue, tumor growth, quiescent 

compartments, immunity, and multiple therapies within a single system [6, 22]. These models support long-term 

analysis of treatment outcomes and control strategies. 

This study develops a nonlinear tumor–healthy–immune model with radiotherapy and chemotherapy treated as 

time-dependent inputs. The analysis establishes positivity, boundedness, and equilibrium stability, and derives the 

basic reproduction number. Sensitivity analysis identifies the parameters that most influence tumor persistence or 

clearance. These results clarify how treatment and immunity shape therapeutic outcomes and support the design of 

optimized cancer treatment strategies. 

 

2. MODEL FORMULATION 

This study develops a compartmental model with four interacting populations: healthy cells (H(t)), tumor cells 

(T(t)), quiescent tumor cells (Q(t)), and immune cells (I(t)). The model captures key biological processes, including 

cell proliferation, phenotypic transformation, immune response, and the effects of therapy. No additional 

compartments are introduced for treatment control. Radiotherapy, chemotherapy, and immunotherapy are 

represented as time-dependent external inputs that modify the dynamics of the biological compartments. 

 

2.1. Model Assumptions 

The model is based on the following assumptions. 

i). Healthy cells grow logistically with growth rate rH and carrying capacity KH. 

ii). A fraction of healthy cells transforms into tumor cells at rate α1.  

iii). Tumor cells proliferate logistically with rate rT and carrying capacity KT. 

iv). Tumor cells can enter a quiescent (dormant) state at rate β, and revert to an active state at rate γ, especially 

under favorable conditions. 

v). Immune cells attack tumor and quiescent cells with saturating (Michaelis-Menten) kinetics.  

vi).  Tumor cells stimulate immune cell recruitment. Immune cells decay naturally at rate dI. 
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vii). Radiotherapy and chemotherapy damage tumor and quiescent cells and also affect healthy cells. 

viii). Radiotherapy effectiveness decays with repeated application due to resistance development. 

ix). Immunotherapy enhances immune activity without affecting healthy cells. 

 

2.2. Model Description 

The population of healthy cells exhibits logistic growth, characterized by a natural proliferation rate rH and 

constrained by a carrying capacity KH, reflecting the finite availability of resources such as nutrients and space. The 

logistic growth term  ensures that the healthy cell population stabilizes as it nears the environment’s 

capacity. However, healthy cells can transform into tumor cells due to genetic mutations or environmental insults, 

represented by the term α1H, where α1 is the transformation rate from healthy to tumor cells. In addition, treatment 

modalities such as radiotherapy and chemotherapy can directly damage healthy tissue. This is incorporated into the 

model by including the radiotherapy-induced death term ρH(t)H, where ρH(t) is the time-dependent rate of radiotherapy 

damage to healthy cells, and the chemotherapy-induced death term χH(t)H, with χH(t) representing the time-dependent 

toxicity of chemotherapy to healthy cells. These considerations lead to the formulation of the healthy cell dynamics 

as shown in Equation 1. Similar approaches to modeling healthy-tumor interactions under treatment have been 

discussed by Kim et al. [23] in the context of optimal therapy strategies. Equation 1 presents the healthy-cell 

dynamics under logistic growth, transformation into tumor cells, and therapy-induced damage. 

  (1) 

The tumor cell population increases through two main processes: transformation from healthy cells at a rate α1, 

and intrinsic proliferation modeled by logistic growth with proliferation rate rT and carrying capacity KT. Tumor cells 

also receive additional input from the reactivation of quiescent tumor cells at rate γ, which accounts for cells that re-

enter the active cycle under favorable conditions such as hypoxia recovery or nutrient availability. Losses in the tumor 

population occur due to several mechanisms. Natural tumor cell death is modeled by the parameter β. The immune 

response contributes to tumor reduction through a saturating cytotoxic effect represented by the Michaelis-Menten-

like term , where ηT is the immune killing rate and κT is the half-saturation constant. Additionally, tumor cells are 

targeted by radiotherapy and chemotherapy. The time-dependent killing terms ρT(t) and χT(t) represent the rates of 

tumor cell death due to radiotherapy and chemotherapy, respectively. Altogether, these processes are captured in 

Equation 2, which models the net rate of change of the tumor cell population over time.   

   (2) 

The quiescent tumor cell compartment Q represents non-proliferating tumor cells that have entered a temporary 

dormant state due to unfavorable environmental conditions such as hypoxia or lack of nutrients. These cells arise 

from the active tumor cell population at a rate β, capturing the transition from the proliferating to the quiescent 

phase. Quiescent cells can return to the active tumor population at a reactivation rate γ, especially when the 

environment becomes favorable. They are also susceptible to immune surveillance, and this interaction is represented 

by a saturating immune clearance term , where ηQ is the killing rate by immune cells and κQ is the half-saturation 

constant. Both radiotherapy and chemotherapy can partially affect quiescent cells, although typically with lower 

efficacy than on actively dividing cells. These effects are modeled using time-dependent death rates ρQ(t) and χQ(t), 

respectively. These terms reflect the therapeutic impact of treatment on the dormant cell population. The overall 

dynamics of quiescent cells are summarized in Equation 3, describing the net rate of change of the quiescent tumor 

cell population over time.  

   (3) 
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The immune cell population I represents cytotoxic immune cells responsible for identifying and eliminating 

tumor and quiescent cells. Their dynamics are influenced by several biological processes. The term sI represents the 

basal source or natural influx of immune cells into the tumor microenvironment, maintaining a minimal level of 

immune surveillance. The function σI(t) accounts for externally administered immunotherapy, which boosts the 

immune population over time through medical intervention. Immune cells can also proliferate in response to tumor 

presence. This activation and clonal expansion is captured by the term , a saturating function that models 

stimulation of immune cells by tumor antigens. Here, δ is the maximum activation rate and θ is the tumor density at 

which immune activation is half-maximal. Immune cells also undergo natural degradation at a rate dI, which reflects 

the finite lifespan of immune effectors and their exhaustion during prolonged engagement. Together, these processes 

describe the evolution of the immune population in the tumor microenvironment, and Equation 4 outlines the 

resulting immune-cell dynamics driven by basal influx, immunotherapy, tumor-induced activation, and natural decay. 

   (4) 

2.3. Model Equations 

The proposed model captures the interactions among the four key compartments: healthy cells H(t), tumor cells 

T(t), quiescent cells Q(t), and immune cells I(t). Healthy cells grow logistically with intrinsic rate rH and carrying 

capacity KH, and are reduced by natural decay α1H, radiotherapy-induced death ρH(t)H, and chemotherapy-induced 

death χH(t)H. Tumor cells arise from the transformation of healthy cells at rate α1H, grow logistically with rate rT and 

capacity KT, and are reduced by transition to quiescence (βT), immune-mediated cytotoxicity ( ), radiotherapy 

(ρT(t)T), and chemotherapy (χT(t)T). Quiescent cells are derived from tumor cells at rate βT, and may revert to active 

tumor phenotype at rate γQ. They are also subject to immune elimination ( ), radiotherapy (ρQ(t)Q), and 

chemotherapy (χQ(t)Q). Immune cells are maintained via basal influx sI, enhanced by immunotherapy input σI(t), and 

proliferate in response to tumor presence via a saturating function , but decay at rate dII. Equation 5 summarizes 

the complete tumor–healthy–immune system as four coupled nonlinear ODEs that model the host–tumor–immune 

interactions under therapeutic interventions 

    (5) 

 

3. RESULTS AND DISCUSSION 

3.1. Parameter Estimation 

As shown in Table 1, some of the parameter values were estimated, while others were taken from the literature. 

 

Table 1. Parameter values used in the model. 

Symbol Parameter Description Value Source 

rH Healthy cell growth rate 0.20 day−1 Kim, et al. [24] 

KH Healthy tissue carrying capacity 1.0 × 106 cells Assumed tissue scale 

α1 Transformation rate H → T 1.0 × 10−7 day−1 De Pillis, et al. [5] 

rT Tumour cell growth rate 0.18 day−1 De Pillis, et al. [5] 

KT Tumour carrying capacity 1.0 × 106 cells Standard scaling 

β Transition T → Q 0.02 day−1 Assumed (quiescence) 

γ Reactivation Q → T 0.01 day−1 Dormancy assumption 

ηT Immune killing rate (T)) 0.50 (dimensionless) De Pillis, et al. [5] 
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κT Half-saturation for T kill 1.0 × 105 cells Literature value 

ηQ Immune killing rate (Q)) 0.10 (dimensionless) Assumed lower efficacy 

κQ Half-saturation for Q kill 1.0 × 105 cells Literature value 

sI Basal immune influx 10 cells/day Typical immune recruitment 

σI Immunotherapy influx 5 cells/day Assumed  moderate boost 

δ Max immune recruitment rate 0.10 day−1 Kim, et al. [24] 

θ Tumour load for half-maximal 
activation of the immune system 

5.0 × 104 cells Kim, et al. [24] 

dI Immune decay rate 0.10 day−1 Typical immune lifespan 

ρH Radiotherapy death rate (healthy) 0.02 day−1 Assumed collateral damage 

ρT Radiotherapy death rate (tumour)) 0.10 day−1 Literature typical 

ρQ Radiotherapy death rate (quiescent) 0.02 day−1 Assumed  lower sensitivity 

χH Chemotherapy death rate (healthy) 0.01 day−1 Assumed toxicity to normal cells 

χT Chemotherapy death rate (tumour) 0.05 day−1 Literature typical 

χQ Chemotherapy death rate (quiescent) 0.01 day−1 Assumed  lower sensitivity 

 

3.2. Boundedness and Positivity of Solutions 

Maintaining the biological viability of differential equation solutions is crucial when modeling biological systems. 

Proving the positivity and boundedness of solutions is usually how this is accomplished. Population variables such as 

immune cells (I), tumor cells (T), healthy cells (H), and quiescent tumor cells (Q) are protected from achieving negative 

values through positivity. Boundedness guarantees that these variables do not grow unbounded over time, respecting 

biological and physical constraints such as carrying capacities and resource limitations. 

Considering the system of equations defined in (5), subject to non-negative initial conditions. 

 H(0) ≥ 0, T(0) ≥ 0, Q(0) ≥ 0, I(0) ≥ 0. 

 

3.3. Positivity of Solutions 

In order for the model to be biologically meaningful, it is necessary to show that the solutions with nonnegative 

initial conditions remain nonnegative for all time t ≥ 0. This property guarantees that the state variables, which 

represent population densities of cells, do not take negative values during the system's evolution. 

Theorem 3.1. Let the initial conditions of system (5) satisfy. 

 H(0) ≥ 0, T(0) ≥ 0, Q(0) ≥ 0, I(0) ≥ 0. 

Then the solutions (H(t),T(t),Q(t),I(t)) of system (5) remain nonnegative for all t ≥ 0. 

Proof. Consider the first equation of system (5). At H = 0, we obtain Equation 6. 

       (6) 

Thus, H(t) cannot cross the plane H = 0 from the nonnegative region to the negative region. 

Similarly, at T = 0, the second equation yields Equation 7. 

      (7) 

Since H ≥ 0. Therefore, T(t) cannot become negative. 

Proceeding analogously for Q and I, we observe that the vector field on the boundary of the nonnegative orthant 

points inward or is tangent to the boundary. Hence, the nonnegative orthant  is positively invariant under the flow 

of system (5). 

The above theorem ensures that the model remains biologically well-posed, since the solutions starting with 

nonnegative initial conditions are guaranteed to remain in the feasible region  for all t ≥ 0. This provides a sound 

basis for the subsequent stability and bifurcation analyses. 
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3.4. Boundedness of Solutions 

In addition to positivity, it is essential to demonstrate that the solutions of system (5) are bounded. This 

guarantees that the populations of healthy, tumour, quiescent, and immune cells remain within biologically realistic 

limits for all future times, thereby ensuring the mathematical and biological well-posedness of the model. 

Theorem 3.2. All solutions of system (5) with nonnegative initial conditions are uniformly bounded in .  

Proof. Consider the total population, Equation 8: 

W(t) = H(t) + T(t) + Q(t) + I(t). (8) 

Differentiating with respect to time and using system (5), we obtain Equation 9: 

. (9) 

From the healthy cell equation, we have Equation 10: 

. (10) 

Thus, H(t) is bounded above by the healthy cell carrying capacity KH. 

For the tumour population, combining the proliferating and quiescent compartments yields Equation 11. 

, (11) 

Implying T(t) + Q(t) is bounded above by the tumour carrying capacity KT. 

For the immune cell population, we have Equation 12. 

   (12) 

By comparison with the linear equation y˙ = (δ − dI)y + (sI + σI), it follows that. 

      (13) 

Whenever dI > δ. 

Hence, each compartment is bounded above by a biologically realistic constant. Consequently, yielding to 

Equations 14 - 16. 

0 ≤ H(t) ≤ KH      (14) 

0 ≤ T(t) + Q(t) ≤ KT      (15) 

     (16) 

Therefore, W(t) is uniformly bounded, which establishes the boundedness of all solutions of system (5). 

The above theorem ensures that the trajectories of system (5) remain confined within a compact subset of . 

This boundedness result is crucial because it rules out the possibility of unbounded growth in any of the 

compartments, thereby confirming the biological consistency of the model and preparing the ground for the analysis 

of invariant regions. 

 

3.5. Invariant Region 

For biological realism, it is important to show that the solutions of system (5) not only remain nonnegative but 

are also uniformly bounded. This ensures that the cell populations do not grow without limit and that the system 

dynamics are confined to a biologically feasible region. 

Theorem 3.3. The region 

     (17) 
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      (18) 

Where M > 0 is a constant depending on the proliferation parameters, it is positively invariant with respect to 

system (5). 

Proof. From the first equation of system (5), the healthy cell population satisfies Equation 19. 

   (19) 

By comparison, H(t) is bounded above by the logistic equation with carrying capacity KH, hence H(t) ≤ KH for all 

t ≥ 0. 

For the tumour compartment, adding the second and third equations gives Equation 20. 

      (20) 

Which shows that T + Q is bounded above by the tumour carrying capacity KT. 

For the immune cell population, Equation 21: 

   (21) 

Which implies I(t) is bounded above by a constant of the form . 

Thus, trajectories starting in Ω remain in Ω for all t ≥ 0, proving that Ω is positively invariant. 

The theorem guarantees that all solutions of system (5) eventually enter and remain in the compact set 

. This ensures that the model is mathematically well-posed and biologically meaningful, and provides the feasible 

region within which stability and bifurcation analyses can be carried out. 

 

3.6. Equilibrium Analysis 

Two biologically relevant types of equilibria are examined in this work: the tumor-free equilibrium (TFE) and 

the tumor-present equilibrium (TPE), which indicate a disease-free state where tumor cells are completely absent 

from the system and a persistent coexistence of tumor, healthy, and immune cells, respectively. These equilibria 

provide important information about the system’s long-term behavior and the efficacy of therapeutic interventions. 

To determine the equilibrium points of the system, the right-hand sides of system (5) are set to zero, as shown in 

Equation 22. 

     (22) 

3.7. Tumour-Free Equilibrium (TFE) 

To investigate the existence of a tumor-free state, the tumor compartments of the model system are set to zero, 

that is, T = Q = 0. The reduced system for healthy cells (H) and immune cells (I) is then simplified as shown in 

equation (23). 

                                                                                      

                                                                                    (23) 

                                                                          (24) 

Equation () describes logistic-type growth for the healthy population, modified by the natural loss rate ρH and 

therapy-induced depletion χH. Equation 23 represents the balance between immune cell supply (sI + σI) and natural 

decay (dI). A necessary condition for a valid tumor-free state is the absence of spontaneous inflow into the tumor class 

from healthy cells. This requires that. 

α1 = 0   (25) 

Otherwise, tumor cells would continuously reappear from the healthy pool. Under condition (25), the tumor-free 

equilibrium is as illustrated in Equation 27. 
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                                                                            (26) 

With steady states                         

                                                                                     (27) 

   (28) 

 

For biological feasibility, H∗ > 0 must hold, which is equivalent to the condition in Equation 29. 

rH > ρH + χH.    (29) 

This ensures that the intrinsic growth rate of healthy tissue exceeds the combined natural and therapeutic losses, 

guaranteeing the persistence of H in the absence of tumor cells. 

 

3.8. Endemic Equilibrium (EE) 

At the endemic equilibrium ), the tumor persists in the system and all compartments 

attain non-zero steady states with T∗∗,Q∗∗,I∗∗ > 0. The steady state is obtained by setting the right-hand sides of 

system (5) to zero, while evaluating the time-dependent therapeutic controls at their long-term values 

ρH,χH,ρT,χT,ρQ,χQ,σI. The resulting algebraic system is as shown in Equations 30 - 33. 

 

(30) 

(31) 

 

(32) 

 

 

(33) 

 

Solving these equations sequentially to express each equilibrium component in terms of the tumor population 

T∗∗, thereby reducing the system to a single closure equation, which mirrors the analytical approach commonly used 

in tumor-immune modeling. 

From Equation 30, assuming H∗∗ > 0, the equation yield Equation 34. 

. (34) 

A biologically meaningful H∗∗ requires. 

rH > α1 + ρH + χH.   (35) 

This Equation 35 inequality represents a natural threshold: the intrinsic regeneration of healthy tissue must 

outweigh the combined losses due to tumor invasion (α1) and therapy-induced cytotoxicity (ρH,χH). If violated, the 

healthy cell population collapses, signifying tissue damage or treatment toxicity. 

From Equation 33, we isolate I∗∗ as shown in Equation 36. 

      (36) 

The condition for positivity is dI > δT/(θ + T∗∗). Biologically, this balance shows that immune cells are sustained 

through baseline recruitment (sI) and therapeutic stimulation (σI). The tumor load T∗∗ contributes additional 

activation, but excessive tumor burden can overwhelm immune persistence if δT/(θ + T∗∗) approaches dI. 

Equation 32 reduces to a quadratic form in Q∗∗. Setting RQ = γ + ρQ + χQ and solving yields Equation 37; 
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     (37) 

where I∗∗(T∗∗) is substituted from (36). The positive root is taken to ensure biological relevance. This expression 

shows that the quiescent population is maintained by transition from the active tumor compartment (βT), balanced 

against immune clearance (ηQI) and reactivation into proliferating tumor cells (γ). The persistence of Q∗∗ reflects 

tumor dormancy, a mechanism often linked to recurrence after apparent remission. 

Considering Active tumor cells T∗∗. and finally, substituting H∗∗, I∗∗(T∗∗), and Q∗∗(T∗∗) into (31), we define the 

scalar closure equation. 

    (38) 

The endemic equilibrium tumor burden T∗∗ > 0 is determined by solving F(T∗∗) = 0. Once T∗∗ is determined, the 

corresponding H∗∗, Q∗∗, I∗∗ are uniquely obtained from Equations 34 and 37, yielding. 

 (39) 

Thus, the endemic equilibrium not only provides a mathematical condition for tumor persistence but also yields 

biologically interpretable thresholds for treatment efficacy and disease progression. 

 

3.9. Basic Reproduction Number R0 

To assess the potential for tumor invasion, the next-generation matrix (NGM) method is applied [14, 25]. The 

infected subsystem is identified as x(t) = (T,Q)⊤ where T and Q denote proliferating and quiescent tumor cells, 

respectively. The subsystem dynamics can be written as. Equation 40 expresses the infected subsystem in next-

generation matrix form, separating new tumor production from all other transitions. 

    (40) 

Where F(x) contains new tumor proliferation terms and V(x), accounts for all other transfers including 

progression, regression, death, and immune-mediated killing. The new infection vector is. Equation 41 presents the 

vector of new tumor cell production rates. 

     (41) 

While the transition vector is. 

. (42) 

Equation 42 defines the transition vector containing loss, movement, and immune-mediated clearance terms. 

At E0, the nonlinear immune terms are linearized, yielding the effective per capita killing rates. 

The Jacobian matrices of F and V at E0 are given in Equations 43 and 44. 

         (43) 

 

         (44) 

Where, 

       (45)  

 

      (46) 

 



International Journal of Mathematical Research, 2025, 14(1): 1-22 

 

 
10 

© 2025 Conscientia Beam. All Rights Reserved. 

The next-generation matrix is given by Equation 47. 

K = FV −1     (47) 

The invertibility of V requires the determinant condition, which is given by Equation 48. 

ad − βγ > 0   (48) 

Which also guarantees that V is an M-matrix and ensures the positivity of the inverse. 

The inverse of V yields Equation 49. 

    (49) 

This yields the next-generation matrix given by Equation 50 

    (50) 

Whose eigenvalues are given by Equations 51 and 52. 

1
Tr d

ad



=

−
                                        (51) 

1
Tr d

ad



=

−
                                          (52) 

Hence, the basic reproduction number is given by Equation 53. 

    (53) 

Substituting Equations 50, 53 yields the complete basic reproduction number given in Equation 54. 

    (54) 

3.10. Local Stability Analysis of TFE 

For analytical clarity, we first set α1= 0, removing continual exogenous seeding from healthy to tumour cells. 

With T= Q= 0, the system admits the tumour-free equilibrium in Equation 55. 

     (55) 

Which is biologically feasible provided rH > ρH + χH. 

The computation of the Jacobian matrix of system (5) at E0 results in Equation 56 

          

                                                                             (56) 

with 

 

 

 

 

 

(57) 
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Two eigenvalues are immediate: a11 < 0 (under feasibility) and −dI < 0. Thus, stability reduces to the 2 × 2 

tumour–quiescent Equation 58. 

     (58) 

Defining; 

   (59) 

so that a22 = rT − a and a33 = −d. The characteristic polynomial of M is Equation 60. 

λ2 − (a22 + a33)λ + (a22a33 − βγ) = 0    (60) 

By the Routh–Hurwitz criterion, both roots have negative real parts if and only if Equation 61 holds. 

a22 + a33 < 0   and  a22a33 − βγ > 0.     (61) 

The determinant condition simplifies to Equation 62. 

d(rT − a) + βγ < 0    (62) 

which is equivalent to Equation 63. 

   (63) 

We therefore define the effective tumour reproduction number as shown in Equation 64. 

,  (ad − βγ > 0). (64) 

Theorem 3.4. Suppose α1 = 0 and rH > ρH + χH. Let R0 be as in (64). Then. 

1. If R0 < 1, all eigenvalues of J(E0) are negative, and the tumour-free equilibrium E0 is locally asymptotically 

stable. 

2. If R0 > 1, J(E0) has a positive eigenvalue and E0 is unstable. 

Proof. Under feasibility, a11 < 0 and −dI < 0. The remaining eigenvalues are roots of the quadratic Equation 64 

above. Routh–Hurwitz reduces to conditions already shown equivalent to R0 < 1. Hence, R0 < 1 ensures stability of 

E0; if R0 > 1, one eigenvalue is positive and E0 is unstable. 

From the equations above and the numerical substitution of the parameter values in Table 4.1, and α1= 0, it is 

determined that. 

   (65) 

Thus 

   (66) 

Indicating that under baseline parameters, the TFE is unstable, and tumor invasion occurs. 

The threshold R0 balances tumor transitions (β,γ) and tumor proliferation (rT) against immune clearance and 

therapy (via a,d). 

Any minor introduction of tumor cells is eliminated and E0 is stable if R0 < 1. Tumor cells persist if R0 > 1, which 

destabilizes E0. Therefore, increasing immunological stimulation (sI,σI) and treatment (χT,χQ) reduces R0 and 

encourages tumor control. 

 

3.11. Global Stability of the TFE 

To complement the local analysis, we now establish conditions for global stability of the tumour-free equilibrium. 

Consider the Lyapunov candidate function in Equation 67. 

 L(T, Q) = T + Q, (67) 
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Which is positive definite in the tumour subspace (T, Q ≥ 0) and vanishes only at T = Q = 0. Differentiating 

along the trajectories of the full system yields Equation 68. 

   (68) 

Using the tumour equations, this can be expressed in the form given in Equation 69. 

   (69) 

where ψ(T, Q) is a non-negative function representing the effective tumour growth. 

Hence, if R0 < 1, we have  for all T, Q > 0, implying that L(T,Q) decreases monotonically to zero. By 

LaSalle’s 

Invariance Principle, all trajectories converge asymptotically to 

 E0 = (H∗,0,0,I∗). (70) 

Theorem. The tumour-free equilibrium E0 exists whenever conditions (25)– (29) hold. Moreover, if R0 < 1, then 

E0 is globally asymptotically stable in the feasible region Ω. 

The result demonstrates that when the effective reproductive capacity of tumour cells falls below unity, not only 

is tumour invasion locally prevented, but the entire system evolves globally to a tumour-free state regardless of the 

initial tumour burden. This highlights the effectiveness of therapeutic and immune mechanisms in ensuring complete 

tumour eradication. 

 

3.12. Local Stability Analysis of the Endemic Equilibrium 

By assessing the local stability of the endemic equilibrium point E∗ = (H∗,T∗,Q∗,I∗) of system (5), where all state 

variables are positive. Let: 

X(t) = (H,T,Q,I)⊤     (71) 

The Jacobian matrix J(E∗) of the system evaluated at the endemic equilibrium is given in Equation 72. 

    (72) 

The partial derivatives of Equation 72 yields Equation 73. 

  (73) 

Since J11 < 0 whenever rH > α1 + ρH + χH, the healthy compartment is locally stable and decouples near equilibrium. 

Thus, stability of  is determined by the tumour–quiescent–immune subsystem where the focus is on the 3×3 matrix: 

Tumor–quiescent–immune subsystem. 

Y = (T,Q,I)      (74) 
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The subsystem matrix A is shown in Equation 75. 

   (75) 

The characteristic polynomial of A is given in Equation 76. 

λ3 + a1λ2 + a2λ + a3 = 0     (76) 

Lemma 3.1. The endemic equilibrium  is locally asymptotically stable if 

 a1 > 0, a2 > 0, a3 > 0, a1a2 > a3.       (77) 

Theorem 3.5. If R0 > 1, so that  exists, and the Routh–Hurwitz conditions in the lemma ( 3.1) hold, then  is 

locally asymptotically stable. Otherwise, it is unstable. 

The condition a1 > 0 ensures that overall losses dominate tumour proliferation, a2 > 0 guarantees stabilising 

pairwise feedbacks (tumour–immune and tumour–quiescent), and a3 > 0 prevents runaway amplification. The 

inequality a1a2 > a3 rules out oscillatory instabilities. The stability of the endemic state therefore requires a delicate 

balance between tumour proliferation, immune clearance, quiescence dynamics, and therapeutic pressure. 

 

3.13. Global Stability of the Endemic Equilibrium 

We now turn to the global dynamics of the endemic equilibrium shown in Equation 78. 

, (78) 

of system (5). Recall that  exists whenever R0 > 1 and all state variables are strictly positive and by establishing 

global stability of  using a Lyapunov approach, we consider the Volterra-type Lyapunov function shown in 

Equation 79. 

. (79) 

where j∗ denotes the corresponding coordinate of E∗. Each scalar summand is nonnegative and C1 on (0,∞) and 

vanishes only at j = j∗. Thus V ≥ 0 on D and V = 0 if and only if (H,T,Q,I) = E∗. 

Differentiating along solutions of system (5) gives Equation 80. 

. (80) 

Substituting system equations and using equilibrium conditions ( ) shows that 

, . (81) 

Since the system is bounded and positively invariant, LaSalle’s invariance principle implies. 

Theorem 3.6. The endemic equilibrium  of system (5) is globally asymptotically stable 

in the interior of , provided all parameters are positive and constant. 

Both the local and global stability of the endemic equilibrium have been examined in this section.  is locally 

asymptotically stable whenever R0 > 1, according to the local stability analysis, and the Lyapunov-based global 

analysis also showed that this stability holds true for the whole feasible region. From a biological perspective, this 

implies that if tumor cells become established in the host, the system will unavoidably move toward a state of 

continuous cohabitation between the tumor and host cells. To eradicate tumor cells, the basic reproduction number 

R0 must be lowered below unity.  

This is the only effective control method. 
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4. NUMERICAL SIMULATIONS 

The nonlinear system of ordinary differential equations defined in Equation 5 was simulated numerically to 

analyze the dynamics of tumor–host interactions under different therapeutic interventions. Since closed-form 

solutions are not available, numerical simulations provide insight into the qualitative behavior and long-term 

outcomes of the system. Parameter values were obtained from published studies, while a few were estimated within 

biologically plausible ranges. Computations were carried out using Python, and the results are presented graphically. 

This section presents the baseline dynamics, the effects of radiotherapy and chemotherapy, the role of treatment 

timing, and the impact of combined therapeutic strategies. 

 

 
Figure 1. Model dynamics on a logarithmic scale showing the relative sizes of H(t), T(t), Q(t), and I(t) populations. 

 

4.1. Model Dynamics 

Figure 1 uses a logarithmic scale to highlight differences in order of magnitude. While H(t) stabilizes near 106, 

tumor cells T(t) and quiescent cells Q(t) remain significantly smaller but continue to increase steadily. Immune cells 

I(t) show an initial burst followed by a plateau. These dynamics confirm that tumors can persist at low levels even 

when dominated by healthy tissue. 

 

 
Figure 2. Temporal dynamics of all cell populations under baseline conditions. 
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As seen in Figure 2, the four populations exhibit distinct temporal patterns consistent with earlier plots: healthy 

cells dominate, tumor and quiescent cells persist at low levels, and immune cells plateau after an initial response. 

 

 
Figure 3. Impact of different radiotherapy schedules on tumor cells T(t): continuous low dose, pulsed high dose, and fractionated delivery. 

 

4.2. Radiotherapy Effects 

Figure 3 compares radiotherapy schedules. Continuous low-dose therapy drives tumor levels near zero. Pulsed 

high-dose therapy produces sharp declines followed by regrowth between cycles, creating oscillatory tumor 

dynamics. Fractionated therapy moderates growth but fails to achieve eradication. These outcomes highlight that 

continuous delivery is most effective for long-term tumor control. 

 

 
Figure 4. Effect of radiotherapy efficacy ε on tumor cells T(t). Curves correspond to ε = 0.0,0.02,0.05,0.1. 

 

Figure 4 illustrates the threshold role of ε. Without treatment (ε = 0.0), tumor growth is unchecked. At ε = 0.02, 

growth slows but persists. At ε = 0.05, partial suppression occurs, while ε = 0.1 nearly eradicates the tumor. This 

confirms the analytical condition that tumor eradication requires reducing R0 below one. 
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Figure 5. Radiotherapy efficacy ε and its effect on T(t) (left) and H(t) (right). 

 

Figure 5 shows that radiotherapy efficacy alters tumor dynamics while leaving healthy cell recovery largely 

unchanged. For all values of ε, H(t) returns to its carrying capacity, demonstrating selective tumor suppression. 

 

  
Figure 6. Effect of radiotherapy efficacy ε on all compartments: H(t), T(t), Q(t), I(t). 

 

Figure 6 confirms that radiotherapy strongly reduces T(t) and Q(t), while H(t) and I(t) remain stable. Thus, the 

treatment primarily targets malignant cells in this model. 
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Figure 7. Tumor trajectories under no treatment, early therapy, late therapy, and continuous therapy. 

 

4.3. Treatment Timing 

Figure 7 demonstrates the influence of timing. Early therapy suppresses tumors before they expand, while late 

therapy reduces tumor size but leaves residual populations. Continuous therapy maintains near-zero tumor levels 

throughout. 

 

 
Figure 8. Comparison of radiotherapy timing: tumor dynamics (left) and healthy cells (right). 

 

Figure 8 highlights that tumor suppression depends strongly on timing, while healthy cells H(t) are robust and 

recover regardless of schedule. 
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Figure 9. Chemotherapy schedules: no therapy, continuous, pulsed, and fractionated. Effects shown for all cell populations. 

 

4.4. Chemotherapy Effects 

Figure 9 shows that continuous chemotherapy best suppresses T(t) and Q(t). Pulsed chemotherapy produces 

oscillations, while fractionated therapy only partially controls growth. Healthy and immune cells remain relatively 

stable, though continuous therapy slightly reduces H(t) compared to no therapy. 

 

 
Figure 10. Comparison of tumor trajectories under no therapy, radiotherapy alone, chemotherapy alone, and combined therapy. 
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4.5. Combined Therapies 

Figure 10 shows that radiotherapy and chemotherapy alone reduce tumor burden, but their combination achieves 

the most rapid and complete suppression. 

 

 
Figure 11. Cell dynamics under early versus late combined therapy compared with no therapy. 

 

Figure 11 illustrates that early combined therapy is more effective, maintaining low tumor and quiescent 

populations with fewer oscillations, whereas late combined therapy results in higher peaks and larger fluctuations 

across compartments. 

 

5. DISCUSSION 

This study examined a nonlinear model describing interactions among healthy cells, tumor cells, quiescent cells, 

and immune cells under radiotherapy and chemotherapy. The analytical results show that the system remains positive 

and bounded for all biologically meaningful initial conditions. This confirms that the model structure reflects realistic 

cell population dynamics and avoids unphysical behaviors such as negative or unbounded growth. 

The stability analysis established that the tumor-free equilibrium becomes globally asymptotically stable when 

the basic reproduction number is less than one. In this regime, treatment and immune activity are strong enough to 

suppress tumor growth and drive the system toward a healthy steady state. The result aligns with earlier work 

showing that tumor–immune systems can switch between persistence and elimination depending on a threshold 

balance between proliferation and immune-mediated killing [3, 4]. The presence of quiescent cancer cells does not 

change the core threshold structure but can delay convergence to the tumor-free state, reinforcing the clinical 

observation that dormant cells contribute to long-term relapse. 
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When 
0( 1)R  , the model predicts sustained tumor presence despite immune activation and treatment exposure. 

This outcome is consistent with studies showing that insufficient immune pressure or suboptimal therapy allows 

tumors to persist or rebound [5, 6]. The inclusion of quiescent cells captures the reduced sensitivity of non-

proliferating cells to therapy, a feature widely noted in radiotherapy and chemotherapy modeling [7, 26]. These cells 

form a reservoir that can repopulate the tumor, highlighting the need for treatment strategies that effectively target 

both active and dormant populations. 

Sensitivity analysis identified the parameters that most strongly influence tumor persistence. Higher 

radiotherapy efficacy, stronger immune killing, and increased activation of immune cells reduce tumor survival. In 

contrast, higher tumor proliferation and faster transition to quiescence increase tumor resilience. These findings 

support observations from radiotherapy and immunotherapy studies, where enhanced cytotoxicity and improved 

immune activation correlate with better outcomes [27, 28]. The results also suggest that optimizing therapy 

schedules may shift system dynamics across the 
0( 1)R =  threshold, improving treatment success. 

The model provides a useful framework for understanding how treatment and immune activity interact, but 

several limitations remain. The system does not include spatial effects, angiogenesis, or detailed pharmacokinetics, 

all of which can influence treatment outcomes. Radiotherapy and chemotherapy are modeled as time-dependent killing 

functions rather than through dose distribution or repair mechanisms. The immune response is simplified and does 

not incorporate regulatory cells or cytokine signaling. These omissions keep the model tractable but limit its ability 

to reproduce complex biological responses. 

Future work may extend the model by incorporating adaptive therapy strategies, dose-fractionation schemes, or 

more detailed immune mechanisms. Parameter calibration using patient-specific data would allow exploration of 

personalized treatment planning. Spatial extensions using partial differential equations or agent-based models can 

capture heterogeneity in tumor structure and microenvironmental effects. 

Overall, the results demonstrate how mathematical models can clarify the balance between tumor proliferation, 

immune regulation, and treatment strength. The stability threshold and sensitivity findings provide a foundation for 

designing optimized treatment strategies and highlight the potential for using mathematical models to guide 

personalized cancer therapy. 

 

6. CONCLUSION 

This study developed and analyzed a nonlinear model describing interactions among healthy cells, tumor cells, 

quiescent cells, and immune cells under radiotherapy and chemotherapy. The analysis showed that the system remains 

positive and bounded for all biologically meaningful initial conditions. The tumor-free equilibrium is globally 

asymptotically stable when the basic reproduction number 
0( 1)R  , indicating conditions under which treatment and 

immune response are sufficient to eliminate the tumor. Sensitivity analysis identified key parameters governing tumor 

persistence, including radiotherapy efficacy, chemotherapy strength, immune-killing capacity, and tumor 

proliferation rates. The results showed that increasing radiotherapy effectiveness and strengthening immune-

mediated killing reduce tumor survival, while high tumor proliferation and quiescence transition rates promote 

persistence. The findings highlight how mathematical models can clarify the interplay between tumor growth, 

immune regulation, and therapeutic interventions. The model provides a useful framework for evaluating treatment 

strategies and supports the design of personalized and optimized therapeutic regimens. 
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